Lines, Planes and Triangles CMSC 435/634

K □ ▶ K @ ▶ K 콜 K K 콜 K - 콜 - ④ Q Q ^

Implicit Lines and Planes

Lines / 2D

\n
$$
a X + b Y + d = 0 \qquad a X + b Y + c Z + d = 0
$$
\n
$$
\begin{bmatrix} a & b \end{bmatrix} \begin{bmatrix} X \\ Y \end{bmatrix} = -d \quad \begin{bmatrix} a & b & c \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = -d
$$
\n
$$
\vec{n} \cdot \vec{P} = -d
$$
\n
$$
= \vec{n} \cdot \vec{P}_0
$$

K □ ▶ K @ ▶ K 콜 K K 콜 K - 콜 - ④ Q Q ^

Homogeneous Equations

 \blacktriangleright All terms of the same degree Lines / 2D Planes / 3D $a X + b Y + d = 0$ $a X + b Y + c Z + d = 0$ Multiply through by w $a X w + b Y w + d w = 0$ $a X w + b Y w + c Z w + d w = 0$ $a x + b y + d w = 0$ $a x + b y + c z + d w = 0$ $\begin{bmatrix} a & b & d \end{bmatrix}$ $\sqrt{ }$ $\overline{1}$ x y w 1 $\begin{bmatrix} =0 \end{bmatrix}$ $\begin{bmatrix} a & b & c & d \end{bmatrix}$ $\sqrt{ }$ $\Big\}$ x y z w 1 $= 0$ $\left[\begin{array}{c|c} \vec{n} & -\vec{n} \bullet \vec{P}_0 \end{array} \right] \vec{p} = 0$

KOD KOD KED KED E VAN

Parametric Lines and Planes

Lines Planes $\vec{p} = \vec{p}_0 + t \ \vec{v}$ $\vec{p} = \vec{p}_0 + s \ \vec{u} + t \ \vec{v}$ Tangents $\frac{d\vec{p}}{dt} = \vec{v}$ $\frac{\partial \vec{p}}{\partial s} = \vec{u}$; $\frac{\partial \vec{p}}{\partial t} = \vec{v}$ Normals $\vec{n} = \hat{z} \times \vec{v} = \begin{bmatrix} -v^y & v^x \end{bmatrix} \quad \vec{n} = \vec{u} \times \vec{v}$

KOD KOD KED KED E VAN

Given Points on Line or Plane

Lines Planes $\vec{p} = \vec{p}_0 + t \ \vec{v}$ $\vec{p} = \vec{p}_0 + t \left(\vec{p}_1 - \vec{p}_0\right)$ $\vec{p}(0) = \vec{p}_0$ $\vec{p}(1) = \vec{p}_0 + \vec{p}_1 - \vec{p}_0 = \vec{p}_1$

$$
\begin{array}{l} \vec{\rho} = \vec{\rho}_0 + s \, \, \vec{u} + t \, \, \vec{v} \\ \vec{\rho} = \vec{\rho}_0 + s \, \, (\vec{\rho}_1 - \vec{\rho}_0) + t \, \, (\vec{\rho}_2 - \vec{\rho}_0) \\ \vec{\rho}(0,0) = \vec{\rho}_0 \\ \vec{\rho}(1,0) = \vec{\rho}_0 + \vec{\rho}_1 - \vec{\rho}_0 = \vec{\rho}_1 \\ \vec{\rho}(0,1) = \vec{\rho}_0 + \vec{\rho}_2 - \vec{\rho}_0 = \vec{\rho}_2 \end{array}
$$

4 ロ > 4 레 > 4 플 > 4 플 > 1 플 + 1 이익()

Barycentric Form

Lines Planes $\vec{p} = \vec{p}_0 + t$ $(\vec{p}_1 - \vec{p}_0)$ $\vec{p} = \vec{p}_0 + s$ $(\vec{p}_1 - \vec{p}_0) + t$ $(\vec{p}_2 - \vec{p}_0)$ Rearrange for weighted sum of points $\vec{p} = (1 - t) \vec{p}_0 + t \vec{p}_1$ $\vec{p} = (1 - s - t) \vec{p}_0 + s \vec{p}_1 + t \vec{p}_2$ $\vec{p} = r \ \vec{p}_0 + t \ \vec{p}_1$ $\vec{p} = r \ \vec{p}_0 + s \ \vec{p}_1 + t \ \vec{p}_2$ where $r + t = 1$ where $r + s + t = 1$

KOD CONTRACT AS A GRANA

 \triangleright r, s and t are the barycentric coordinates of \vec{p}

Computing Barycentric Coordinates: System of Equations

 \blacktriangleright r, s, t as linear equations \blacktriangleright r = | a b d | \vec{p} \blacktriangleright Three unknowns, a, b and d Three constraints, $r = 1 \circ \vec{p}_0$, $r = 0 \circ \vec{p}_1$, $r = 0 \circ \vec{p}_2$ \blacktriangleright 1 = $\begin{bmatrix} a & b & d \end{bmatrix} \vec{p}_0$ \bullet 0 = $\begin{bmatrix} a & b & d \end{bmatrix} \vec{p}_1$ \blacktriangleright 0 = $\begin{bmatrix} a & b & d \end{bmatrix} \vec{p}_2$ \blacktriangleright $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} a & b & d \end{bmatrix} \begin{bmatrix} \vec{p}_0 & \vec{p}_1 & \vec{p}_2 \end{bmatrix}$ \blacktriangleright $\begin{bmatrix} a & b & d \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} \vec{p}_0 & \vec{p}_1 & \vec{p}_2 \end{bmatrix}^{-1}$

