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Abstract—The scale, unattended-operation and ad-hoc nature 
of an Internet-of-Things (IoT) make the network vulnerable to 
device impersonation, message replay, and Sybil attacks by either 
external actors or compromised nodes.  This paper opts to tackle 
such vulnerability and presents a novel and effective solution for 
mutual authentication of IoT nodes. The proposed solution calls 
for embedding a Physically Unclonable Function (PUF) on each 
device, and employs a lightweight protocol for validating the 
identity of the individual devices based on querying the PUF. To 
authenticate a “prover” node, a verifier node will send a challenge 
bit-stream to the prover, where the latter provides the response of 
its PUF to such a challenge to be matched by what the verifier 
expects. To prevent the PUF of a prover from being modeled by an 
eavesdropper or a collusive set of compromised verifiers, the 
proposed protocol makes the response to a challenge dependent on 
the verifier. In addition, our protocol combines such an identity-
based response generation with a simple Elliptic curve to thwart 
any attempts by a compromised verifier to reverse engineer the 
response generation process.  The robustness of our PUF-based 
IoT Device Authentication (PIDA) protocol, is validated using data 
collected from an FPGA-based implementation.         

Keywords—IoT, Authentication, Physically Unclonable 
Function, Collusion resistance, Distributed security solution. 

I. INTRODUCTION 

The Internet of Things (IoT) is characterized by dynamic 
device membership, evolving network topology, and resource-
constrained devices. These characteristics make decentralized 
management to be the preferred option since access to a central 
server cannot be ensured at all times. Moreover, the openness 
and pervasiveness of the IoT network raise major security 
concerns [1]. Particularly, device authentication is important 
given the major threat that infiltrating the IoT network would 
pose. In essence, impersonating a legitimate device can be the 
preferred means for an adversary to violate privacy and inject 
false data. Hence, a number of lightweight protocols are 
developed for establishing mutual trust among nodes [2]. 
However, many of these protocols are based on shared device 
secrets and do not withstand attacks that involve device 
hacking. A notable class among the published schemes rely on 
PUFs that are embedded in the IoT devices during 
manufacturing. PUF-based authentication protocols avoid 
storage of device secrets and instead generate them on-the-fly 
[3]. A PUF fundamentally realizes a one-way hash that is 
indexed by a set of bits, called challenge. The corresponding 
entry for a challenge is referred to as a response, and is not 
stored but rather is generated every time the challenge is applied 
to the PUF. Thus, PUFs are deemed tamper-proof primitives 
that enable resilience against device hacking.  

To conduct mutual authentication of devices, existing PUF-
based protocols rely on a central trusted server, which may not 

be accessible at all times. In fact, decentralized management is 
the preferred option in IoT. Therefore, distributed PUF-based 
device authentication methods are more appropriate. However, 
sharing challenge-response pairs (CRPs) among devices needs 
to be orchestrated such that the PUF cannot be modeled if 
multiple nodes collude. To elaborate, when a server is involved, 
each device Dp would provide a set of CRPs to be stored at the 
server. The latter uses these CRPs to authenticate Dp by sending 
one of the challenges and matches the response of Dp to what is 
stored at the server. Given that the server is trusted, the stored 
CRPs are not available to adversaries and cannot be used to 
develop a machine learning (ML) model that mimics the PUF 
[4]. On the other hand, when distributed authentication is to be 
pursued, a device Dp, referred to as a prover, has to share a set 
of CPRs with each communicating party, Dq, referred to as a 
verifier. Unlike the server, the verifier cannot be trusted and the 
CRPs of Dp could be leaked by Dq or used to model the PUF of 
Dp. The threat becomes even more serious if multiple verifiers 
collude, leading to the formation of an accurate model for Dp. 

