

Collusion-resistant PUF-based Distributed Device
Authentication Protocol for Internet of Things

Wassila Lalouani*, Mohamed Younis**, Mohammad Ebrahimabadi** and Naghmeh Karimi**
*Department of Computer and Information Science, Towson University, USA

**Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, Baltimore, Maryland, USA,

Emails: wlalouani@towson.edu, {younis, ebrahimabadi, nkarimi}@umbc.edu

Abstract—The scale, unattended-operation and ad-hoc nature
of an Internet-of-Things (IoT) make the network vulnerable to
device impersonation, message replay, and Sybil attacks by either
external actors or compromised nodes. This paper opts to tackle
such vulnerability and presents a novel and effective solution for
mutual authentication of IoT nodes. The proposed solution calls
for embedding a Physically Unclonable Function (PUF) on each
device, and employs a lightweight protocol for validating the
identity of the individual devices based on querying the PUF. To
authenticate a “prover” node, a verifier node will send a challenge
bit-stream to the prover, where the latter provides the response of
its PUF to such a challenge to be matched by what the verifier
expects. To prevent the PUF of a prover from being modeled by an
eavesdropper or a collusive set of compromised verifiers, the
proposed protocol makes the response to a challenge dependent on
the verifier. In addition, our protocol combines such an identity-
based response generation with a simple Elliptic curve to thwart
any attempts by a compromised verifier to reverse engineer the
response generation process. The robustness of our PUF-based
IoT Device Authentication (PIDA) protocol, is validated using data
collected from an FPGA-based implementation.

Keywords—IoT, Authentication, Physically Unclonable
Function, Collusion resistance, Distributed security solution.

I. INTRODUCTION

The Internet of Things (IoT) is characterized by dynamic
device membership, evolving network topology, and resource-
constrained devices. These characteristics make decentralized
management to be the preferred option since access to a central
server cannot be ensured at all times. Moreover, the openness
and pervasiveness of the IoT network raise major security
concerns [1]. Particularly, device authentication is important
given the major threat that infiltrating the IoT network would
pose. In essence, impersonating a legitimate device can be the
preferred means for an adversary to violate privacy and inject
false data. Hence, a number of lightweight protocols are
developed for establishing mutual trust among nodes [2].
However, many of these protocols are based on shared device
secrets and do not withstand attacks that involve device
hacking. A notable class among the published schemes rely on
PUFs that are embedded in the IoT devices during
manufacturing. PUF-based authentication protocols avoid
storage of device secrets and instead generate them on-the-fly
[3]. A PUF fundamentally realizes a one-way hash that is
indexed by a set of bits, called challenge. The corresponding
entry for a challenge is referred to as a response, and is not
stored but rather is generated every time the challenge is applied
to the PUF. Thus, PUFs are deemed tamper-proof primitives
that enable resilience against device hacking.

To conduct mutual authentication of devices, existing PUF-
based protocols rely on a central trusted server, which may not

be accessible at all times. In fact, decentralized management is
the preferred option in IoT. Therefore, distributed PUF-based
device authentication methods are more appropriate. However,
sharing challenge-response pairs (CRPs) among devices needs
to be orchestrated such that the PUF cannot be modeled if
multiple nodes collude. To elaborate, when a server is involved,
each device Dp would provide a set of CRPs to be stored at the
server. The latter uses these CRPs to authenticate Dp by sending
one of the challenges and matches the response of Dp to what is
stored at the server. Given that the server is trusted, the stored
CRPs are not available to adversaries and cannot be used to
develop a machine learning (ML) model that mimics the PUF
[4]. On the other hand, when distributed authentication is to be
pursued, a device Dp, referred to as a prover, has to share a set
of CPRs with each communicating party, Dq, referred to as a
verifier. Unlike the server, the verifier cannot be trusted and the
CRPs of Dp could be leaked by Dq or used to model the PUF of
Dp. The threat becomes even more serious if multiple verifiers
collude, leading to the formation of an accurate model for Dp.

This paper fills the technical gap and presents PIDA, a novel
distributed protocol for mutual authentication of IoT devices.
Each device Dp will have an embedded PUF; yet the shared
CPRs will be verifier-dependent, meaning that Dp will change
the response of the same challenge based on the identity of Dq.
Thus, even if multiple verifiers collude, they cannot model the
PUF of Dp. Such verifier-dependent obfuscation of the PUF
response also factors in a verifier-picked challenge bit-stream,
and hence will thwart attempts to replay the prover’s response
to prior authentication requests. To generate the obfuscated
response, PIDA employs a simple Elliptic-Curve Function
(ECF), whose parameters are only known to the prover. The
inputs to ECF are the binary responses of: (i) the PUF for the
verifier-provided challenge, i.e., RC=PUFp(C), and (ii) when
using a verifier ID as a challenge, i.e., RID=PUFp(IDq). We
show that PIDA cannot be reversed engineered or modeled to
predict the prover’s response for unseen challenges. PIDA also
mitigates the noise effect on the PUF output by storing the error-
correction code (ECC) of the prover’s binary response to a
challenge at the verifier. The ECC will be provided by the
verifier, along with the challenge, to help the prover tolerate
noisy PUF outputs. Given the decorrelation between the PUF’s
binary output for the challenge and the actual obfuscated
response used for authentication, sharing the ECC does not
constitute much of information leakage. The validation results
based on data collected from FPGA-based PUF implementation
confirm the robustness of PIDA.