KOD KOD KED KED E VAN

Computing Barycentric Coordinates: Ratio of Heights

- \triangleright r is 0 at \vec{p}_1 , \vec{p}_2 , and all points on the $\vec{p}_1 \vec{p}_2$ line
- r is 1 at \vec{p}_0
- In r measures the perpendicular height of \vec{p} above $\vec{p}_1 \vec{p}_2$
- **In Can measure with dot product against normal to** $\overrightarrow{B_1B_2}$
	- \blacktriangleright Apply Gram-Schmidt orthogonalization

$$
\blacktriangleright \vec{e}_{1,2} = \vec{p}_2 - \vec{p}_1
$$

▶
$$
\vec{e}_{1,0} = \vec{p}_0 - \vec{p}_1
$$

\n▶ $\vec{n}_r = \vec{e}_{1,0} - \frac{\vec{e}_{1,0} \bullet \vec{e}_{1,2}}{\vec{e}_{1,2} \bullet \vec{e}_{1,2}} \vec{e}_{1,2}$

- \triangleright Measure height of triangle: $h = \vec{n}_r \cdot \vec{p}_0 \vec{n}_r \cdot \vec{p}_1$
- \triangleright Measure height of point \vec{p} : $h_p = \vec{n}_r \cdot \vec{p} \vec{n}_r \cdot \vec{p}_1$

KOD KOD KED KED E VAN

r is the ratio h_p/h

Computing Barycentric Coordinates: Ratio of Areas

- \blacktriangleright Triangle area $=\frac{1}{2}$ width height
- \triangleright ∴ Ratio of heights = ratio of triangle area (with same base)

KOD KOD KED KED E VAN

 \blacktriangleright $\frac{1}{2}$ and *width* terms cancel

$$
\blacktriangleright \ \text{area}(\vec{p}_0, \vec{p}_1, \vec{p}_2) = \frac{1}{2}w \ h
$$

$$
\blacktriangleright \ \text{area}(\vec{p}, \vec{p}_1, \vec{p}_2) = \frac{1}{2}w \ h_p
$$

$$
r = \frac{\text{area}(\vec{p}, \vec{p}_1, \vec{p}_2)}{\text{area}(\vec{p}_0, \vec{p}_1, \vec{p}_2)} = \frac{\frac{1}{2}w h_p}{\frac{1}{2}w h} = h_p/h
$$

Computing Barycentric Coordinates: Cross Product

- \triangleright Magnitude of cross product is twice area of triangle
- \triangleright ∴ Ratio of areas = ratio of cross products

$$
\begin{array}{ll}\n\blacktriangleright & \vec{n}_p = (\vec{p}_2 - \vec{p}_1) \times (\vec{p} - \vec{p}_1) \\
\blacktriangleright & \vec{n}_{p_0} = (\vec{p}_2 - \vec{p}_1) \times (\vec{p}_0 - \vec{p}_1)\n\end{array}
$$

$$
\blacktriangleright |r| = |\vec{n}_p|/|\vec{n}_{p_0}| = |w \; h_p|/|w \; h| = |h_p|/|h|
$$

Sign: positive if \vec{n}_p and \vec{n}_{p_0} point the same direction

- ► r is positive if $\vec{n}_p \bullet \vec{n}_{p_0} > 0$
- ► r is negative if $\vec{n}_p \bullet \vec{n}_{p_0} < 0$
- \triangleright For triangle in 2D; x,y components of cross product are 0

KEY KARY KEY KEY LE VOLO

$$
\blacktriangleright r = \vec{n}_p^z / \vec{n}_{p_0}^z
$$

Using Barycentric Coordinates: Point in Triangle Test

- \triangleright Point \vec{p} is in triangle \triangle $\vec{p}_0 \vec{p}_1 \vec{p}_2$
	- \triangleright iff $r > 0$, $s > 0$, $t > 0$
- \blacktriangleright Each barycentric coordinate is one edge test
	- \blacktriangleright $r > 0$ on the inside of $\frac{1}{\vec{p}_1 \vec{p}_2}$
	- \blacktriangleright s > 0 on the inside of $\frac{\overrightarrow{p}_2}{\overrightarrow{p}_0}$
	- \blacktriangleright t > 0 on the inside of $\vec{p}_0 \vec{p}_1$
- \triangleright Optimizations
	- \triangleright Only need sign, can avoid division
	- ► For known vertical or horizontal edges, reduces to $\vec{p}^\text{x} \vec{p}_0^\text{x} \geq 0$
- \triangleright For grid (as in assignment), can locate grid triangle without barycentric coordinates
	- \rightarrow i = floor(x/spacing); j = floor(y/spacing)
	- \triangleright Single dot product/edge test determines top vs. bottom triangle in cell

Using Barycentric Coordinates: Interpolation

 \triangleright Given r, s and t, can interpolate position, \vec{p} within the triangle

$$
\blacktriangleright \vec{\rho} = r \; \vec{p}_0 + s \; \vec{p}_1 + t \; \vec{p}_2
$$

- \triangleright Given \vec{p} can compute r, s and t.
- \triangleright Use these coordinates to interpolate other per-vertex values

KOD KOD KED KED E VAN

$$
\blacktriangleright z = r z_0 + s z_1 + t z_2
$$

 \rightarrow color = r color₀ + s color₁ + t color₂

$$
\blacktriangleright \vec{n} = r \ \vec{n}_0 + s \ \vec{n}_1 + t \ \vec{n}_2
$$