This paper fills the technical gap and presents PIDA, a novel 
distributed protocol for mutual authentication of IoT devices. 
Each device Dp will have an embedded PUF; yet the shared 
CPRs will be verifier-dependent, meaning that Dp will change 
the response of the same challenge based on the identity of Dq. 
Thus, even if multiple verifiers collude, they cannot model the 
PUF of Dp. Such verifier-dependent obfuscation of the PUF 
response also factors in a verifier-picked challenge bit-stream, 
and hence will thwart attempts to replay the prover’s response 
to prior authentication requests. To generate the obfuscated 
response, PIDA employs a simple Elliptic-Curve Function 
(ECF), whose parameters are only known to the prover. The 
inputs to ECF are the binary responses of: (i) the PUF for the 
verifier-provided challenge, i.e., RC=PUFp(C), and (ii) when 
using a verifier ID as a challenge, i.e., RID=PUFp(IDq). We 
show that PIDA cannot be reversed engineered or modeled to 
predict the prover’s response for unseen challenges. PIDA also 
mitigates the noise effect on the PUF output by storing the error-
correction code (ECC) of the prover’s binary response to a 
challenge at the verifier. The ECC will be provided by the 
verifier, along with the challenge, to help the prover tolerate 
noisy PUF outputs. Given the decorrelation between the PUF’s 
binary output for the challenge and the actual obfuscated 
response used for authentication, sharing the ECC does not 
constitute much of information leakage.  The validation results 
based on data collected from FPGA-based PUF implementation 
confirm the robustness of PIDA.    

978-1-6654-3540-6/22/$31.00 ©2022 IEEE 

2022 IEEE Global Communications Conference: IoT and Sensor Networks

4328

GL
O

BE
CO

M
 2

02
2 

- 2
02

2 
IE

EE
 G

lo
ba

l C
om

m
un

ic
at

io
ns

 C
on

fe
re

nc
e 

| 
97

8-
1-

66
54

-3
54

0-
6/

22
/$

31
.0

0 
©

20
22

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

GL
O

BE
CO

M
48

09
9.

20
22

.1
00

01
25

6

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on June 13,2023 at 18:19:59 UTC from IEEE Xplore.  Restrictions apply. 



 

II. RELATED WORK 

Device authentication using asymmetric crypto-systems, 
imposes significant overhead and does not suit resource-
constrained IoT devices [5]. Non-volatile memories such as 
EEPROM or battery-backed SRAM to store shared keys are not 
secure either [5]. Meanwhile, employing a trusted platform 
module increases the hardware complexity and is geared for 
software integrity rather than device authentication [6]. ML-
based trust models are also pursued as a means to continually 
authenticate IoT nodes [7]; yet the associated computational 
overhead is high. Consequently, the use of PUF-based 
signatures has attracted attention in recent years [3]. However, 
most existing PUF-based authentication protocols rely on a 
centralized server [8], or are vulnerable to modeling attacks [4]. 

To counter modeling attacks, hardware-, encryption-, and 
protocol-based schemes have been pursued. In [9] the output is 
a function of the PUF response and the first and last challenge 
bits. A random number generator is used in [10] to shuffle the 
challenge and response bits. Yet, this approach requires 
synchronization unless the sequence of random numbers is 
predetermined. A circuit is added in [11] to shuffle the 
challenge bits in a manner that is dependent on the verifier ID. 
The shuffling process varies also based on the challenge bit 
patterns. Instead of shuffling, a secondary PUF is employed to 
obfuscate the challenge of the main strong PUF in [12]. To 
mislead the adversary, a fake PUF is deployed along with the 
original PUF [13]. However, the extra PUF and/or the 
obfuscation circuit impose significant overhead. Cryptographic 
hash functions are used in [14] to encrypt the PUF response. 
However, these schemes lose the PUF advantage by imposing 
significant overhead. Some protocol-level PUF modeling 
countermeasures pursue multifactor authentication. For 
example, the wireless channel characteristics are factored in 
[15]. However, channel noise variation could in fact hinder 
successful authentication. The approach of [16] uses password, 
PUF and biometrics, which impose high overhead; also, storing 
passwords defies the main advantage of PUFs.  

Barbareschi et al. [17] use predefined chains of CRPs, where 
only the XOR values of the responses are sent; yet this scheme 
is vulnerable to impersonation attacks. In [18], multiple 
challenges are used where a function of the response is provided 
to the verifier. The goal is to counter eavesdropping threat; yet 
the approach is prone to collusion if applied in a distributed 
manner. Although T2T-MAP [19] is a server-based approach, 
the PUF responses are not stored at the server. In fact, the server 
can be an IoT node itself.  T2T-MAP also avoids storing 
responses on the verifier; instead it creates entries that involve 
the PUFs of the two communication devices. Basically at 
enrollment, each device D1 creates an authentication token that 
is unique for communication with another device D2. However, 
the practicality of the approach is questionable given its 
inability to mitigate the PUF noise effect. Contrarily to most 
existing PUF-based schemes, PIDA enables collusion-resistant 
distributed authentication of IoT devices.  

