
Workload-Cognizant Concurrent
Error Detection in the Scheduler

of a Modern Microprocessor
Naghmeh Karimi, Student Member, IEEE, Michail Maniatakos, Student Member, IEEE,

Abhijit Jas, Member, IEEE, Chandrasekharan (Chandra) Tirumurti, Member, IEEE, and

Yiorgos Makris, Senior Member, IEEE

Abstract—We present a Concurrent Error Detection (CED) scheme for the Scheduler of a modern microprocessor. The proposed

CED scheme is based on monitoring a set of invariances imposed through added hardware, violation of which signifies the occurrence

of an error. The novelty of our solution stems from the workload-cognizant way in which these invariances are selected so that they

leverage the application-level error masking inherent in program execution. Specifically, in order to ensure cost-effectiveness of the

hardware employed to construct these invariances, we make use of information regarding the type and frequency of errors affecting

the typical workload of the microprocessor. Thereby, we identify the most susceptible aspects of instruction execution and we

accordingly distribute CED resources to protect them. Our approach is demonstrated on the Scheduler of an Alpha-like superscalar

microprocessor with dynamic scheduling, hybrid branch prediction and out-of-order execution capabilities. Using an extensive fault-

simulation infrastructure that we developed around this microprocessor, we profile the impact of Scheduler faults across a variety of

different SPEC2000 benchmarks. Based on the results, we construct a CED scheme which monitors the time and location of

instruction execution, the executed operation, the utilized resources, as well as the executed and retired sequence of instructions. At a

hardware cost of only 32 percent of the Scheduler, the corresponding CED scheme detects over 85 percent of its faults that affect the

architectural state of the microprocessor. Furthermore, over 99.5 percent of these faults are detected before they corrupt the

architectural state, while the average detection latency for the remaining faults is in the order of a few clock cycles, implying that

efficient recovery methods can be developed.

Index Terms—Concurrent error detection, microprocessor, scheduler, invariance.

Ç

1 INTRODUCTION

THE physical challenges incurred by the rapidly shrinking
feature size and reduced power supply voltage of deep

submicron semiconductor fabrication technologies continue
to give rise to various design robustness concerns. While
soft errors occurring due to strikes by neutrons or alpha
particles, which may lead to corresponding single event
upsets (SEUs) in memory bits, or single event transients
(SETs) in combinational logic have received the lion’s share
of attention, they only constitute part of the problem.
Indeed, various other faults related to crosstalk and ground-
bounces, design marginalities, process variations and corner

operating conditions [1], [2], [3], [4], [5] are starting to cause
errors and to play an increasingly important role. Ranging
in duration from single events to permanent faults, such
errors have revived interest in concurrent error detection
(CED) and/or correction methods that may ameliorate or
resolve their effect [6], [7].

The pluralism of CED methods that have been proposed
in the past implies that no one solution fits the needs of
every circuit. Furthermore, it stresses the fact that applying
generic solutions across the board for an entire design
typically incurs prohibitive cost, often times unnecessarily
and without providing commensurate coverage. Indeed, in
order to maintain cost-effectiveness, it is important to
understand the specific vulnerabilities and requirements
of a circuit and accordingly tailor the CED solution.

Modern microprocessors, for example, exhibit a high
degree of application-level error masking. In other words,
many of the errors that occur due to the aforementioned
reasons are suppressed or have a low probability of
affecting the programs that are typically executed by the
microprocessor. Indeed, the multitude of functional units
and stages in deeply pipelined superscalar microprocessors,
along with advanced architectural features such as dynamic
scheduling and speculative execution, imply that rather
complex conditions need to be satisfied for an error to affect
the architectural state of the microprocessor. Furthermore, it
is well known that the probability with which faults are
suppressed is asymmetric [8], implying that not all faults

1274 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 9, SEPTEMBER 2011

. N. Karimi is with the Department of Electrical Engineering, Duke
University, Durham, NC 27708. E-mail: naghmeh.karimi@duke.edu.

. M. Maniatakos is with the Department of Electrical Engineering, Yale
University, 10 Hillhouse Avenue, New Haven, CT 06520-8267.
E-mail: michail.maniatakos@yale.edu.

. A. Jas is with the Design and Technology Solutions Group, Intel
Corporation, Austin, TX 78746. E-mail: abhijit.jas@intel.com.

. C. Tirumurti is with the Design and Technology Solutions Group, Intel
Corporation, Santa Clara, CA 95050.
E-mail: chandra.tirumurti@intel.com.

. Y. Makris is with the Department of Electrical Engineering, The
University of Texas at Dallas, Richardson, TX 75080-3021.
E-mail: yiorgos.makris@utdallas.edu.

Manuscript received 14 June 2009; revised 15 Mar. 2010; accepted 30 June
2010; published online 6 Dec. 2010.
Recommended for acceptance by C. Metra and R. Galivanche.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TCSI-2009-06-0280.
Digital Object Identifier no. 10.1109/TC.2010.265.

0018-9340/11/$26.00 � 2011 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on September 30,2020 at 18:47:55 UTC from IEEE Xplore. Restrictions apply.

are equally critical. Hence, high-level methods that aim to
globally monitor the most susceptible aspects of instruction
execution, rather than to locally check the result of every
fine-grain hardware entity, appear to be the most promising
direction towards developing cost-effective CED solutions.

To this end, in this paper we develop a workload-

cognizant CED scheme for the Scheduler1 of a modern

microprocessor, based on detailed information regarding

the impact of faults on the instruction execution of typical

programs. Specifically, we introduce a model of Instruction-

Level Errors (ILEs) and we employ an extensive fault

simulation infrastructure that we have developed around a

modern microprocessor model in order to understand the

relative importance of the various ILEs that are caused by

faults in the Scheduler of the microprocessor. Guided by the

results of this analysis, we incorporate additional hardware

that monitors the most vulnerable aspects of instruction

execution. Specifically, we predict and validate the time and

the functional unit where an instruction is executed, along

with four hardware-imposed invariances (i.e., properties

which hold true during error-free operation but which are

violated in the presence of errors), which validate the

operation code and the operands of an instruction, as well

as the sequence in which instructions are executed and

retired. Extensive fault simulation-based evaluation vali-

dates that workload information can, indeed, drive the

development of cost-effective CED methods.
The remainder of this paper is organized as follows: In

Section 2, we discuss related work in CED. Then, in Section 3,
we introduce the microprocessor model that is used to
demonstrate our CED scheme, the fault simulation infra-
structure that has been previously developed around it and
its limitations, as well as the enhancements that we made for
the purpose of our work. In Section 4, we provide more
details about the Scheduler of this microprocessor, which is
the target of our CED scheme. Next, in Section 5, we use the
aforementioned infrastructure to analyze the impact of
Scheduler faults on typical workload executed on the
microprocessor and we draw key observations that drive
the development of our CED scheme, the details of which are
given in Section 6. Finally, extensive fault simulation results
demonstrating the effectiveness of the proposed CED
scheme are presented and discussed in Section 7 and
conclusions are drawn in Section 8.