978-1-6654-3540-6/22/$31.00 ©2022 IEEE

2022 IEEE Global Communications Conference: IoT and Sensor Networks

4328

GL
O

BE
CO

M
 2

02
2

- 2
02

2
IE

EE
 G

lo
ba

l C
om

m
un

ic
at

io
ns

 C
on

fe
re

nc
e

|
97

8-
1-

66
54

-3
54

0-
6/

22
/$

31
.0

0
©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

GL
O

BE
CO

M
48

09
9.

20
22

.1
00

01
25

6

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on June 13,2023 at 18:19:59 UTC from IEEE Xplore. Restrictions apply.

II. RELATED WORK

Device authentication using asymmetric crypto-systems,
imposes significant overhead and does not suit resource-
constrained IoT devices [5]. Non-volatile memories such as
EEPROM or battery-backed SRAM to store shared keys are not
secure either [5]. Meanwhile, employing a trusted platform
module increases the hardware complexity and is geared for
software integrity rather than device authentication [6]. ML-
based trust models are also pursued as a means to continually
authenticate IoT nodes [7]; yet the associated computational
overhead is high. Consequently, the use of PUF-based
signatures has attracted attention in recent years [3]. However,
most existing PUF-based authentication protocols rely on a
centralized server [8], or are vulnerable to modeling attacks [4].

To counter modeling attacks, hardware-, encryption-, and
protocol-based schemes have been pursued. In [9] the output is
a function of the PUF response and the first and last challenge
bits. A random number generator is used in [10] to shuffle the
challenge and response bits. Yet, this approach requires
synchronization unless the sequence of random numbers is
predetermined. A circuit is added in [11] to shuffle the
challenge bits in a manner that is dependent on the verifier ID.
The shuffling process varies also based on the challenge bit
patterns. Instead of shuffling, a secondary PUF is employed to
obfuscate the challenge of the main strong PUF in [12]. To
mislead the adversary, a fake PUF is deployed along with the
original PUF [13]. However, the extra PUF and/or the
obfuscation circuit impose significant overhead. Cryptographic
hash functions are used in [14] to encrypt the PUF response.
However, these schemes lose the PUF advantage by imposing
significant overhead. Some protocol-level PUF modeling
countermeasures pursue multifactor authentication. For
example, the wireless channel characteristics are factored in
[15]. However, channel noise variation could in fact hinder
successful authentication. The approach of [16] uses password,
PUF and biometrics, which impose high overhead; also, storing
passwords defies the main advantage of PUFs.

Barbareschi et al. [17] use predefined chains of CRPs, where
only the XOR values of the responses are sent; yet this scheme
is vulnerable to impersonation attacks. In [18], multiple
challenges are used where a function of the response is provided
to the verifier. The goal is to counter eavesdropping threat; yet
the approach is prone to collusion if applied in a distributed
manner. Although T2T-MAP [19] is a server-based approach,
the PUF responses are not stored at the server. In fact, the server
can be an IoT node itself. T2T-MAP also avoids storing
responses on the verifier; instead it creates entries that involve
the PUFs of the two communication devices. Basically at
enrollment, each device D1 creates an authentication token that
is unique for communication with another device D2. However,
the practicality of the approach is questionable given its
inability to mitigate the PUF noise effect. Contrarily to most
existing PUF-based schemes, PIDA enables collusion-resistant
distributed authentication of IoT devices.

III. SYSTEM MODEL AND APPROACH OVERVIEW

A. System Model

The authentication process in IoT devices should be lightweight
given the limited computation and communication resources,
the scale of the network, and the dynamic connectivity where a

device needs to be authenticated frequently. PIDA calls for
embedding a PUF in each IoT device. A PUF is a hardware
fingerprinting primitive that leverages random variations in the
fabrication process of integrated circuits. A PUF simply maps
an n-bit input stream, C, referred to as a challenge, to an output
bit, referred to as a response. Since the process variations are
random and independent of the devices, a PUF cannot be cloned
and its challenge-to-response mapping constitutes a device
signature. Fig. 1 shows the schematic diagram of the arbiter
PUF, which is one of the prominent PUF types. Fundamentally
the arbiter PUF relies on the variability of the delay experienced
by an input signal until reaching the arbiter (can be realized as
an SR-latch), where the propagation path is determined by the
combination of challenge bits, i.e., c0, c1, …, cn-1, that configure
the multiplexers. To generate an m-bit response, either the PUF
is queried by multiple challenges, e.g., arbitrary range of binary
bit strings, or the PUF circuit is replicated m times. In this paper,
we generally use R to reflect an m-bit response.

