Modeling

CMSC 435/634

Modeling?

Modeling

Creating a *model* of an object, usually out of a collection of simpler *primitives*

Primitive

A basic shape handled directly the rendering system

Primitives

Some common primitives

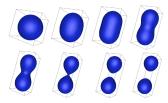
- Triangles & Polygons
 - Most common, usually the only choice for interactive
- Patches, Spheres, Cylinders, ...
 - RenderMan has these
 - Often converted to simpler primitives within the renderer
- Volumes
 - What's at each point in space?
 - Often with some transparent material
 - ▶ Few renderers handle both volume & surface models

Composing primitives

- Collections of large numbers of primitives
 - Sometimes called Boundary Representation (BRep)
- Constructive Solid Geometry (CSG)
 - Set operations (union, intersection, difference)
- ► Implicit Models & Blobs
 - ▶ Surface where f(x,y,z)=0
 - Sum, product, etc. of simpler functions

Composing primitives

- Collections of large numbers of primitives
 - Sometimes called Boundary Representation (BRep)
- Constructive Solid Geometry (CSG)
 - Set operations (union, intersection, difference)
- ► Implicit Models & Blobs
 - ▶ Surface where f(x,y,z)=0
 - Sum, product, etc. of simpler functions



Images: Friedrich Lohmueller

Composing primitives

- Collections of large numbers of primitives
 - Sometimes called Boundary Representation (BRep)
- Constructive Solid Geometry (CSG)
 - Set operations (union, intersection, difference)
- Implicit Models & Blobs
 - ► Surface where f(x,y,z)=0
 - Sum, product, etc. of simpler functions

Images: Paul Bourke

Modeling Approaches

Manual primitive creation

Procedural

Scan from physical object

From data (visualization)

Through image capture (image-based rendering)

Modeling Approaches

Manual primitive creation

Procedural

Scan from physical object

From data (visualization)

Through image capture (image-based rendering)

Manual Creation

- ► Text editor
- ► High-level primitives
- Modeling programs

Modeling Approaches

Manual primitive creation

Procedural

Fractals
Implicit Functions

Grammars

Simulations

Scan from physical object

From data (visualization)

Through image capture (image-based rendering)

Procedural Modeling

- ▶ Describe physical attributes through some (spatial) function
 - Shape
 - Density
 - Color
 - Texture

Procedural Approaches

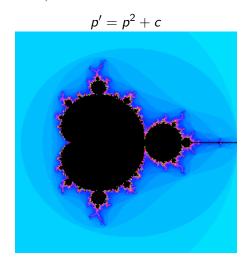
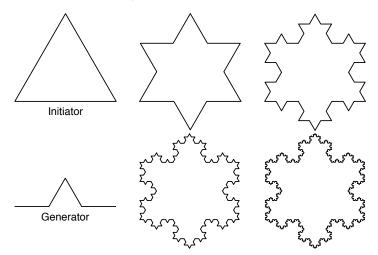
- ► Fractals
- ► Implicit Functions
- Grammars
- Simulations

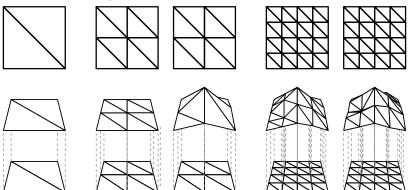
Fractals

Complex structure through self-similarity across scales

- ▶ Iterated equations
- Iterated replacement
- Spectral Synthesis

Iterated Equations / Mandelbrot Set


Image: David E. Joyce

Iterated Replacement / Koch Curve

Iterated Replacement / Mountains

Randomness in replacement

Spectral Synthesis

- Spectral energy a function of frequency
 - Higher frequency, less energy
 - Characterizes roughness of surface
 - lacktriangle Natural phenomena tend to be 1/f

Noise-Based Synthesis

- Band-limited Perlin noise function
 - ▶ Most energy between 1/2 and 1 cycle per unit
 - Average value is 0
 - Random, but repeatable
 - ▶ 1D, 2D, 3D & 4D versions common
- Sum noise octaves
 - $n(x) + \frac{1}{2} n(2 x) + \frac{1}{4} n(4 x) + \dots$
 - Stop adding "..." when frequency is too high to see