2 RELATED WORK

Various CED solutions [6], [7] have been proposed in the past
to detect faults or errors occurring during normal operation
of a circuit after it is deployed in the field. Among those, the
simplest approach is duplication, wherein a replica of the
circuit is added to the design, possibly diversely implemen-
ted (e.g., through the use of dual-rail logic [9]) to avoid
common mode failures [10]. The original and the replica
serve as predictors of the functionality of each other and a

simple comparator indicates any discrepancy in their out-
puts, thus detecting potential malfunctions. While simple,
this technique is prohibitively expensive. To reduce the
overhead imposed by duplication-based techniques, partial
duplication has been suggested to detect the faults in the
most critical parts of the design [8].

Another very popular CED approach has been the use of
various codes, especially within the context of finite state
machine (FSM) controllers. Several redesign and resynthesis
methods are described in [11], [12], wherein parity or various
unordered codes are employed to encode the states of the
circuit. Utilization of multiple parity bits is also examined in
[13] within the context of FSMs. These methods guarantee
latency-free error detection; on the down side, they are
intrusive and expensive. Nonintrusive CED methods have
also been proposed. Implementations based on Hamming,
Bose-Lin, and Berger codes are presented in [14], [15], and
[16], respectively, while parity-based CED methods are
described in [6], [17], [18]. While the aforementioned
methods guarantee latency-free detection of all errors, their
cost is often prohibitive. Trading off the incurred cost by
allowing a nonzero, yet bounded error detection latency has
also been investigated [19].

At a coarser level, an attempt to identify inherent
invariance either at the gate-level [20] or at the RTL [21]
of a design has been made. Such invariance can be
monitored during the normal operation of a circuit to
identify errors that cause it to be violated. In [20] such
invariance is mined from the gate-level of a controller
implementation in the form of assertions, which are
evaluated through simulation in order to select a cost-
effective appropriate subset. The same principle governs
the approach in [21]; therein, however, invariance is
identified through a path-construction algorithm, which
exploits inherent transparency channels that exist in the
RTL description of a modular design. More recently, the
method proposed in [22] also leverages inherent invariant
codes to perform CED in the decoder of the same
microprocessor that we employ in this study.

At an even higher architectural level, several concurrent
error detection, and/or correction methods have been
proposed. The concept of watchdog processors, which
compute control-flow signatures and compare them to
expected correct values, known at compilation time, is
proposed in [23], [24]. Concepts akin to instruction-level
duplication and comparison to identify erroneous results
are examined in [25], [26]. In [27], the authors examine the
vulnerability of different parts of a microprocessor to soft
errors and recommend various strategies (including register
file protection with codes, parity coding to protect instruc-
tion words, and a timeout counter to flush the pipeline
when no activity occurs for prolonged periods) to detect/
correct such errors. Similar analysis is performed in [28],
based on the concept of Architectural Vulnerability Factor
(AVF), which prioritizes microprocessor modules based on
their susceptibility. Such metrics can prove very useful in
guiding allocation of CED resources.

3 STUDY FRAMEWORK

This research builds upon a previously developed fault
simulation infrastructure, which is presented in detail in [29]

KARIMI ET AL.: WORKLOAD-COGNIZANT CONCURRENT ERROR DETECTION IN THE SCHEDULER OF A MODERN MICROPROCESSOR 1275

1. While CED methods involving encoding through Residue Number
System (RNS) or similar codes have effectively been applied to the data
paths of modern microprocessors, the same is not true for their controllers.
Hence, our work focuses on control modules that due to their complex
structure are still left largely unprotected.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on September 30,2020 at 18:47:55 UTC from IEEE Xplore. Restrictions apply.

and which we summarize herein for the purpose of
completeness. We start by briefly introducing the micro-
processor that we will use as the test vehicle in our
investigation along with the capabilities and limitations of
the simulation infrastructure that has been previously
developed around it by other researchers. Then, we discuss
the fault simulation enhancements that we added to this
infrastructure to support the development of the proposed
workload-cognizant CED method.

3.1 Microprocessor Model and Limitations

The Microprocessor model used in this study is the Verilog
implementation of an Alpha-like microprocessor, called
IVM (Illinois Verilog Model) [27], [30]. IVM implements a
subset of the instruction set of the Alpha 21264 micro-
processor. Consisting of approximately 40,000 state ele-
ments, the IVM is rich in architectural features including:
superscalar, out-of-order execution, dynamically scheduled
pipeline, hybrid branch prediction, and speculative instruc-
tion execution. IVM can have up to 132 instructions in-flight
through its 12-stage pipeline, supported by a dynamic
scheduler of 32 entries and six functional units. Fig. 1 shows
the block diagram of IVM, as presented in [27].

The complexity of IVM reflects most of the features of
modern, high-performance microprocessors. Furthermore,
it allows simulation of the execution of actual workload,
such as the SPEC2000 benchmarks. Thus, it enables a
realistic investigation of the efficiency of CED schemes
applied to modern microprocessors. Along with the Verilog
implementation of IVM, we also make use of a functional
simulator, which is a part of the Simplescalar tool suite and

supports the full instruction set of the Alpha 21264
microprocessor [31]. This capability is crucial because it
enables us to circumvent the limitations of IVM, which does
not support system calls and floating point instructions.
Such cases are handled by transferring the simulation state
to the functional simulator, executing the corresponding
instructions, and transferring the new state back to the
Verilog model to resume simulation.

Another limitation of IVM is that due to certain coding
techniques used at the RT-Level model, it is not synthesiz-
able; hence gate-Level fault simulation cannot be per-
formed. In fact, to perform fault simulation in IVM, an
approach of stopping the simulation, altering the state of the
microprocessor, and then resuming the simulation is
employed. Although this fault injection approach is effec-
tive when studying the impact of single-cycle transient
errors, such as those caused by alpha particle strikes, it is
extremely inefficient for other fault models, such as stuck-at
faults or transient errors of longer duration caused by
operational marginalities.

3.2 Enhanced Simulation Capabilities

In order to alleviate the aforementioned limitation, we
enhanced the IVM infrastructure to support efficient
injection and simulation of both stuck-at and transient
faults of arbitrary starting time and duration, while
executing SPEC2000 benchmarks. This is achieved by
employing an RT-Level fault simulator, which we devel-
oped and presented in detail in [29], wherein fault injection
is performed using a method similar to the parallel
saboteurs technique described in [32]. Specifically, the
Verilog model of each target module is mutated and a
Fault Controller module is added to control all fault
injection parameters, including the location, type, as well
as the start and stop injection times for each fault. In this
method, a unique identification number, called UID, is
given to each entity (i.e., register or wire) of the fault
simulation target module. Then during simulation, the
Fault Controller is responsible for fault injection. In each
clock cycle, one bit of one entity is accessed and set to the
faulty value. When the Fault Controller activates the fault
clock (i.e., the signal that controls the fault simulation
starting and stopping clock cycle), each module compares
the broadcasted UID (i.e., the UID of the target fault
simulation signal which is set by the Fault Controller) to the
UIDs of its internal entities. If a match is found, the module
modifies the corresponding bit, as specified by the Fault
Type coming from the Fault Controller to the module.