III. SYSTEM MODEL AND APPROACH OVERVIEW 

A. System Model 

The authentication process in IoT devices should be lightweight 
given the limited computation and communication resources, 
the scale of the network, and the dynamic connectivity where a 

device needs to be authenticated frequently. PIDA calls for 
embedding a PUF in each IoT device. A PUF is a hardware 
fingerprinting primitive that leverages random variations in the 
fabrication process of integrated circuits. A PUF simply maps 
an n-bit input stream, C, referred to as a challenge, to an output 
bit, referred to as a response. Since the process variations are 
random and independent of the devices, a PUF cannot be cloned 
and its challenge-to-response mapping constitutes a device 
signature. Fig. 1 shows the schematic diagram of the arbiter 
PUF, which is one of the prominent PUF types. Fundamentally 
the arbiter PUF relies on the variability of the delay experienced 
by an input signal until reaching the arbiter (can be realized as 
an SR-latch), where the propagation path is determined by the 
combination of challenge bits, i.e., c0, c1, …, cn-1, that configure 
the multiplexers. To generate an m-bit response, either the PUF 
is queried by multiple challenges, e.g., arbitrary range of binary 
bit strings, or the PUF circuit is replicated m times. In this paper, 
we generally use R to reflect an m-bit response.  

A PUF is an attractive choice for supporting authentication 
since the response of challenges are not stored aboard the 
device. Hence capturing and/or hacking into a device will not 
reveal its secret identity, i.e., its fingerprint.  However, it has 
been shown that advanced ML techniques could successively 
model the PUF operation using some intercepted CRPs for 
training without even knowing the process variation details 
[4].  PIDA mitigates vulnerability to modeling attacks in 
presence of individual and colluding actors.  Finally, a trusted 
server is assumed to enroll nodes, prior to their participation in 
the network. Yet, such a server is not engaged in coordinating 
the IoT operation and is not consistently reachable to the nodes. 

B. Attack Model 

PIDA opts to counter attempts to gain access to an IoT network 
by impersonating legitimate nodes. Upon joining the network, 
the adversary can launch attacks such as false data injection and 
selective forwarding, message relay, etc. The adversary pursues 
two strategies to uncover the security provisions employed by 
the individual nodes, i.e., modeling the embedded PUFs.  The 
first is to eavesdrop on the communication links of each device 
(prover) to intercept authentication messages and collect CRPs 
for developing a model that replicates the functionality of the 
device’s PUF. The second strategy is to hack (intrude) into the 
device to uncover the stored CRPs. For PIDA, the adversary 
may target multiple verifiers to collect CRPs for a certain prover 
and consolidate the gained knowledge. As will be explained, 
PIDA thwarts such a threat by providing verifier-specific 
responses using a one-way function, which avoids the 
communication of any information that is directly related to the 
PUF. Note that impersonation of the verifier does not present 
any relevance as the objective is to authenticate the provers.  
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Fig. 1. Schematic diagram of an Arbiter PUF, where the challenge bits control 
the individual multiplexers and cause the input signal to experience different 
delays on distinct devices and consequently the latched value (Q) would differ. 
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C. Approach Overview  

PIDA enables peer-to-peer device authentication without using 
a trusted authority. The main idea is to employ a lightweight 
hardware primitive, namely a PUF, where the node’s identity 
can be verified using the PUF response to a given challenge bit-
stream. A key advantage of the PUF is that the response does 
not have to be stored in the prover’s memory and hence the 
device becomes resistant to tampering and intrusion attempts. 
However, in distributed setups, the verifier needs to know some 
CRPs for the prover’s PUF to validate the response. Sharing 
CRPs raises a concern about the potential of leakage that allows 
an adversary to model the PUF and impersonate the prover [4]. 
One option for addressing such a concern is to pursue a 
decentralized authentication process and limit the number of 
shared CRPs so that if a verifier node is captured or hacked, the 
leaked CRPs do not suffice for developing an accurate model of 
the PUF. This approach, however, has two main disadvantages. 
First the limited CRPs makes the system susceptible to replay 
attacks since challenges need to be frequently repeated. Second, 
if multiple verifier nodes are captured or hacked, the uncovered 
CRPs could be aggregated to model the prover’s PUF, a 
scenario that is being viewed as a collusive attack.  