A PUF is an attractive choice for supporting authentication
since the response of challenges are not stored aboard the
device. Hence capturing and/or hacking into a device will not
reveal its secret identity, i.e., its fingerprint. However, it has
been shown that advanced ML techniques could successively
model the PUF operation using some intercepted CRPs for
training without even knowing the process variation details
[4]. PIDA mitigates vulnerability to modeling attacks in
presence of individual and colluding actors. Finally, a trusted
server is assumed to enroll nodes, prior to their participation in
the network. Yet, such a server is not engaged in coordinating
the IoT operation and is not consistently reachable to the nodes.

B. Attack Model

PIDA opts to counter attempts to gain access to an IoT network
by impersonating legitimate nodes. Upon joining the network,
the adversary can launch attacks such as false data injection and
selective forwarding, message relay, etc. The adversary pursues
two strategies to uncover the security provisions employed by
the individual nodes, i.e., modeling the embedded PUFs. The
first is to eavesdrop on the communication links of each device
(prover) to intercept authentication messages and collect CRPs
for developing a model that replicates the functionality of the
device’s PUF. The second strategy is to hack (intrude) into the
device to uncover the stored CRPs. For PIDA, the adversary
may target multiple verifiers to collect CRPs for a certain prover
and consolidate the gained knowledge. As will be explained,
PIDA thwarts such a threat by providing verifier-specific
responses using a one-way function, which avoids the
communication of any information that is directly related to the
PUF. Note that impersonation of the verifier does not present
any relevance as the objective is to authenticate the provers.

1

0

1

0

1

0

1

0

1

0

1

0

C0 C1 Cn-1

Q

i

Latch
Fig. 1. Schematic diagram of an Arbiter PUF, where the challenge bits control
the individual multiplexers and cause the input signal to experience different
delays on distinct devices and consequently the latched value (Q) would differ.

2022 IEEE Global Communications Conference: IoT and Sensor Networks

4329
Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on June 13,2023 at 18:19:59 UTC from IEEE Xplore. Restrictions apply.

C. Approach Overview

PIDA enables peer-to-peer device authentication without using
a trusted authority. The main idea is to employ a lightweight
hardware primitive, namely a PUF, where the node’s identity
can be verified using the PUF response to a given challenge bit-
stream. A key advantage of the PUF is that the response does
not have to be stored in the prover’s memory and hence the
device becomes resistant to tampering and intrusion attempts.
However, in distributed setups, the verifier needs to know some
CRPs for the prover’s PUF to validate the response. Sharing
CRPs raises a concern about the potential of leakage that allows
an adversary to model the PUF and impersonate the prover [4].
One option for addressing such a concern is to pursue a
decentralized authentication process and limit the number of
shared CRPs so that if a verifier node is captured or hacked, the
leaked CRPs do not suffice for developing an accurate model of
the PUF. This approach, however, has two main disadvantages.
First the limited CRPs makes the system susceptible to replay
attacks since challenges need to be frequently repeated. Second,
if multiple verifier nodes are captured or hacked, the uncovered
CRPs could be aggregated to model the prover’s PUF, a
scenario that is being viewed as a collusive attack.

To overcome the two aforementioned disadvantages, PIDA
employs two main features: (i) the response to a given challenge
is made to be a function of the verifier’s ID, and (ii) the response
is obfuscated such that an adversary cannot unmask the effect
of the verifier ID and infer the actual PUF output. In other
words, the verifier holds only transformed responses that can
validate a prover’s identity without tabulating the prover’s PUF
output. Fig. 2 illustrates the PIDA protocol. To authenticate a
prover, the verifier picks a challenge, C, that has the response
ℜ for. The prover will apply the provided C as an input to its
PUF and note the output RC. The prover also will use the verifier
ID as an input to the PUF and get RID. To mitigate the effect of
noise on the PUF output, the verifier also provides ECC for both

RC and RID. The verifier gets C, ℜ, ECC(RC), and ECC(RID) at
the time of device enrollment; yet the verifier will not know RC
and RID themselves. The prover will use the error correction
code to fix any bit flips in the PUF output within RC and RID due
to noise, and generate Rvar and Rbase, respectively. We note that
Rbase does not change for requests made by the same verifier.