Fig. 2 shows a high-level diagram of this method, which
allows injection of either stuck-at or transient faults with
user-defined activation times to any entity defined in the
RT-Level Verilog model (dotted lines indicate hardware
added for fault simulation). As shown in this figure, each
storage element or wire is driven by a multiplexer which is
controlled by the Fault Controller to inject the appropriate
value to the intended location during the active fault
injection window.

In addition to the enhanced fault injection and simula-
tion capabilities, we have also incorporated extensive tools
to the IVM infrastructure for collecting, processing and
reporting fault simulation results. Furthermore, the devel-
oped tools can be used to save any trace or state files

1276 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 9, SEPTEMBER 2011

Fig. 1. Block diagram of IVM [27].

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on September 30,2020 at 18:47:55 UTC from IEEE Xplore. Restrictions apply.

requested and perform comparisons between golden (fault-
free) and faulty model executions. Besides state files, we can
also log the inputs and the outputs of any given module at
specified clock cycles, producing a trace file. This file can
then be used to study the impact of faults on individual
modules. This collection of tools proves invaluable in
assessing the impact of faults on the typical programs
executed by the microprocessor and, thereby, developing
the workload-cognizant CED method proposed herein.

4 SCHEDULER MODULE

In this section, we describe in more detail the module
targeted by our workload-cognizant CED method, namely
the Scheduler, which is one of the key control modules in
any modern microprocessor with advanced architectural
features. In IVM, the Scheduler is a dynamic module
containing an array of up to 32 instructions waiting to be
issued, from which up to six instructions are issued in each
clock cycle. Each instruction coming to the Scheduler resides
in this buffer until an acknowledgment is received from the
execution unit that it can start execution. At this time, the

corresponding location in the scheduler waiting-list is
cleared for use by another newly arriving instruction. The
Scheduler issues instructions out-of-order after considering
the availability of instructions of various types in the buffer,
as well as the existence of structural or data hazards.

During instruction execution, avoidance of structural
and data hazards is ensured by the Scheduler, while
avoidance of control hazards is ensured by the Reorder
Buffer (ROB). Indeed, the Scheduler considers structural
hazards before issuing an instruction. The IVM micropro-
cessor has six functional units: Two simple, one complex,
one branch and two memory units. Thus, up to six
instructions with the above limitations on the type and
distribution of instructions can be issued in each clock cycle.
Write-After-Read (WAR) and Write-After-Write (WAW)
data hazards are taken care of by the Rename module of
IVM before the instruction comes to the Scheduler. Read-
After-Write (RAW) data hazards, however, may still exist
due to dependencies between instruction operands. To deal
with such RAW hazards, the Scheduler uses the Scoreboard
method [33]. Based on the type of functional unit that will
be executing an instruction, the Scoreboard determines the
clock cycle in which the destination register for this
instruction will be written and available for other instruc-
tions to read. Consequently, the Scheduler prevents issuing
of instructions that need to use this register prior to the time
that it becomes available. Along with each instruction
coming to the Scheduler from the Rename module, a unique
identification number called ROBid is also provided by the
ROB module. This ROBid follows the instruction until it
commits and serves as a mechanism for ensuring in-order
instruction commitment in the out-of-order execution of the
microprocessor and avoiding control hazards.

Fig. 3 shows the high level diagram of the IVM
Scheduler module. As shown in this figure, instructions
arriving to the Scheduler continue to reside in the buffer
even if they have been issued to the Execution unit, until
the execution unit confirms that they can start execution. At
this time the “valid” and “issued” signals of the related

KARIMI ET AL.: WORKLOAD-COGNIZANT CONCURRENT ERROR DETECTION IN THE SCHEDULER OF A MODERN MICROPROCESSOR 1277

Fig. 2. RT-Level fault injection method.

Fig. 3. Block diagram of IVM Scheduler.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on September 30,2020 at 18:47:55 UTC from IEEE Xplore. Restrictions apply.

instruction in the Scheduler are disabled and the corre-

sponding buffer locations are considered available for use

by subsequent instructions.

5 FAULT IMPACT ANALYSIS

The novelty of the CED method proposed herein is that it

seeks to leverage information regarding the effect of faults

on typical workload. In order to capture this information, we

utilize a model of Instruction-Level Errors (ILEs) which was

first defined in [29] and which is summarized in Table 1. As

shown in this table, ILEs have been divided into five groups

reflecting the key aspects of instruction execution in a

superscalar out-of-order microprocessor, namely

1. the operation that is executed,
2. the operands that are being used,
3. the functional unit where execution takes place,

4. the starting and finishing time of execution, and
5. the order of commitment.

As part of the simulation infrastructure described in Section 3,
we have developed automated software that correlates an
injected fault to the ILE that it incurs. We note that the ILE
types are not mutually exclusive, i.e., the effect of a fault may
be manifested as more than one ILE type. For example,
suppose that a fault changes the operation code of an addition
instruction to the operation code of a branch instruction; in
this case, a Type 1 (Group 1) ILE occurs since an incorrect
operation code is used. However, a Type 7 (Group 3) ILE also
occurs, since the branch instruction is now executed by a
functional unit other than the functional unit used for
executing the original addition instruction.

The type of information that we seek in order to support

the development of workload-cognizant CED is depicted in

Fig. 4. This bar chart summarizes the impact of RT-Level

faults in the Scheduler of the IVM microprocessor on the

execution of several different SPEC2000 benchmarks, by

depicting the distribution of these faults into the various ILE

types. The results show a remarkable consistency across the

various benchmarks, despite the fact that these benchmarks

exercise very different functionality of the microprocessor.
More importantly, the results enable the following

observations regarding the occurrence frequency of each

ILE type, which drive the development of the CED method

described in the next section.

. The majority of faults result in Timing Errors
(Group 4) and, in particular, in ILEs of Type 10
(late or no instruction commencement) and Type 11
(longer instruction duration). In other words, ensur-
ing that an instruction is scheduled and executed at
the correct time is crucial to the detection of errors.

1278 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 9, SEPTEMBER 2011

TABLE 1
Instruction-Level Errors

Fig. 4. Distribution of ILE types caused by faults in the Scheduler of IVM.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on September 30,2020 at 18:47:55 UTC from IEEE Xplore. Restrictions apply.

. A significant number of faults results in a discre-
pancy in the operands (Group 2) and, in particular,
in ILEs of Type 3 (incorrect operand). As a result,
ensuring correctness of the utilized resources will
contribute a large number of detected errors.

. A tangible number of faults result in a discrepancy
in the executed operation (Group 1) and, in
particular, in ILEs of Type 1 (incorrect operation
code). Hence, ensuring correctness of the executed
operations is also important.

. A considerable number of faults result in violation of
instruction order (Group 5) and, in particular, in
ILEs of Type 13 (commitment order violation).
Therefore, ensuring in-order commitment is still a
priority but not the most crucial one.