To overcome the two aforementioned disadvantages, PIDA 
employs two main features: (i) the response to a given challenge 
is made to be a function of the verifier’s ID, and (ii) the response 
is obfuscated such that an adversary cannot unmask the effect 
of the verifier ID and infer the actual PUF output. In other 
words, the verifier holds only transformed responses that can 
validate a prover’s identity without tabulating the prover’s PUF 
output. Fig. 2 illustrates the PIDA protocol. To authenticate a 
prover, the verifier picks a challenge, C, that has the response 
ℜ for. The prover will apply the provided C as an input to its 
PUF and note the output RC. The prover also will use the verifier 
ID as an input to the PUF and get RID.  To mitigate the effect of 
noise on the PUF output, the verifier also provides ECC for both 

RC and RID. The verifier gets C, ℜ, ECC(RC), and ECC(RID) at 
the time of device enrollment; yet the verifier will not know RC 
and RID themselves. The prover will use the error correction 
code to fix any bit flips in the PUF output within RC and RID due 
to noise, and generate Rvar and Rbase, respectively. We note that 
Rbase does not change for requests made by the same verifier.  

To generate ℜ, Rvar and Rbase are then used to form input 
points to a simple ECF whose parameters are specific and 
known only by the prover. The details of such a process will be 
provided in the next section. The verifier will match ℜ to the 
value it has to validate the authenticity of the prover. We note 
that the value of ℜ is real rather than Boolean. PIDA is 
lightweight in terms of the processing overhead. Due to the use 
of ECF, the responses provided to the same verifier cannot be 
correlated to infer RC  from ℜ.  More importantly, by providing 
an ID-based response, PIDA ensures that the response for the 
same challenge differs among the various verifiers and thus 
thwarts threats of collusion and authentication message replay. 
In the next section, we will discuss PIDA design in detail.   

IV. DISTRIBUTED PUF-BASED DEVICE AUTHENTICATION   

A. Detailed Protocol Steps 

PIDA consists of the following two phases, reflecting the times 
for sharing security parameters and using them, respectively.   

Initialization and Enrollment Phase: When a device Dp joins the 
network, it needs to be informed about how to authenticate other 
nodes, and also share information for how itself could be 
authenticated. PIDA assumes that a trusted server is involved 
only in such a phase. The server’s role is to act as a database of 
the IDs of active (enrolled) devices in the network. The server 
can also verify the authenticity of devices prior to enrolling 
them; such a process may be based on manufacturing settings, 
and is outside the scope of PIDA. Otherwise the server has no 
information about the security primitives of the enrolled 
devices. Meanwhile, a PUF is embedded during the design of 
each device. The device will be initialized prior to deployment. 
During initialization, a device, Dp, will be exclusively provided 
with the following parameters that no other node knows about: 

αp and ßp: are the coefficients for the ECF used by Dp to generate 
the response (device secret), which can be viewed as an 
obfuscation of the involved outputs of PUFp. The values of 
αp and ßp are picked by the node and would thus vary per 
node; they also are not known to any verifier Dv. 

maxp: is a bound on the ECF range and is referred to as the key 
size in the realm of elliptic curve cryptography. The setting 
of maxp will be discussed later in this section. 

|η|:  is the size of the private key used by Dp and is less than m.  

We note that the length of a node identifier should not 
exceed the size of the PUF so that the ID of a verifier Dv can be 
applied to PUFp. For example, if the ID length is l bits, a fixed 
pattern for the most significant 2n-l bits could be assumed by Dp 
before applying to its PUF.. Thus, based on the aforementioned 
parameters, Dp will be able to generate ℜ for each (C, RC) ∈Ψp, 

where C corresponds to a verifier ID and Ψp is the set of CRPs 
for PUFp. Let ECCp be the set of error correction codes for the 

responses in Ψp:, i.e., ECCp = {ECC(RC) | (C, RC) ∈Ψp}.  
When Dp contacts the server to be enrolled, it in turn will 