Fractal Landscape

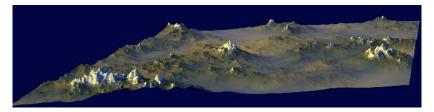
Landscape height is a fractal function of x,y

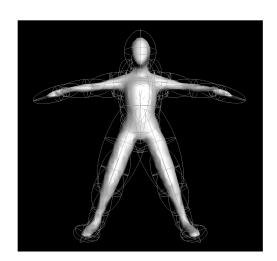
▶ Plus whatever embellishments make it look good

Image: Ken Musgrave

Multifractal

- Change roughness across fractal
 - ► Scaling $(\frac{1}{2}, \frac{1}{4}, ...)$ becomes a function
- ▶ Here, scale is a function of altitude

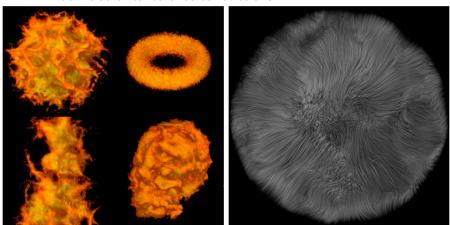



Image: Ken Musgrave

Implicit Functions

- Model as sum of implicit functions
- ► Surface at threshold

Liang, et al., PG'01

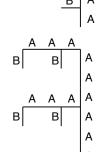

Hybrid Implicit & Polygonal

Bloomenthal, SIGGRAPH 85

Hypertexture

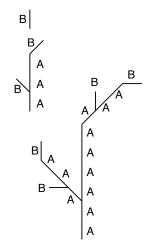
▶ Add noise or turbulence to functions

Grammar-Based Modeling

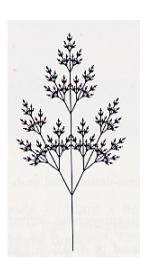

- ► Use (mostly) context-free grammars (CFG) to specify structural change over generations
- Often used to simulate a biological growth process
 - Plants
 - Seashells
- L-systems (Lindenmeyer)

Context-Free Grammar

- ▶ A CFG G = (V, T, S, P) where
 - V is a set of non-terminals
 - ► T is a set of terminals
 - S is the start symbol
 - ▶ *P* is a set of productions (rules) of the form:
 - ▶ $A \rightarrow x$, where $A \in V, x \in (V \cup T)^*$

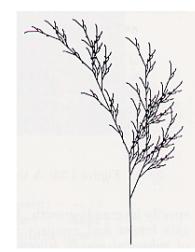

Applying Grammar Rules

- Symbols
 - \triangleright A, B, straight line segments
 - ▶ [], branch left 90°
- ► Rules
 - ▶ $B \rightarrow A[B]AA[B]$
 - ightharpoonup A
 ightharpoonup AA
- Strings
 - **▶** E
 - ► A[B]AA[B]
 - AA[A[B]AA[B]]AAAA[A[B]AA[B]]


Applying Grammar Rules

- Symbols
 - \triangleright A, B, straight line segments
 - \blacktriangleright [], branch left 45°
 - ▶ (), branch right 45°
- Rules
 - ▶ $B \rightarrow A[B]AA(B)$
 - A → AA
- Strings
 - ▶ B
 - ► *A*[*B*]*AA*(*B*)
 - - AA[A[B]AA(B)]AAAA(A[B]AA(B))

L-System Examples

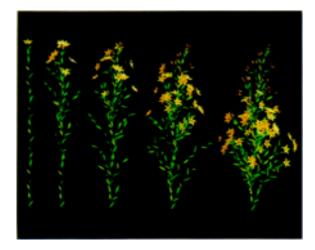

- Symbols
 - ▶ [/] = push/pop
 - ightharpoonup +/- = rotate left/right
 - A Z = straight segment
- Rules
 - ▶ 25.7°, 7 generations
 - $\rightarrow X \rightarrow F[+X][-X]FX$
 - $F \rightarrow FF$