. Only a small number of faults result in discrepancy
in the utilized functional unit (Group 3) and, in
particular, in ILEs of Type 7 (incorrect functional
unit). Thus, ensuring the use of the correct functional
unit is less important than the previously mentioned
aspects of instruction execution.

6 CED SCHEME

Based on the above observations, the CED scheme proposed
in this paper seeks to verify the following aspects of
instruction execution, which are listed in decreasing order
of significance

. Correctness of the time at which an instruction starts
executing.

. Correctness of the operands used by the instruction.

. Correctness of the operation code executed by the
instruction.

. Correctness of the sequence in which instructions
are actually executed, taking into account branches.

. Correctness of the sequence in which instructions
arrive to the scheduler.

. Correctness of the functional unit to which an
instruction is assigned for execution.

To achieve the above objectives, the proposed CED
scheme involves two components. The first component
employs additional hardware which predetermines the
time at which an instruction should start execution and the
functional unit where it should be executed, as explained in
Section 6.1. Using this information, the second component
employs additional hardware to impose and monitor four
invariances that should hold true in each clock cycle i and
for each functional unit j,

. Invariance #1: Equality between the ROBid of the
instruction that is predicted to be executed at time i
by functional unit j and the ROBid of the instruction
that is actually executed. Monitoring this invariance
ensures correct order in the commitment of instruc-
tions. Thereby, this invariance aims mainly at
detecting ILEs of Group 5 (Order Errors).

. Invariance #2: Parity consistency between the
operation code of the instruction that is predicted
to be executed at time i by functional unit j and the
operation code of the instruction that is actually
executed. This invariance aims mainly at detecting
ILEs of Group 1 (Operation Errors).

. Invariance #3: Parity consistency between the
operands (up to three) of the instruction that is
predicted to be executed at time i by functional
unit j and the operands used by the instruction that
is actually executed. This invariance aims mainly at
detecting ILEs of Group 2 (Operand Errors).

. Invariance #4: Parity consistency between the target
address of the instruction that is predicted to be
executed at time i by functional unit j and the target
address of the instruction that is actually executed.
Checking this invariance ensures the correctness of
execution flow following branch instructions. There-
by, it aims mainly at detecting ILEs of Group 4
(Timing Errors).

We note that no invariance that explicitly checks for ILEs of
Group 3 (Execution Errors) is included in our CED scheme.
However, such errors are implicitly detected through the
prediction of the functional unit where the invariances are
checked. Furthermore, as we observed through the fault
impact analysis of the previous section, such faults are the
least important among the ILE types.

Fig. 5 shows the hardware that needs to be added to the
IVM Scheduler in order to support the proposed CED
scheme. As we described in Section 4, the Scheduler
contains an array where up to 32 instructions coming from
the Rename module reside until all structural and data
hazards are cleared so that they can be sent for execution.
Each entry in this array contains 224 bits comprising the
various fields of the instruction, as shown in the figure. Our
scheme relies on the construction of a CED Table, which
partially replicates this array by keeping only the fields
needed for predicting the time and place where an
instruction should be executed and supporting the subse-
quent invariance checking. Specifically, the retained infor-
mation includes the ROBid, the instruction type, as well as
the parity of the operation code, the operands, and the
target address if the instruction is a branch. The instruction
type, along with information from the existing Scoreboard
module and the original instruction array are then used to
predict and add to the CED Table the functional unit where
an instruction will be dispatched and its execution starting
time, expressed as an offset relative to the current clock
cycle. All in all, each entry in this Table contains 24 bits.

Given the information in the CED Table, monitoring the
four invariances becomes straightforward, as shown in Fig. 6.
In each clock cycle, we look at the instruction executed by
each functional unit and we extract its ROBid, along with the
parity of its operation code, its operands, and its target
address. We then compare these fields to the corresponding
fields of the instruction that the CED Table predicts as the one
that should be executed by this functional unit at this
particular time. Any discrepancy signifies an error, in which
case the CED output is asserted.

6.1 Predicting Instruction Execution Time and Place

The proposed CED method relies on correctly predicting
the time that each instruction will start execution as well as
the functional unit to which it will be issued. To achieve
this, several parameters need to be considered. First, the
availability of resources in the execution unit, which also

KARIMI ET AL.: WORKLOAD-COGNIZANT CONCURRENT ERROR DETECTION IN THE SCHEDULER OF A MODERN MICROPROCESSOR 1279

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on September 30,2020 at 18:47:55 UTC from IEEE Xplore. Restrictions apply.

bounds the maximum number and types of instructions
that can be issued in each cycle. IVM includes six functional
units, namely two simple units, one complex unit, one
branch unit, and two memory units. Second, the types and
order of arrival of instructions that are waiting to be issued
for execution. And, third, the data hazards that an
instruction may cause.

Let us consider an instruction that arrives at the
Scheduler at clock cycle c. The earliest that this instruction
can be issued is at clock cycle cþ 1 and the earliest it can
start execution is at clock cycle cþ 3, with the added clock
cycles accounting for the pipeline depth between the
Scheduler and the Execution Unit. In other words, for the
incoming instructions whose issue does not generate any
hazard, the execution starting time is determined precisely
as soon as the instruction enters the Scheduler. Before an
instruction is issued, however, resource availability needs to
be considered. Specifically, preceding instructions that are
already residing in the Scheduler waiting table are examined

1280 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 9, SEPTEMBER 2011

Fig. 5. Hardware additions to the IVM Scheduler to support the proposed CED scheme.

Fig. 6. Invariance checking by proposed CED scheme.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on September 30,2020 at 18:47:55 UTC from IEEE Xplore. Restrictions apply.

first; if their operands are available and their issuing causes
no structural hazards they are given priority over the
current instruction, which remains in the Scheduler.

For the instructions which cannot be sent out of the
Scheduler in the clock cycle following the clock cycle they
enter the Scheduler module, a rough estimate of their
execution starting time is made and updated each clock
cycle. This estimate depends on the number of instructions
of the same type that reside in the Scheduler waiting table,
the number of available functional units to execute
instructions of this type, as well as the dependencies
between the operands of all unissued instructions. In each
clock cycle, up to six instructions are issued and the
Scheduler waiting table fields are updated. Accordingly, the
aforementioned estimates are also updated, until we can
determine when all structural and data hazards will be
resolved so that we can predict the clock cycle that an
instruction will be able to start execution and the functional
unit where it will be dispatched. To reduce hardware
overhead, the execution starting time of each instruction is
expressed as an offset from the current clock cycle.

We also note that although the Scheduler checks the
availability of operands before issuing an instruction, a
second check takes place in the Execution module. This is
required since an operand that was supposed to be
available at the required clock cycle (based on the
information provided by the Scoreboard), may be not
available due to a cache miss. In this case, the Execution
unit reports that an instruction needs to be reissued and our
method recalculates the new execution starting time.