introduce Dp to the network. Dp will then receive Φw→p from 

each enrolled device Dw. Φw→p is a set of challenge and 

 
Fig. 2. An overview of the operation of PIDA. The verifier sends to the prover 
an authentication request that includes a challenge bit stream, C. The prover 
uses the PUF output for C and the output when using the verifier ID as PUF 
input, in forming a response to the request. Error correction codes are also sent 
along the request to help the prover mitigate the effect of noise on the PUF 
output. The request response will be generated by feeding a transformed variant 
of the PUF outputs to a simple Elliptic Curve function whose parameters are 
known only to the prover. The response will be matched by the verifier to a 
pre-known value that it obtains at the time of enrollment in the system.  
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obfuscated responses of node Dw when queried by Dp, where 

Φw→p={(C, ℜ) | ℜ=ECFw(����, RC) & (C, RC)∈ Ψw , (p, ����)∈ 

Ψw}. We note that only a subset of Ψw is shared with Dp, i.e., 

|Φw→p| << |Ψw |. We stress that Dp will never get the PUF output 
of any other node Dw in the system; only the obfuscated 
responses are shared. Similarly, Dp will form the set Φp→w for 
each Dw in the network. Obviously, such an approach requires 
reaching Dw; hence the enrollment phase could be staggered 
based when Dp and Dw become in range of one another for the 
first time. PIDA supports dynamic enrollment and response 
regeneration on the fly by the prover. The shared responses ℜ 
are verifier-specific which ensures scalability and prevents 
collusion. After enrollment, the server’s role seizes.  

Authentication Phase: When a node Dq wants to establish a 
communication link with Dp, e.g., to receive data, Dq first needs 
to confirm the identity of Dp. In such a case Dq acts as a verifier 
and sends an authentication request to the prover, Dp.  To do so 
under PIDA, Dq will randomly pick an entry (C, ℜ) from the set  

Φp→q and include both C and ECC(RC) in the authentication 
request.  The request packet implicitly has the ID of Dq. In 
addition, the request includes ECC(����) since PIDA factors in 

the verifier ID. In turn, the prover feeds C and the verifier’s ID 
into its PUF to obtain RC and ����, respectively. To ensure the 

integrity of the PUF output, the ECC provided by the verifier is 
used to correct any bit flip. The selection of the ECC generation 
algorithm is beyond the scope of this paper; yet the chosen 
algorithm should yield an ECC that is not intertwined with the 
actual bit string so that it can be provided separately from the 
actual response. As we explain, storing the ECC of the prover’s 
PUF response at the verifier does not constitute much leakage 
since the verifier only has the obfuscated response ℜ rather than 

the PUF output and one cannot infer RC from ℜ.   
The prover, Dp, uses the corrected version of RC and ����, 

denoted as Rbase and Rvar, respectively to generate the response 
to the verifier. The idea is to mix the bits of Rbase and Rvar, and 
then split the formed bit string into three parts: |η|, X1 and X2. 
These three parts are used to generate a unique response through 
a one-way function, namely, a simple ECF, where |η| reflects 
the private key size and X1 and X2 are the x-coordinates for two 
points on the elliptic curve. The idea, which is inspired by the 
elliptic curve cryptography, is to define a line using two points 
on the curve and find another point where such a line intersects 
again with the curve. Such a process is repeated η times, where 
the x-coordinate of the last found point is used as a response to 
the authentication request. Such a process is explained in detail 
in the next subsection. By not knowing how Rbase and Rvar are 
combined, how the formed bit string is divided into |η|, X1 and 
X2, and what ECF is employed, it is not possible for an attacker 
that intercepts the authentication packets or even hack Dq, to 

correlate RC to the corresponding ℜC and model the prover’s 

response generation process. Moreover, ℜC is generated while 
factoring in the verifier ID, and is not similar across verifiers; 

hence a collusive aggregation of (C, ℜC) across multiple 
verifiers will be ineffective for building an accurate ML model. 
Also, a response replay will be invalid across distinct verifiers.     