To generate ℜ, Rvar and Rbase are then used to form input
points to a simple ECF whose parameters are specific and
known only by the prover. The details of such a process will be
provided in the next section. The verifier will match ℜ to the
value it has to validate the authenticity of the prover. We note
that the value of ℜ is real rather than Boolean. PIDA is
lightweight in terms of the processing overhead. Due to the use
of ECF, the responses provided to the same verifier cannot be
correlated to infer RC from ℜ. More importantly, by providing
an ID-based response, PIDA ensures that the response for the
same challenge differs among the various verifiers and thus
thwarts threats of collusion and authentication message replay.
In the next section, we will discuss PIDA design in detail.

IV. DISTRIBUTED PUF-BASED DEVICE AUTHENTICATION

A. Detailed Protocol Steps

PIDA consists of the following two phases, reflecting the times
for sharing security parameters and using them, respectively.

Initialization and Enrollment Phase: When a device Dp joins the
network, it needs to be informed about how to authenticate other
nodes, and also share information for how itself could be
authenticated. PIDA assumes that a trusted server is involved
only in such a phase. The server’s role is to act as a database of
the IDs of active (enrolled) devices in the network. The server
can also verify the authenticity of devices prior to enrolling
them; such a process may be based on manufacturing settings,
and is outside the scope of PIDA. Otherwise the server has no
information about the security primitives of the enrolled
devices. Meanwhile, a PUF is embedded during the design of
each device. The device will be initialized prior to deployment.
During initialization, a device, Dp, will be exclusively provided
with the following parameters that no other node knows about:

αp and ßp: are the coefficients for the ECF used by Dp to generate
the response (device secret), which can be viewed as an
obfuscation of the involved outputs of PUFp. The values of
αp and ßp are picked by the node and would thus vary per
node; they also are not known to any verifier Dv.

maxp: is a bound on the ECF range and is referred to as the key
size in the realm of elliptic curve cryptography. The setting
of maxp will be discussed later in this section.

|η|: is the size of the private key used by Dp and is less than m.

We note that the length of a node identifier should not
exceed the size of the PUF so that the ID of a verifier Dv can be
applied to PUFp. For example, if the ID length is l bits, a fixed
pattern for the most significant 2n-l bits could be assumed by Dp
before applying to its PUF.. Thus, based on the aforementioned
parameters, Dp will be able to generate ℜ for each (C, RC) ∈Ψp,

where C corresponds to a verifier ID and Ψp is the set of CRPs
for PUFp. Let ECCp be the set of error correction codes for the

responses in Ψp:, i.e., ECCp = {ECC(RC) | (C, RC) ∈Ψp}.
When Dp contacts the server to be enrolled, it in turn will

introduce Dp to the network. Dp will then receive Φw→p from

each enrolled device Dw. Φw→p is a set of challenge and

Fig. 2. An overview of the operation of PIDA. The verifier sends to the prover
an authentication request that includes a challenge bit stream, C. The prover
uses the PUF output for C and the output when using the verifier ID as PUF
input, in forming a response to the request. Error correction codes are also sent
along the request to help the prover mitigate the effect of noise on the PUF
output. The request response will be generated by feeding a transformed variant
of the PUF outputs to a simple Elliptic Curve function whose parameters are
known only to the prover. The response will be matched by the verifier to a
pre-known value that it obtains at the time of enrollment in the system.

2022 IEEE Global Communications Conference: IoT and Sensor Networks

4330
Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on June 13,2023 at 18:19:59 UTC from IEEE Xplore. Restrictions apply.

obfuscated responses of node Dw when queried by Dp, where

Φw→p={(C, ℜ) | ℜ=ECFw(����, RC) & (C, RC)∈ Ψw , (p, ����)∈

Ψw}. We note that only a subset of Ψw is shared with Dp, i.e.,

|Φw→p| << |Ψw |. We stress that Dp will never get the PUF output
of any other node Dw in the system; only the obfuscated
responses are shared. Similarly, Dp will form the set Φp→w for
each Dw in the network. Obviously, such an approach requires
reaching Dw; hence the enrollment phase could be staggered
based when Dp and Dw become in range of one another for the
first time. PIDA supports dynamic enrollment and response
regeneration on the fly by the prover. The shared responses ℜ
are verifier-specific which ensures scalability and prevents
collusion. After enrollment, the server’s role seizes.