L-System Examples

► Rules

- ▶ 22.5°, 5 generations
- $\begin{array}{c}
 X \to \\
 F [[X] + X] + F[+FX] X
 \end{array}$
- $F \rightarrow FF$

L-System Examples


- ► Rules
 - ▶ 22.5°, 4 generations

$$F \rightarrow FF - [F + F + F] + [+F - F - F]$$

Additions

- ▶ 3D structure
- ► Randomness
- Leaves
- ► Flowers

Prusinkiewicz, et al., SIGGRAPH 88

Pruning

Prusinkiewicz, et al., SIGGRAPH 94

Pruning

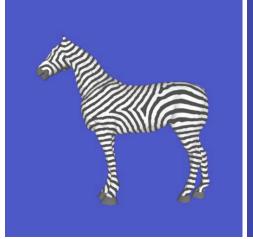
Prusinkiewicz, et al., SIGGRAPH 94

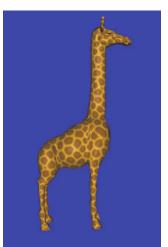
Simulations

- ► Biological
 - Simulate growth, development
- ► Physical
 - Simulate formation or erosion

Biological Simulations

Fowler, et al., SIGGRAPH 92


Fleischer, et al., SIGGRAPH 95


Biological Simulations

Fowler, et al., SIGGRAPH 92

Biological Simulations

Turk, SIGGRAPH 91

Physical Simulation

► Erosion, Deposition

Kenji Nagashima, Visual Computer 1997

Modeling Approaches

Manual primitive creation

Procedural

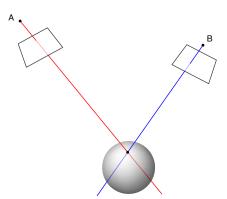
Scan from physical object

From data (visualization)

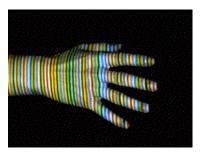
Through image capture (image-based rendering)

Scan from Objects

- General concept
 - Find points on surface
 - Connect into mesh
- Mechanical
- Triangulation
 - Laser
 - Structured Light
 - ► Multiple Cameras
- ► CAT scan / MRI


Mechanical

- ► Touch tip to surface
- ► Measure angles


Triangulation

▶ Point in space at intersection of ray from A and ray from B

Structured Light

► Point in space at intersection of color edge from light source/projector and ray through camera pixel

projected pattern

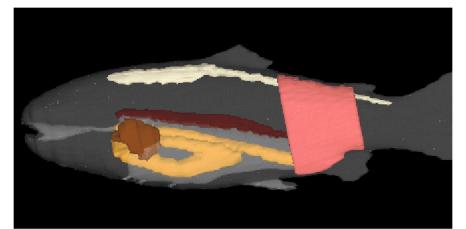
resulting model

Zhang, Curless and Seitz, 3DPVT 2002

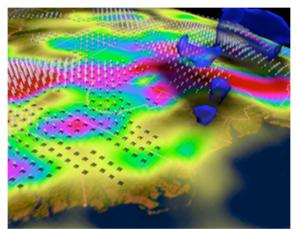
Modeling Approaches

Manual primitive creation

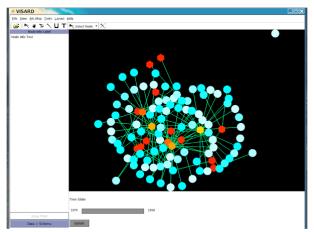
Procedural


Scan from physical object

From data (visualization)


Through image capture (image-based rendering

- Data
 - measurements
 - simulation
 - information
- ▶ Present visually
 - ► Increase understanding
 - Recognize patterns


► Can be 3D Object

► Can be 3D, but showing non-visual aspects.

► Can be not traditionally geometric at all

Modeling Approaches

Manual primitive creation

Procedural

Scan from physical object

From data (visualization)

Through image capture (image-based rendering)

Image-based Rendering

- ▶ Pixels in one or more cameras
 - Color of point in space
 - Color of light along one ray
- IBR
 - Construct new novel view using only image data