B. Response Obfuscation  

A PUF constitutes a lightweight mechanism for generating 
authentication tokens. As pointed out earlier, obfuscating the 

PUF output or limiting the number of shared CRPs are the 
conventional means to mitigate PUF modeling vulnerabilities. 
However, constraining the count of shared CRPs does not scale 
for dynamic networks where colluding actors may succeed in 
modeling the PUF by aggregating CRPs for the same prover 
across multiple verifiers. Meanwhile, if a prover Dp applies the 
same obscuration method for all verifiers, hacking one verifier, 
Dq or intercepting its communication with Dp, will allow the 
adversary to replay Dp’s response when another verifier uses the 
same challenge bit-stream and consequently impersonate Dp.   

PIDA addresses the aforementioned issues by pursuing an 
identity-based response generation per challenge. To mitigate 
the risk of leaked CRPs, PIDA avoids direct usage of CRPs and 
instead establishes a security association between a prover and 
a verifier that hides the correlation between the challenge and 
PUF response. Such association is irreversible and can be 
realized using a one-way function. To mitigate the complexity 
of the response generation, PIDA leverages the properties of 
elliptic curves where reverse-engineering of a response is 
extremely difficult, if not infeasible, where there is not any 
polynomial-time algorithm for doing so [20]. PIDA, also makes 
the private key unknown and variable, which further increases 
resilience to attacks. Basically, a prover defines an ECF in the 
form 	
 = �
 + �� + �, referred to as Weierstrass form, where  
the discriminant (4α3 + 27ß2) ≠ 0 so that the cubic does not have 
a repeated root. According to the properties of ECF, a line 
between any two points on the curve will intersect the curve at 
exactly one more than one additional point. Let �� =(��, 	��, and �
 = (�
, 	
� are two points on the curve, The line ���
������ intersects with the curve at �
 = (�
, 	
�,  where: 

� =
⎩⎨
⎧	� − 	
�� − �
                  �  �� ≠ �
,

3��
 + �
2	�              �  �� = �


 

�
 = (�
 − �� − �
�$%& $'�(   (1) 

	
 = (−�(�
 − ��� − 	��$%& $'�(  
In Elliptic curve cryptography, finding the new point is 

called the dot operator. To further apply the dot operator, the 
new (third) point is to be reflected over the x-axis and the 
intersection point with the curve is connected to L1 to define the 
next point. The number of consecutive dot operations is referred 
to as the private key, η. Fig. 3 shows an example, where the line ���
������ intersects with the curve at L3. When reflecting L3 over the 
x-axis and connecting the intersection point with L1, a new point 
L4 is defined. When reflecting L4 again and connecting with L1, 
a new intersection point L5 is found, and so on. For this 
example, three dot operations are applied and hence η=3. Since 
the intersection points can be anywhere on the curve, a bound 
is defined (maxp in Fig. 3) to limit the range of values, which 
constitute the range of ℜ values in PIDA. Using modulo 
operation simply forces a wraparound so that the line intersects 
with the curve from the other side of the y-axis. The modulo 
operation can also discretize the dot operation by theoretically 
enumerating possible intersection points into a finite set Ω, for 

which the result of a dot operation of two points in Ω is a third 

point in Ω; such discretization would simplify calculating the 
new point. Setting maxp to be a prime number is shown to 

increase robustness [20]; yet in PIDA maxp is set to 2θ, where m 

< θ ≤ 2m. The rationale is that using prime numbers elevates the 
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complexity of modulo 
operation, which is 
undesirable for IoT and 
is not warranted in 
PIDA given the many 
other features that 
ensure robustness 
against attacks. A large 
value of θ is desirable to 
increase the range and 
make the output of the 
ECF to be more 
unpredictable. Yet, the 
value of θ varies among 
devices, which adds to 
the strength of PIDA.  
The following 
summarize how PIDA 
generates the 
obfuscated response ℜ 
using Rbase and Rvar:  
1) The bits of Rbase and Rvar are mixed. Such a mix can be 

prover dependent. To simplify the discussion, let us assume 
that the bits are alternated, meaning that every consecutive 
two bits in the combined bit strings do not belong to either 
Rbase or Rvar. For example, if Rbase = {d0, d1, ..., dm-1} and 
Rvar  = {e0, e1, ..., em-1}, the combined string would be,  ξ = 
{e0, d0, e1, d1, ..., em-1, dm-1}. 

2) Noting that |ξ|=2m bits, a subset of |η| bits is picked, where 
|η| is an even number. Such a subset is used to define the 
value of η for the response of the authentication request. 
Consequently, the value of private key varies per 
challenge. For example, if |η|=2, two bits at the beginning, 
middle or end of ξ could be extracted to determine η.   