Authentication Phase: When a node Dq wants to establish a
communication link with Dp, e.g., to receive data, Dq first needs
to confirm the identity of Dp. In such a case Dq acts as a verifier
and sends an authentication request to the prover, Dp. To do so
under PIDA, Dq will randomly pick an entry (C, ℜ) from the set

Φp→q and include both C and ECC(RC) in the authentication
request. The request packet implicitly has the ID of Dq. In
addition, the request includes ECC(����) since PIDA factors in

the verifier ID. In turn, the prover feeds C and the verifier’s ID
into its PUF to obtain RC and ����, respectively. To ensure the

integrity of the PUF output, the ECC provided by the verifier is
used to correct any bit flip. The selection of the ECC generation
algorithm is beyond the scope of this paper; yet the chosen
algorithm should yield an ECC that is not intertwined with the
actual bit string so that it can be provided separately from the
actual response. As we explain, storing the ECC of the prover’s
PUF response at the verifier does not constitute much leakage
since the verifier only has the obfuscated response ℜ rather than

the PUF output and one cannot infer RC from ℜ.
The prover, Dp, uses the corrected version of RC and ����,

denoted as Rbase and Rvar, respectively to generate the response
to the verifier. The idea is to mix the bits of Rbase and Rvar, and
then split the formed bit string into three parts: |η|, X1 and X2.
These three parts are used to generate a unique response through
a one-way function, namely, a simple ECF, where |η| reflects
the private key size and X1 and X2 are the x-coordinates for two
points on the elliptic curve. The idea, which is inspired by the
elliptic curve cryptography, is to define a line using two points
on the curve and find another point where such a line intersects
again with the curve. Such a process is repeated η times, where
the x-coordinate of the last found point is used as a response to
the authentication request. Such a process is explained in detail
in the next subsection. By not knowing how Rbase and Rvar are
combined, how the formed bit string is divided into |η|, X1 and
X2, and what ECF is employed, it is not possible for an attacker
that intercepts the authentication packets or even hack Dq, to

correlate RC to the corresponding ℜC and model the prover’s

response generation process. Moreover, ℜC is generated while
factoring in the verifier ID, and is not similar across verifiers;

hence a collusive aggregation of (C, ℜC) across multiple
verifiers will be ineffective for building an accurate ML model.
Also, a response replay will be invalid across distinct verifiers.

B. Response Obfuscation

A PUF constitutes a lightweight mechanism for generating
authentication tokens. As pointed out earlier, obfuscating the

PUF output or limiting the number of shared CRPs are the
conventional means to mitigate PUF modeling vulnerabilities.
However, constraining the count of shared CRPs does not scale
for dynamic networks where colluding actors may succeed in
modeling the PUF by aggregating CRPs for the same prover
across multiple verifiers. Meanwhile, if a prover Dp applies the
same obscuration method for all verifiers, hacking one verifier,
Dq or intercepting its communication with Dp, will allow the
adversary to replay Dp’s response when another verifier uses the
same challenge bit-stream and consequently impersonate Dp.

PIDA addresses the aforementioned issues by pursuing an
identity-based response generation per challenge. To mitigate
the risk of leaked CRPs, PIDA avoids direct usage of CRPs and
instead establishes a security association between a prover and
a verifier that hides the correlation between the challenge and
PUF response. Such association is irreversible and can be
realized using a one-way function. To mitigate the complexity
of the response generation, PIDA leverages the properties of
elliptic curves where reverse-engineering of a response is
extremely difficult, if not infeasible, where there is not any
polynomial-time algorithm for doing so [20]. PIDA, also makes
the private key unknown and variable, which further increases
resilience to attacks. Basically, a prover defines an ECF in the
form 	
 = �
 + �� + �, referred to as Weierstrass form, where
the discriminant (4α3 + 27ß2) ≠ 0 so that the cubic does not have
a repeated root. According to the properties of ECF, a line
between any two points on the curve will intersect the curve at
exactly one more than one additional point. Let �� =(��, 	��, and �
 = (�
, 	
� are two points on the curve, The line ���
������ intersects with the curve at �
 = (�
, 	
�, where:

� =
⎩⎨
⎧	� − 	
�� − �
 � �� ≠ �
,

3��
 + �
2	� � �� = �

�
 = (�
 − �� − �
�$%& $'�((1)

	
 = (−�(�
 − ��� − 	��$%& $'�(
In Elliptic curve cryptography, finding the new point is

called the dot operator. To further apply the dot operator, the
new (third) point is to be reflected over the x-axis and the
intersection point with the curve is connected to L1 to define the
next point. The number of consecutive dot operations is referred
to as the private key, η. Fig. 3 shows an example, where the line ���
������ intersects with the curve at L3. When reflecting L3 over the
x-axis and connecting the intersection point with L1, a new point
L4 is defined. When reflecting L4 again and connecting with L1,
a new intersection point L5 is found, and so on. For this
example, three dot operations are applied and hence η=3. Since
the intersection points can be anywhere on the curve, a bound
is defined (maxp in Fig. 3) to limit the range of values, which
constitute the range of ℜ values in PIDA. Using modulo
operation simply forces a wraparound so that the line intersects
with the curve from the other side of the y-axis. The modulo
operation can also discretize the dot operation by theoretically
enumerating possible intersection points into a finite set Ω, for

which the result of a dot operation of two points in Ω is a third

point in Ω; such discretization would simplify calculating the
new point. Setting maxp to be a prime number is shown to

increase robustness [20]; yet in PIDA maxp is set to 2θ, where m

< θ ≤ 2m. The rationale is that using prime numbers elevates the

2022 IEEE Global Communications Conference: IoT and Sensor Networks

4331
Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on June 13,2023 at 18:19:59 UTC from IEEE Xplore. Restrictions apply.