Example: Consider Fig. 5 which shows a snapshot of the
Scheduler waiting table (upper) and the CED table (lower)
and let us assume that four instructions arrive at the
Scheduler at clock cycle c and are placed in rows 3 through
6 of each table. Let us also assume that no other unissued
instructions of these types are waiting in the Scheduler.
Based on the instruction types and required operands, our
CED scheme determines that the first two instructions
(rows 3 and 4) can be issued in the following clock cycle.
Taking into account the pipeline depth of three between the
Scheduler and the Execution unit of IVM, these two
instructions can start execution at clock cycle cþ 3. Accord-
ingly, the offset “3” is placed in the 6th column of rows 3 and
4 in the CED table. However, the branch instruction (row 5)
cannot start execution simultaneously with the aforemen-
tioned two instructions due to its operand dependency (r54)
on the simple instruction (row 4). Hence, our CED scheme
consults the Scoreboard regarding the availability time of
register r54. Since a simple instruction takes one cycle to
execute and the producing instruction starts execution in
cþ 3, the Scoreboard responds that r54 will be available in
clock cycle cþ 4. Accordingly, clock cycle cþ 4 is predicted
as the execution starting time of the branch instruction and
the offset “4” is placed in the 6th column of row 5 in the CED
table. The next instruction (row 6) is a complex instruction
(i.e., multiply) and cannot be immediately issued due to a
structural hazard (the first instruction is occupying the
complex functional unit). In addition, the first operand of
this instruction is r16 which is the destination register of the
first instruction (row 3). The multiply unit of the IVM is

implemented as a five-stage pipeline, so our CED scheme
predicts that the earliest clock cycle at which the instruction
in row 6 can start execution is cþ 8. Accordingly, the offset
“8” is placed in the 6th column of the row 6 of the CED table.

7 RESULTS AND ANALYSIS

In this section, we provide the details of the simulation
setup used for evaluating the effectiveness of the proposed
CED scheme, we present the results and we discuss our
key observations.

7.1 Simulation Setup

Target Module and Type of Injected Faults: Our CED
scheme targets one of the main control modules of the IVM
microprocessor, namely the Scheduler, the details of which
were presented in Section 4. To assess the efficiency of our
CED scheme, we employ the infrastructure described in
Section 3 to inject and simulate the effect of single stuck-at
faults at the RT-Level description of IVM.2 There is a total
number of 18,822 such faults in the Scheduler of IVM, all of
which are used in this study.

Simulation Workload: In order to evaluate the effective-
ness of our CED scheme, we use six different SPEC2000
benchmarks as the simulation workload for IVM. Running
different benchmarks ensures variability of the instructions
executed through the processor and the control logic that
they exercise. In each simulation run, the functional
simulator is used to execute the first 50,000 clock cycles,
thus bypassing the initial system calls and other operations
that are not implemented in IVM and reaching a code
segment that can be executed on the fault-free RT-Level
model of IVM. Then, a fault is injected in the RT-Level model
of IVM and each benchmark is executed for 2,000 clock
cycles using the RT-Level simulation infrastructure. Table 2
provides the number of instructions committed while
running each benchmark for 2,000 clock cycles on the
fault-free microprocessor model.

7.2 Experimental Results

We now proceed to present the results of our simulations
and to discuss their significance. The results are divided in
four sets; the first set provides statistics on fault activation,
the second set evaluates the effectiveness of the proposed
CED scheme, the third set demonstrates the utility of the
impact analysis information based on which the CED
scheme was designed, and the fourth set examines various
other properties of the CED scheme.

KARIMI ET AL.: WORKLOAD-COGNIZANT CONCURRENT ERROR DETECTION IN THE SCHEDULER OF A MODERN MICROPROCESSOR 1281

TABLE 2
Instructions Committed in 2,000 Clock Cycles

2. In [34], the authors demonstrate a strong correlation between the
impact of permanent faults and transient errors, as well as between the
impact of Gate-Level and RT-Level faults on instruction execution. Hence,
the effectiveness of our CED scheme, as assessed through injection of
RT-Level single stuck-at faults, also reflects its effectiveness on Gate-Level
faults and transient errors.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on September 30,2020 at 18:47:55 UTC from IEEE Xplore. Restrictions apply.

7.2.1 Fault Activation Profile

Fault simulation outcome: The first set of results, presented
in Table 3, summarizes the fault simulation outcome for each
benchmark. The second column reports the number of faults
that were activated, i.e., they adversely affected the
functionality of the microprocessor. On average, 38.1 percent
of the faults resulted in a visible discrepancy. In the third
through fifth columns, we further split these faults into three
categories, based on their impact on instruction execution.
As can be observed, an average of 20.4 percent of the
activated faults resulted in incorrect architectural state3 after
the executed 2,000 clock cycles, 11.3 percent resulted in a
stalling of the pipeline, and 6.4 percent resulted in an
exception system call prior to completion of benchmark
execution. The final column reports the number of faults that
were masked, i.e., they did not affect benchmark execution
at all. The high percentage of such errors, averaging at
61.9 percent over the six benchmarks, corroborates our
conjecture that application-level error masking plays an
important role in modern microprocessors, which motivated
the development of the proposed workload-cognizant CED
scheme. After all, only a small portion of the functionality of
the Scheduler module is exercised by typical workload,
hence a large number of faults are either not excited at all or
are excited but are logically suppressed.

Fault activation across benchmarks: The second set of
results explores the well-known fact that not all faults are
equally likely to cause an error (i.e., asymmetric fault
activation [8]). Specifically, in Fig. 7 we show the percentage
of faults that are activated during the execution of exactly
k out of the six benchmarks, k 2 ½1; . . . ; 6�. As may be
observed, among the 8,784 faults that are activated in any of
the six benchmarks, over 50 percent are activated in all of
the six benchmarks and over 85 percent of faults are
activated in at least four out of the six benchmarks. The key
takeaway point from this observation is that a large number
of faults have a high probability of activation independent

of the workload that is being executed. Hence, any
hardware overhead incurred by a CED scheme that detects
these faults is well-justified.

7.2.2 CED Effectiveness

CED coverage: The third set of results focuses on the
activated faults and reports the effectiveness of the
proposed CED scheme in detecting them. Coverage is
defined as the percentage of activated faults that are
detected by the CED scheme. The attained coverage is
shown in Fig. 8. As may be observed, over 85 percent of the
faults that affect the architectural state of the processor or
prevent it from completing the intended execution of a
benchmark due to stalling or exceptions are detected by the
proposed CED scheme. Another interesting observation
concerns the consistency in the effectiveness of the
proposed CED scheme across all six benchmarks, despite
the fact that the latter involve execution of different types of
instructions and exercise different parts of the functionality
of IVM. Indeed, in all cases the achieved fault coverage
ranges between 81 percent and 91 percent. Evidently, the
CED scheme detects a very large percentage of the activated
faults independent of the workload that is being executed.

CED effectiveness across benchmarks: To further
demonstrate that the proposed CED is effective across
various workloads, in Fig. 9 we break down the number of
faults that are activated in k of the six benchmarks,
k 2 ½1; . . . ; 6�, based on the number of benchmarks in which
they are detected. As may be observed, among the faults

1282 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 9, SEPTEMBER 2011

Fig. 7. Faults activated in k benchmarks, k 2 ½1; . . . ; 6�.