3) The remaining 2m-|η| bits in ξ are then divided into two 
equal-sized sets of bits, that reflects X1 and X2.  

4) X1 and X2 are used to determine L1 and L2 on the ECF. We 
note that the ECF parameters differ among nodes, and 
hence the ECF is prover-specific. 

5) The dot operation is applied on the curve η times as 
explained above. The x-coordinate of the final point is used 
as ℜ. The value of max will constrain the range of ℜ.  

V. PERFORMANCE EVALUATION   

To demonstrate the robustness of PIDA against individual and 
colluding modeling attempts, we have implemented an arbiter-
PUF on Xilinx ARTIX-7 FPGA. The PUF is used to map a 64-
bit challenge to 64-bit output. In the experiments we considered 
one prover, and four verifiers, each of which is given a subset 
of the prover’s challenges and their corresponding obfuscated 
responses according to PIDA, and the ECC of the actual PUF 
response. i.e.,  the set Φw→p according to our used notation. A 
Neural Network (NN) is used as the underlying attack technique 
to model prover’s operation, i.e., PIDA. The employed NN is a 
regression model with 5-layer fully connected architecture with 
one input layer (with neuron count reflecting the PUF size), 
three nonlinear hidden layers (with 5, 10 and 15 neurons) and 
one output neuron. Rectified linear unit (ReLU) is used as an 
activation function in all layers. The learning rate and 
momentum are 0.01 and 0.99, respectively, and the number of 

epochs is 1000. In PIDA, the ECF is picked by the prover and 
hence may vary across the network. In the experiment we have 
set � = −10, and � =26000 so that the ECF has a single root 
at -29.74, which ensures continuity along the x-axis.  

Two attack scenarios are considered: (i) a single verifier, and 
(ii) multiple collusive verifiers; in both cases the attack is 
geared for modeling the authentication process to predict the 
prover’s response for unknown challenges.  We assess the 
performance in terms of the modeling accuracy and the energy 
overhead. We compare the performance to the baseline case 
where only the PUF response is used, and to two variants of 
PIDA. The two variants reflect discretization of the ECF dot 
operation, which reduces the computational complexity. In the 
first variant (PIDA-DF1) all 2m-|η| bits are used to determine 

one point that is dotted by itself |η| times. This reflects a higher 
precision in determining the point coordinates on the curve. The 
second variant, PIDA-DF2, uses two points, similar to PIDA, 
with discretized dot operation (see Section IV-B). We study the 
effect of the following parameters: (i) maxp (2θ), which controls 
the range of values that PIDA uses as response, (ii) |η|, which 
reflects the number of dot operations, and the number of 
colluding attackers (compromised nodes).  

Fig. 4 compares PIDA to a PUF only based authentication 
mechanism in terms of resilience to modeling attacks. As seen 
in the figure, intercepting enough CRPs for the PUF enables an 
adversary to devise an accurate model.  This is not the case 
when using PIDA, where the model accuracy is so low that the 
prediction reflects no more than a random guess. This is very 
much attributed to the real, rather than Boolean, response that 
PIDA provides. The figure demonstrates the increased 
robustness that PIDA achieves, even when many CRPs are 
used. Tables 1-3 compare the performance of PIDA, to its two 
variants, namely, PIDA-DF1 and PIDA-DF2. Table 1 studies 
the effect of maxp, which determines the range of x values for 
the curve points (used by PIDA as response). The results show 
clearly that the discretization does not guarantee response 
unpredictability, particularly for small maxp values. Meanwhile, 
PIDA sustains robustness due to the high precision of the 
response and the adversary’s inability to successfully guess the 
range of possible values. The discretization vulnerabilities lie in 
the fact that maxp is used in Eq. (1) in the modulo operation. We 
note that the use of a single point is generally better except when 
maxp is very small, e.g., θ=2, since very few values are possible. 

Clearly the results in Table 2 demonstrate that PIDA’s 
robustness is not impacted much by the private key size, even 

 
Fig. 3: An example of finding an authentication 
response for η=3. The points L1 and L2 are 
determined on the elliptic curve using the 
values X1 and X2 derived from the combined 
(and corrected) PUF output. The max line 
provides a bound (key size) that forces a 
wraparound through modulo operation.     

