Local Illumination

CMSC 435/634

Illumination

- Effect of light on objects
- Mostly look just at intensity
 - Apply to each color channel independently

ション ふぼう ふぼう ふほう うらの

- Good for most objects
 - Not fluorescent
 - Not phosphorescent

Local Illumination

Light sources shining directly on object

Global Illumination

- Lights from objects shining on other objects
- Ambient Illumination
 - Approximate global illumination as constant color

ション ふぼう ふぼう ふほう うらの

► Typically ~1% of direct illumination

BRDF

Bidirectional Reflectance Distribution Function How much light reflects from L_i to L_o

Physically Plausible BRDF

- Positive
- Reciprocity
 - Same light from L_i to L_o as from L_o to L_i
- Conservation of Energy
 - Don't reflect more energy than comes in

Plotting BRDFs

- Polar plot of reflectance strength
 - ► For **one** view direction, showing light directions
 - For one light direction, showing view directions
- Reciprocity same if you swap view and light

Rendering Equation

Integral of all Incoming Light

$$L_o(\vec{v}) = \int_{\Omega(\vec{n})} f_r(\vec{v} \leftarrow \vec{l}) L_i(\vec{l}) \, \vec{n} \bullet \vec{l} \, d\omega(\vec{l})$$

Parts of this equation:

 $\begin{array}{l} L_o(\vec{v}) \\ \Omega(\vec{n}) \\ f_r(\vec{v} \leftarrow \vec{l}) \\ L_i(\vec{l}) \\ \int_{\Omega(\vec{n})} \dots \vec{n} \bullet \vec{l} \, d\omega(\vec{l}) \\ \vec{n} \bullet \vec{l} \, d\omega(\vec{l}) \end{array}$

outgoing light in direction \vec{v} hemisphere above \vec{n} BRDF from \vec{l} to \vec{v} incoming light from direction \vec{l} integration over hemisphere projection of differential solid angle onto surface

Results

- Integrating full environment
- Light at one point, black elsewhere

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 ─ のへで

Important directions

 \hat{n} \hat{v} \hat{j} $\hat{r}_{v} = 2\hat{n}(\hat{n} \bullet \hat{v}) - \hat{v}$ $\hat{r}_{l} = 2\hat{n}(\hat{n} \bullet \hat{l}) - \hat{l}$ $\hat{h} = \frac{\hat{v} + \hat{l}}{|\hat{v} + \hat{l}|}$

Surface normal Vector from surface toward viewer Vector from surface toward light Mirror reflection direction for view Mirror reflection direction for light Normal direction that would reflect \hat{v} to \hat{l}

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 ─ のへで

Diffuse

- Also called Lambertian or Matte
- Constant BRDF
- Total reflectance $\hat{n} \bullet \hat{l}$

Specular

- Phong
 - Strongest where \hat{r}_l lines up with \hat{v}_l
 - Strongest where \hat{r}_v lines up with \hat{l}

$$(\hat{r}_l \bullet \hat{v})^e = (\hat{r}_v \bullet \hat{l})^e$$

- Blinn-Phong
 - Alternate formulation, similar behavior
 - Strongest where \hat{h} lines up with \hat{n}
 - $\blacktriangleright (\hat{n} \bullet \hat{h})^e$