TABLE 3
Fault Simulation Outcome After 2,000 Clock Cycles

Fig. 8. Coverage of proposed CED scheme.

3. The definitions of architectural state and architectural state corruption
used herein are borrowed from [27], where it is stated that “In IVM,
Microarchitectural state consists of all the SRAM cells, latches, and flip-flops
used to implement a processor microarchitecture. Architectural state is a
subset of microarchitectural state defined as the state of the machine that is
exposed at the instruction set architecture level (e.g., the program counter,
register files, and memory state). So Architectural state corruption is any
change in PC, register files, and memory state.”

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on September 30,2020 at 18:47:55 UTC from IEEE Xplore. Restrictions apply.

activated in k benchmarks, the proposed CED scheme
indeed detects most of them in all of these k benchmarks.
For example, among the faults activated in six benchmarks,
over 90 percent are detected in all of these six benchmarks.
In other words, the proposed CED scheme detects the
targeted faults independent of the workload, thereby
benefiting all programs running on the microprocessor
and justifying the expended hardware.

Necessity of the four invariances: The next set of results
examines whether all four invariances are necessary in the
proposed CED scheme. While some overlap between the
faults detected by each invariance is expected, this overlap
is minimal since each of them mainly targets a different
group of ILEs, as discussed in Section 5. To validate this, in
Fig. 10 we report the percentage of faults that violate
exactly k invariances during the execution of each bench-
mark, k 2 ½1; . . . ; 4�, averaged over the six benchmarks. As
may be observed, 75 percent of the faults violate exactly
one invariance and only a small percentage of faults end
up simultaneously violating more than one invariances.

The key takeaway point of this observation is that the
inclusion of each of these invariances in the CED scheme is
well-justified, since there is little overlap among the
detected fault-sets.

7.2.3 Impact Analysis Utility

Consistency of fault impact across benchmarks: This set of
results demonstrates consistency in the instruction-level
impact that faults incur, independent of the executed
workload. Specifically, Fig. 11 shows the percentage of
faults that result in each of the five ILE groups for each of the
six benchmarks. As may be observed, the distribution of
faults to the five ILE groups is very similar for all six
benchmarks, despite the fact that these benchmarks are
quite different in the types of instructions they employ and
the part of the microprocessor they exercise. This is
particularly important because the proposed CED scheme
has been developed based on observations regarding the
relative importance of the various ILEs caused by low-level
faults. Hence, its effectiveness relies on the premise that this
distribution is consistent across different workloads.

KARIMI ET AL.: WORKLOAD-COGNIZANT CONCURRENT ERROR DETECTION IN THE SCHEDULER OF A MODERN MICROPROCESSOR 1283

Fig. 9. CED effectiveness in detecting a fault across all benchmarks wherein it is activated.

Fig. 10. Faults violating k invariances, k 2 ½1; . . . ; 4�. Fig. 11. Percentage of faults causing each ILE group.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on September 30,2020 at 18:47:55 UTC from IEEE Xplore. Restrictions apply.

CED effectiveness across ILE groups: To further
demonstrate the importance of the above consistency, in
Fig. 12 we provide the number of faults that result in each
ILE group for each benchmark, along with the number of
faults detected by the proposed workload-cognizant CED
scheme. Evidently, its effectiveness is consistent across the
five ILE groups, independent of the workload. Another
important observation that can be made using this figure is
that most detected faults result in an ILE of group 4. Indeed,
as discussed in Section 6, development of the proposed
CED scheme was driven by the observation that the
dominant ILE types caused by low-level faults are Timing
ILEs, which belong to group 4. In other words, the CED
scheme was specifically geared towards detecting ILEs of
group 4, as validated by the results.

Invariance effectiveness for each ILE group: We now
proceed to examine the effectiveness of each of the four
invariances included in the proposed CED scheme in
detecting the faults that cause each of the five ILE groups.
We remind that the four invariances where chosen based on
the profile of instruction-level impact caused by low-level
faults. Specifically, invariance #1 mainly targets instruction
order ILEs (Group 5). Similarly, invariance #2 mainly targets
operation ILEs (Group 1), invariance #3 mainly targets
operand ILEs (Group 2), and invariance #4 mainly targets
timing ILEs (Group 4). Also, execution ILEs (Group 3) are
detected as an ancillary benefit of all four invariances.
Hence, we expect that each invariance will be the most
efficient in detecting the ILEs in the group for which it was
designed and may also detect ILEs in other groups but to a
lesser extent. Fig. 13 shows the results which validate our
expectations. Specifically, based on the results we may
observe that each invariance is, indeed, the most effective on
the ILE group it was designed for. For example, invariance
#4 detects a much higher percentage of faults that result in
ILEs of group 4 than the percentage of faults that result in
ILEs of the other groups. Furthermore, no other invariance
detects more ILEs of a particular group than the invariance
that was designed for that ILE group. For example,

invariance #4 detects more faults that result in ILEs of

group 4 than any of the other invariances. The key takeaway

point of these observations is that workload-cognizant

analysis of the instruction-level impact caused by low-level

faults may effectively guide the selection of appropriate

invariances for performing CED.

7.2.4 Other CED Properties

Detection latency: Another question that we seek to

address through the next set of results concerns the detection

latency of the proposed CED scheme. As detection latency,

we define the number of clock cycles between the time that

an error results in a corruption of the architectural state of

the processor and the time that the CED scheme detects the

error (i.e., an invariance is violated). The second through

fourth columns of Table 4 report the minimum, maximum,

and average detection latency of the proposed CED scheme

for each benchmark. We note that the detection latency may

be negative, implying that the CED scheme alerts to the fact

that an error has occurred before this error corrupts the

architectural state. The last column of Table 4 reports the

percentage of faults that are such early detections. Evidently,

1284 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 9, SEPTEMBER 2011

Fig. 12. Total and detected faults causing each ILE group.

Fig. 13. Effectiveness of invariances on ILE groups.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on September 30,2020 at 18:47:55 UTC from IEEE Xplore. Restrictions apply.

the vast majority of the faults, i.e., over 99.5 percent, are
detected early, some of them as early as 1,978 clock cycles
before they actually corrupt the architectural state of the
processor. Among the rest of the faults, some are not
detected until 1,764 clock cycles after they corrupt the
architectural state. These, of course, are a few extreme cases.
On average, the CED scheme detects faults that are not
early detections within a couple of clock cycles. An
understanding of the detection latency of the proposed
CED scheme is very important since it indicates the window
within which the error can be corrected before it affects
program execution. While error correction mechanisms are
beyond the scope of this paper, one may observe that a
simple pipeline flush and restart (which is already
supported by IVM) is enough to correct over 99.5 percent
of the faults (i.e., all the early detections). For the rest of the
faults, which are detected after the architectural state is
corrupted, the average detection latency of two clock cycles
implies that simple checkpoint-and-restore operations
covering a small window of a few clock cycles would be
capable of correcting them.