complexity of modulo
operation, which is
undesirable for IoT and
is not warranted in
PIDA given the many
other features that
ensure robustness
against attacks. A large
value of θ is desirable to
increase the range and
make the output of the
ECF to be more
unpredictable. Yet, the
value of θ varies among
devices, which adds to
the strength of PIDA.
The following
summarize how PIDA
generates the
obfuscated response ℜ
using Rbase and Rvar:
1) The bits of Rbase and Rvar are mixed. Such a mix can be

prover dependent. To simplify the discussion, let us assume
that the bits are alternated, meaning that every consecutive
two bits in the combined bit strings do not belong to either
Rbase or Rvar. For example, if Rbase = {d0, d1, ..., dm-1} and
Rvar = {e0, e1, ..., em-1}, the combined string would be, ξ =
{e0, d0, e1, d1, ..., em-1, dm-1}.

2) Noting that |ξ|=2m bits, a subset of |η| bits is picked, where
|η| is an even number. Such a subset is used to define the
value of η for the response of the authentication request.
Consequently, the value of private key varies per
challenge. For example, if |η|=2, two bits at the beginning,
middle or end of ξ could be extracted to determine η.

3) The remaining 2m-|η| bits in ξ are then divided into two
equal-sized sets of bits, that reflects X1 and X2.

4) X1 and X2 are used to determine L1 and L2 on the ECF. We
note that the ECF parameters differ among nodes, and
hence the ECF is prover-specific.

5) The dot operation is applied on the curve η times as
explained above. The x-coordinate of the final point is used
as ℜ. The value of max will constrain the range of ℜ.

V. PERFORMANCE EVALUATION

To demonstrate the robustness of PIDA against individual and
colluding modeling attempts, we have implemented an arbiter-
PUF on Xilinx ARTIX-7 FPGA. The PUF is used to map a 64-
bit challenge to 64-bit output. In the experiments we considered
one prover, and four verifiers, each of which is given a subset
of the prover’s challenges and their corresponding obfuscated
responses according to PIDA, and the ECC of the actual PUF
response. i.e., the set Φw→p according to our used notation. A
Neural Network (NN) is used as the underlying attack technique
to model prover’s operation, i.e., PIDA. The employed NN is a
regression model with 5-layer fully connected architecture with
one input layer (with neuron count reflecting the PUF size),
three nonlinear hidden layers (with 5, 10 and 15 neurons) and
one output neuron. Rectified linear unit (ReLU) is used as an
activation function in all layers. The learning rate and
momentum are 0.01 and 0.99, respectively, and the number of

epochs is 1000. In PIDA, the ECF is picked by the prover and
hence may vary across the network. In the experiment we have
set � = −10, and � =26000 so that the ECF has a single root
at -29.74, which ensures continuity along the x-axis.

Two attack scenarios are considered: (i) a single verifier, and
(ii) multiple collusive verifiers; in both cases the attack is
geared for modeling the authentication process to predict the
prover’s response for unknown challenges. We assess the
performance in terms of the modeling accuracy and the energy
overhead. We compare the performance to the baseline case
where only the PUF response is used, and to two variants of
PIDA. The two variants reflect discretization of the ECF dot
operation, which reduces the computational complexity. In the
first variant (PIDA-DF1) all 2m-|η| bits are used to determine

one point that is dotted by itself |η| times. This reflects a higher
precision in determining the point coordinates on the curve. The
second variant, PIDA-DF2, uses two points, similar to PIDA,
with discretized dot operation (see Section IV-B). We study the
effect of the following parameters: (i) maxp (2θ), which controls
the range of values that PIDA uses as response, (ii) |η|, which
reflects the number of dot operations, and the number of
colluding attackers (compromised nodes).

Fig. 4 compares PIDA to a PUF only based authentication
mechanism in terms of resilience to modeling attacks. As seen
in the figure, intercepting enough CRPs for the PUF enables an
adversary to devise an accurate model. This is not the case
when using PIDA, where the model accuracy is so low that the
prediction reflects no more than a random guess. This is very
much attributed to the real, rather than Boolean, response that
PIDA provides. The figure demonstrates the increased
robustness that PIDA achieves, even when many CRPs are
used. Tables 1-3 compare the performance of PIDA, to its two
variants, namely, PIDA-DF1 and PIDA-DF2. Table 1 studies
the effect of maxp, which determines the range of x values for
the curve points (used by PIDA as response). The results show
clearly that the discretization does not guarantee response
unpredictability, particularly for small maxp values. Meanwhile,
PIDA sustains robustness due to the high precision of the
response and the adversary’s inability to successfully guess the
range of possible values. The discretization vulnerabilities lie in
the fact that maxp is used in Eq. (1) in the modulo operation. We
note that the use of a single point is generally better except when
maxp is very small, e.g., θ=2, since very few values are possible.