 
Fig. 4: The modeling accuracy for PIDA versus the use of PUF alone. PIDA 
provides a floating point response, which is not possible to predict correctly. 
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for PIDA-DF1 and PIDA-DF2. This is attributed to the 
randomness imposed by the PUF in selecting the initial points 
and the number of dot operations.  The most relevant 
observation here is that a small |η| would suffice from a security 
point of view, which enables PIDA to be lightweight since the 
number of dot operations will be reduced, as will be shown. 
While Tables 1 and 2 consider a single attacker, Table 3 
assesses the modeling accuracy when multiple malicious 
verifiers collude. As indicated by the results, PIDA nullifies the 
advantage of any collaboration among attackers. We can see 
that even PIDA-DF1 and PIDA-DF2 are not impacted by 
collusion as the response generation factors in the verifier ID 
instead of being generic for any communicating nodes. Finally, 
Table 4 compares the additional overhead for PIDA, and its first 
(best) variant relative to a baseline case where the PUF’s CRPs 
are exchanged in plaintext. The additional processing is due to 
forming ξ and applying the dot operation of ECF 2|η|-1 times. 
Table 4 reports the extra energy needed to conduct one round 
of authentication (total for communication and communication) 
based on the Digi XBee 3 Zigbee radios with an energy per bit 
360 nJ/bit and an Arduino platform with an active current of 
1.23 mA when clocked at 16 MHz. The results clearly favor the 
usage of a small key size, |η|. The overhead for a large |η| is 
significant in case of PIDA, which is attributed to the increased 
(exponential growth) floating point operations; yet such a key 
size is unwarranted. Considering all results collectively, one 
concludes that using |η|=2, and θ ≥ 8 is the best configuration 
of PIDA in terms of security and energy overhead. 

VI. CONCLUSIONS  

This paper has presented PIDA, a novel lightweight 
authentication scheme for IoT. PIDA leverages the advantages 
of PUFs in terms of tamper-resistance and low overhead. Unlike 
existing PUF-based protocols, PIDA supports distributed 
operation where no centralized server is engaged in mutual 
authentication of device pairs. To effectively realize distributed 
authentication, PIDA factors in the device ID in obfuscating the 
response of the PUF and employs Elliptic Curve functions to 
guard against ML modeling attacks conducted by a single or 
multiple collusive nodes. The validation results have shown that 
PIDA is lightweight and very robust against modeling attacks, 
where an adversary cannot achieve meaningful accuracy in 
predicting the prover’s response to any challenge.       
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Table 1: Effect of maxp (2θ) on the modeling accuracy with |η|=32. 

 Modeling accuracy  

 θ=2 θ=4 θ=5 θ=7 θ=8 

PIDA ≈0 ≈0 ≈0 ≈0 ≈0 

PIDA-DF1 54% 6% 2% 0.2% ≈0 

PIDA-DF2 28% 10% 7% 1.1% 0.5% 

Table 2: The impact of |η| on the modeling accuracy when θ=7. 

 Modeling accuracy 

 |η|=2 |η|=4 |η|=8 |η|=16 |η|=32 

PIDA ≈0 ≈0 ≈0 ≈0 ≈0 

PIDA-DF1 0.5% 0.1% 0.1% 0.1% 0.1% 

PIDA-DF2 3% 1.5% 0.4% 0.2% 0.1% 

Table 3: Effect of collusion on modeling accuracy (|η|=32and θ=2). 

 Modeling accuracy 

#Attacker 1 2 3 4 

PIDA ≈0 ≈0 ≈0 ≈0 

PIDA-DF1 54% ≈0 ≈0 ≈0 

PIDA-DF2 28% ≈0 ≈0 ≈0 

Table 4: Response obfuscation overhead as a function |η| and maxp. 

 Energy Overhead (nJ) 

 |η|=2 |η|=4 |η|=8 |η|=16 

PIDA (θ=5) 0.32 0.38 2.6 896.04 

PIDA (θ=7) 0.29 0.34 0.73 1607.77 

PIDA-DF1(θ=5) 0.26 0.32 0.38 0.38 

PIDA-DF1(θ=7) 0.28 0.30 0.34 0.38 
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