Incurred area overhead: The next set of results focuses
on the cost-effectiveness of the proposed method. To this
end, we converted the Scheduler module of IVM to

synthesizable Verilog and we synthesized the Scheduler
module before and after applying our CED scheme using
Synopsys Design Compiler and targeting a TSMC .13
micron library. The first two rows of Table 5 show the area
of the combinational and sequential parts of the Scheduler
before and after inclusion of our parity-based CED scheme.
As shown in this table, the incurred area overhead of the
CED scheme is 32 percent of the area of the Scheduler,
making it an attractive proposition considering that it
covers over 85 percent of the activated faults and with a
detection latency of only a few cycles. While this overhead
figure does not include any additional area needed for
signal routing, we point out that the corresponding
effectiveness also does not include faults in other modules
that are detected as an ancillary benefit of the proposed
CED scheme.

Masking due to parity: The final set of results assess the
limitations of using parity for invariances #2, #3, and #4, as
opposed to comparison of the entire fields (we remind that
invariance 1 is based on the entire ROBid field). Specifically,
Table 6 reports the number of faults that would be detected
by comparing the entire fields but are not detected by
comparing the parity in each of these three invariances, as
well as the overall coverage loss due to masking. As may be

KARIMI ET AL.: WORKLOAD-COGNIZANT CONCURRENT ERROR DETECTION IN THE SCHEDULER OF A MODERN MICROPROCESSOR 1285

TABLE 4
Detection Latency of Proposed CED Scheme

TABLE 5
Area Overhead Incurred by Proposed CED Scheme

TABLE 6
Impact on Coverage and Detection Latency Due to the Use of Parity (Masking)

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on September 30,2020 at 18:47:55 UTC from IEEE Xplore. Restrictions apply.

observed, while the coverage of each individual invariance
takes a light hit, the fact that faults may be detected by more
than one invariance compensates for this effect, resulting in
only a small 0.77 percent loss in bzip2, a negligible
0.03 percent loss in vortex and no coverage loss in the
remaining four benchmarks. Moreover, as may be observed
in the last two columns of Table 6, the impact on average
detection latency and early detection is also negligible. Also,
as indicated in the third row of Table 5, the area overhead
would 2.37 times higher if the CED scheme compares the
entire fields instead of the parity (75.8 percent as opposed to
32 percent). These observations reveal that parity is a cost-
effective option.

8 CONCLUSION

Modern microprocessors exhibit a high degree of applica-
tion-level error masking, which prevents a significant
percentage of faults occurring in the field of operation from
corrupting their architectural state. The conjecture sup-
ported by the work presented herein is that one may leverage
this asymmetric criticality of faults in order to develop cost-
effective CED methods. Indeed, a careful analysis of the
impact of such faults on typical microprocessor workload
provides the basis for identifying the most vulnerable
functionality of the microprocessor and pinpoints the areas
where CED resources should be expended. To demonstrate
this principle, we investigated the prevalent instruction-
level errors that are caused by faults in the Scheduler of the
IVM microprocessor and we developed a number of
invariances which monitor the most important aspects of
instruction execution. Thereby, we constructed a CED
scheme which only takes up 32 percent of the Scheduler
area and which is capable of detecting over 85 percent of the
Scheduler faults that affect the architectural state of the
processor while the latter is executing SPEC2000 bench-
marks. Combined with the observation that most faults are
detected prior to corrupting the architectural state, and that
the few that do corrupt the architectural state are detected
within a few clock cycles, the above result makes this
workload-cognizant CED method a competitive proposition.

ACKNOWLEDGMENTS

This work was supported by a generous gift from the Intel
Corp. The first two authors contributed equally to this
work. The first author performed this research while being
a visiting student at Yale University. A preliminary version
of part of the results reported herein was presented at the
2008 International Symposium on Defect and Fault Toler-
ance in VLSI Systems [35]. The authors would like to thank
Professor Sanjay Patel and Nicholas Wang from the
University of Illinois at Urbana-Champaign for sharing
the IVM microprocessor model and for providing technical
assistance in its installation and usage.

REFERENCES

[1] S. Matakias, Y. Tsiatouhas, A. Arapoyanni, and T. Haniotakis, “A
Circuit for Concurrent Detection of Soft and Timing Errors in
Digital CMOS ICs,” J. Electronic Testing: Theory and Applications,
vol. 20, no. 5, pp. 523-531, 2004.

[2] P. Hazucha, C. Svensson, and S.A. Wender, “Cosmic-Ray Soft
Error Characterization of a Standard 0.6�m CMOS Process,” IEEE
J. Solid-State Circuits, vol. 35, no. 10, pp. 1422-1429, Oct. 2000.

[3] E. Normand, “Single Event Upset at Ground Level,” IEEE Trans.
Nuclear Science, vol. 43, no. 6, pp. 2742-2750, Dec. 1996.

[4] Y. Tosaka, S. Satoh, T. Itakura, H. Ehara, T. Ueda, G.A. Woffinden,
and S.A. Wender, “Measurement and Analysis of Neutron-
Induced Soft Errors in Sub-Half-Micron CMOS Circuits,” IEEE
Trans. Electron Devices, vol. 45, no. 7, pp. 1453-1458, July 1998.

[5] C. Metra, M. Favalli, and B. Ricco, “On-Line Detection of Logic
Errors Due to Crosstalk, Delay, and Transient Faults,” Proc. Int’l
Test Conf., pp. 524-533, 1998.

[6] M. Goessel and S. Graf, Error Detection Circuits. McGraw-Hill,
1993.

[7] S. Mitra and E.J. McCluskey, “Which Concurrent Error Detection
Scheme to Choose?,” Proc. Int’l Test Conf., pp. 985-994, 2000.

[8] K. Mohanram and N.A. Touba, “Cost-Effective Approach for
Reducing Soft Error Rate in Logic Circuits,” Proc. Int’l Test Conf.,
pp. 893-901, 2003.

[9] S. Mitra and E.J. McCluskey, “Design Diversity for Concurrent
Error Detection in Sequential Logic Circuits,” Proc. Very Large Scale
Integration (VLSI) Test Symp., pp. 178-183, 2001.

[10] A. Avizienis and J.P.J. Kelly, “Fault Tolerance by Design Diversity:
Concepts and Experiments,” Computer, vol. 17, no. 8, pp. 67-80,
1984.

[11] G. Aksenova and E. Sogomonyan, “Design of Self-Checking Built-
in Check Circuits for Automata with Memory,” Automation and
Remote Control, vol. 36, no. 7, pp. 1169-1177, 1975.

[12] S. Dhawan and R.C. De Vries, “Design of Self-Checking Sequential
Machines,” IEEE Trans. Computers, vol. 37, no. 10, pp. 1280-1284,
Oct. 1988.

[13] C. Zeng, N. Saxena, and E.J. McCluskey, “Finite State Machine
Synthesis with Concurrent Error Detection,” Proc. Int’l Test Conf.,
pp. 672-679, 1999.

[14] M. Pflanz, K. Walther, C. Galke, and H.T. Vierhaus, “On-Line
Error Detection and Correction in Storage Elements with Cross-
Parity Check,” Proc. Int’l On-Line Test Workshop, pp. 69-73, 2002.