Clearly the results in Table 2 demonstrate that PIDA’s
robustness is not impacted much by the private key size, even

Fig. 3: An example of finding an authentication
response for η=3. The points L1 and L2 are
determined on the elliptic curve using the
values X1 and X2 derived from the combined
(and corrected) PUF output. The max line
provides a bound (key size) that forces a
wraparound through modulo operation.

Fig. 4: The modeling accuracy for PIDA versus the use of PUF alone. PIDA
provides a floating point response, which is not possible to predict correctly.

2022 IEEE Global Communications Conference: IoT and Sensor Networks

4332
Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on June 13,2023 at 18:19:59 UTC from IEEE Xplore. Restrictions apply.

for PIDA-DF1 and PIDA-DF2. This is attributed to the
randomness imposed by the PUF in selecting the initial points
and the number of dot operations. The most relevant
observation here is that a small |η| would suffice from a security
point of view, which enables PIDA to be lightweight since the
number of dot operations will be reduced, as will be shown.
While Tables 1 and 2 consider a single attacker, Table 3
assesses the modeling accuracy when multiple malicious
verifiers collude. As indicated by the results, PIDA nullifies the
advantage of any collaboration among attackers. We can see
that even PIDA-DF1 and PIDA-DF2 are not impacted by
collusion as the response generation factors in the verifier ID
instead of being generic for any communicating nodes. Finally,
Table 4 compares the additional overhead for PIDA, and its first
(best) variant relative to a baseline case where the PUF’s CRPs
are exchanged in plaintext. The additional processing is due to
forming ξ and applying the dot operation of ECF 2|η|-1 times.
Table 4 reports the extra energy needed to conduct one round
of authentication (total for communication and communication)
based on the Digi XBee 3 Zigbee radios with an energy per bit
360 nJ/bit and an Arduino platform with an active current of
1.23 mA when clocked at 16 MHz. The results clearly favor the
usage of a small key size, |η|. The overhead for a large |η| is
significant in case of PIDA, which is attributed to the increased
(exponential growth) floating point operations; yet such a key
size is unwarranted. Considering all results collectively, one
concludes that using |η|=2, and θ ≥ 8 is the best configuration
of PIDA in terms of security and energy overhead.

VI. CONCLUSIONS

This paper has presented PIDA, a novel lightweight
authentication scheme for IoT. PIDA leverages the advantages
of PUFs in terms of tamper-resistance and low overhead. Unlike
existing PUF-based protocols, PIDA supports distributed
operation where no centralized server is engaged in mutual
authentication of device pairs. To effectively realize distributed
authentication, PIDA factors in the device ID in obfuscating the
response of the PUF and employs Elliptic Curve functions to
guard against ML modeling attacks conducted by a single or
multiple collusive nodes. The validation results have shown that
PIDA is lightweight and very robust against modeling attacks,
where an adversary cannot achieve meaningful accuracy in
predicting the prover’s response to any challenge.

REFERENCE

[1] T. A. Ahanger and A. Aljumah, “Internet of things: A comprehensive study
of security issues and defense mechanisms,” IEEE Access, vol. 7, pp. 11
020–11 028, 2019.

[2] F. H. Al-Naji, and R. Zagrouba, "A survey on continuous authentication
methods in Internet of Things environment,” Computer Communications,
vol. 163, pp. 109-133, 2020.

[3] A. Shamsoshoara et al., “A survey on physical unclonable function (puf)-
based security solutions for internet of things,” Computer Networks, vol.
183, p. 107593, 2020.

[4] M. Khalafalla and C. Gebotys, “PUFs deep attacks: Enhanced modeling
attacks using deep learning techniques to break the security of double
arbiter PUFs,” Proc. of Design, Automation and Test in Europe (DATE
2019), pp. 204–209, Florence, Italy, Mar 2019.

[5] Y. Atwady, and M. Hammoudeh. “A survey on authentication techniques
for the Internet of Things,” Proc. Int’l Conf. on Future Networks and
Distributed Systems (ICFNDS '17), Cambridge, UK, Jun 2017, p. 8.

[6] G. Dessouky, T. Abera, A. Ibrahim, and A.-R. Sadeghi, “LiteHAX:
lightweight hardware-assisted attestation of program execution,” Proc. of
IEEE/ACM Int’l Conf. Comp.-Aided Des. (ICCAD), San Diego, CA, 2018.

[7] F. H. Al-Naji, and R. Zagrouba, “A survey on continuous authentication
methods in Internet of Things environment,” Computer Communications,
vol. 163, 2020, pp. 109-133.

[8] K. Lounis and M. Zulkernine, “Lessons Learned: Analysis of PUF-based
Authentication Protocols for IoT,” ACM Digital Threats: Research and
Practice, September 2021, https://dl.acm.org/doi/10.1145/3487060.

[9] S. S. Zalivaka et al., “Reliable and modeling attack resistant authentication
of arbiter PUF in FPGA implementation with trinary quadruple response,”
IEEE Trans. on Info. Forensics & Sec., vol. 14, no. 4, pp. 1109–1123, 2019.

[10] M. A. Qureshi and A. Munir, “puf-rake: A PUF-based robust and
lightweight authentication and key establishment protocol,” IEEE Trans.
on Dependable and Secure Computing, pp. 1–1, 2021.

[11] M. Ebrahimabadi, M. Younis, W. Lalouani, and N. Karimi, “An Attack
Resilient PUF-based Authentication Mechanism for Distributed
System,” Proc. the VLSI Design Conference (VLSID 2022), Feb. 2022.

[12] M. Ebrahimabadi, M. Younis, W. Lalouani, and N. Karimi, “A Novel
Modeling-Attack Resilient Arbiter-PUF Design,” Proc. the VLSI Design
Conference (VLSID 2021), Feb. 2021.

[13] C. Gu et al., “A modeling attack resistant deception technique for securing
PUF based authentication,” Proc. AsianHOST, 2019, pp. 1–6.

[14] F. Farha et al., “SRAM-PUF based entities authentication scheme for
resource-constrained iot devices,” IEEE Internet of Things Journal, vol. 8,
no. 7, pp. 5904-5913, April 2020.

[15] M. Aman, M. H. Basheer and B. Sikdar, “Data Provenance for IoT with
Light Weight Authentication and Privacy Preservation,” IEEE Internet of
Things Journal, Vol. 6, No. 6, pp. 10441-10457, Dec. 2019.

[16] Q. Jiang, et al., “Three-factor authentication protocol using physical
unclonable function for IoV,” Comp. Comm., Vol. 173, 2021, pp. 45-55.

[17] M. Barbareschi et al., “A PUF-based mutual authentication scheme for
cloud-edges iot systems,” Future Generation Computer Systems, vol. 101,
pp. 246–261, 2019.

[18] Y. Nozaki and M. Yoshikawa, “Secret Sharing Scheme Based Secure
Authentication for Physical Unclonable Function,” Proc. of the IEEE 4th
Int’l Conf. on Computer and Communication Systems, pp. 445-449, 2019.

[19] K. Lounis and M. Zulkernine, “T2T-MAP: A PUF-Based Thing-to-Thing
Mutual Authentication Protocol for IoT,” IEEE Access, vol. 9, pp. 137384-
137405, 2021.

[20] M. Robshaw, “Trapdoor One-Way Function,” in van Tilborg H.C.A. (eds)
Encyclopedia of Cryptography and Security. Springer, Boston, 2005.

Table 1: Effect of maxp (2θ) on the modeling accuracy with |η|=32.

 Modeling accuracy

 θ=2 θ=4 θ=5 θ=7 θ=8

PIDA ≈0 ≈0 ≈0 ≈0 ≈0

PIDA-DF1 54% 6% 2% 0.2% ≈0

PIDA-DF2 28% 10% 7% 1.1% 0.5%

Table 2: The impact of |η| on the modeling accuracy when θ=7.

 Modeling accuracy

 |η|=2 |η|=4 |η|=8 |η|=16 |η|=32

PIDA ≈0 ≈0 ≈0 ≈0 ≈0

PIDA-DF1 0.5% 0.1% 0.1% 0.1% 0.1%

PIDA-DF2 3% 1.5% 0.4% 0.2% 0.1%

Table 3: Effect of collusion on modeling accuracy (|η|=32and θ=2).

 Modeling accuracy

#Attacker 1 2 3 4

PIDA ≈0 ≈0 ≈0 ≈0

PIDA-DF1 54% ≈0 ≈0 ≈0

PIDA-DF2 28% ≈0 ≈0 ≈0

Table 4: Response obfuscation overhead as a function |η| and maxp.

 Energy Overhead (nJ)

 |η|=2 |η|=4 |η|=8 |η|=16

PIDA (θ=5) 0.32 0.38 2.6 896.04

PIDA (θ=7) 0.29 0.34 0.73 1607.77

PIDA-DF1(θ=5) 0.26 0.32 0.38 0.38

PIDA-DF1(θ=7) 0.28 0.30 0.34 0.38

2022 IEEE Global Communications Conference: IoT and Sensor Networks

4333
Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on June 13,2023 at 18:19:59 UTC from IEEE Xplore. Restrictions apply.