[15] D. Das and N.A. Touba, “Synthesis of Circuits with Low-Cost
Concurrent Error Detection Based on Bose-Lin Codes,” Proc. Very
Large Scale Integration (VLSI) Test Symp., pp. 309-315, 1998.

[16] N.K. Jha and S.-J Wang, “Design and Synthesis of Self-Checking
VLSI Circuits,” IEEE Trans. Computer-Aided Design of Integrated
Circuits and Systems, vol. 12, no. 6, pp. 878-887, June 1993.

[17] S. Almukhaizim, P. Drineas, and Y. Makris, “Entropy-Driven
Parity-Tree Selection for Low-Overhead Concurrent Error Detec-
tion in Finite State Machines,” IEEE Trans. CAD of Integrated
Circuits and Systems, vol. 25, no. 8, pp. 1547-1554, Aug. 2006.

[18] J.H. Patel and L.Y. Fung, “Concurrent Error Detection in ALUs
by Recomputing with Shifted Operands,” IEEE Trans. Computers,
vol. 31, no. 7, pp. 589-595, July 1982.

[19] S. Almukhaizim, P. Drineas, and Y. Makris, “On Concurrent Error
Detection with Bounded Latency in FSMs,” Proc. Conf. Design,
Automation and Test, vol. 1, pp. 596-601, 2004.

[20] R. Vemu, A. Jas, J.A. Abraham, S. Patil, and R. Galivanche, “A
Low-Cost Concurrent Error Detection Technique for Processor
Control Logic,” Proc. Conf. Design, Automation and Test in Europe,
pp. 897-902, 2008.

[21] Y. Makris, I. Bayraktaroglu, and A. Orailoglu, “Enhancing
Reliability of RTL Controller-Datapath Circuits via Invariant-
Based Concurrent Test,” IEEE Trans. Reliability, vol. 53, no. 2,
pp. 269-278, June 2004.

[22] C. Metra, D. Rossi, M. Omana, A. Jas, and R. Galivanche,
“Function-Inherent Code Checking: A New Low Cost On-line
Testing Approach for High Performance Microprocessor Control
Logic,” Proc. European Test Symp., pp. 171-176, 2008.

[23] A. Mahmood and E.J. McCluskey, “Concurrent Error Detection
Using Watchdog Processors—A Survey,” IEEE Trans. Computers,
vol. 37, no. 2, pp. 160-174, Feb. 1988.

[24] M. Jafari-Nodoushan, S. Ghassem-Meremadi, and A. Ejlali,
“Control Flow Checking Using Branch Instructions,” Proc. Int’l
Conf. Embedded and Ubiquitous Computing, pp. 66-72, 2008.

[25] A. Mendelson and N. Suri, “Designing High-Performance and
Reliable Superscalar Architectures—The Out of Order Reliable
Superscalar (O3RS) Approach,” Proc. Int’l Conf. Dependable Systems
and Networks, pp. 5-28, 2000.

1286 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 9, SEPTEMBER 2011

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on September 30,2020 at 18:47:55 UTC from IEEE Xplore. Restrictions apply.

[26] J.B. Nickel and A.K. Somani, “REESE: A Method of Soft Error
Detection in Microprocessors,” Proc. Int’l Conf. Dependable Systems
and Networks, pp. 401-410, 2001.

[27] N.J. Wang, J. Quek, T.M. Rafacz, and S.J. Patel, “Characterizing
the Effects of Transient Faults on a High-Performance Processor
Pipeline,” Proc. Int’l Conf. Dependable Systems and Networks, pp. 61-
70, 2004.

[28] S.S. Mukherjee, C. Weaver, J. Emer, S.K. Reinhardt, and T. Austin,
“A Systematic Methodology to Compute the Architectural
Vulnerability Factors for a High-Performance Microprocessor,”
Proc. Int’l Symp. Microarchitecture, pp. 29-40, 2003.

[29] N. Karimi, M. Maniatakos, Y. Makris, and A. Jas, “On the
Correlation between Controller Faults and Instruction-Level Errors
in Modern Microprocessors,” Proc. Int’l Test Conf., pp. 24.1.1-
24.1.10, 2008.

[30] N.J. Wang, A. Mahesri, and S.J. Patel, “Examining ACE Analysis
Reliability Estimates Using Fault-Injection,” SIGARCH Computer
Architecture News, vol. 35, no. 2, pp. 460-469, 2007.

[31] D. Burger, T.M. Austin, and S. Bennett, “Evaluating Future
Microprocessors: The Simplescalar Tool Set,” Technical Report
CS-TR-1996-1308, Intel Corporation, 1996.

[32] J.C. Baraza, J. Garcia, S. Blanc, D. Gil, and P.J. Gil, “Enhance-
ment of Fault Injection Techniques Based on the Modification of
VHDL Code,” IEEE Trans. Very Large Scale Integration (VLSI),
vol. 16, no. 6, pp. 693-706, June 2008.

[33] J.L. Hennessy and D.A. Patterson, Computer Architecture: A
Quantitative Approach, third ed. Morgan Kaufmann, 2003.

[34] M. Maniatakos, N. Karimi, C. Tirumurti, A. Jas, and Y. Makris,
“Instruction-Level Impact Analysis of Low-Level Faults in a
Modern Microprocessor Controller,” IEEE Trans. Computers,
vol. 60, no. 9, pp. 1260-1273, 2011.

[35] M. Maniatakos, N. Karimi, Y. Makris, A. Jas, and C. Tirumurti,
“Design and Evaluation of a Timestamp-Based Concurrent Error
Detection Method (CED) in a Modern Microprocessor Controller,”
Proc. Int’l Symp. Defect and Fault Tolerance in VLSI Systems, pp. 454-
462, 2008.

Naghmeh Karimi received the BS, MS, and
PhD degrees in computer engineering from the
University of Tehran, Iran, in 1997, 2002, and
2010, respectively. Her masters thesis was on
testability enhancement at the Register Transfer
Level and her PhD thesis was on concurrent
error testing and reliability enhancement. Be-
tween 2007 and 2009, she was a visiting
researcher at Yale University. She is currently
a post-doctoral researcher at Duke University.

Her research interests include design-for testability, concurrent testing,
fault tolerance, and reliability enhancement. She is a student member of
the IEEE.

Michail Maniatakos received the BS and MS
degrees in computer science and embedded
systems from the University of Pireaus, Greece,
in 2006 and 2007, respectively, as well as the
MS degree in electrical engineering from Yale
University, New Haven, Connecticut, in 2008,
where he is currently working toward his PhD
degree. His current research interests include
test and reliability of modern microprocessors
and computer architecture. He is a student
member of the IEEE.

Abhijit Jas received the BE degree in computer
science and engineering from Jadavpur Univer-
sity, Kolkata, India, in 1996, and the MS and
PhD degrees in electrical and computer engi-
neering from the University of Texas at Austin in
1999 and 2001, respectively. He secured the
first rank among all graduating students from the
college of engineering. He is currently working
as a component design engineer with the Design
and Technology Solutions group at Intel Cor-

poration in Austin, TX. His current focus is on scalable and modular Test
Access Mechanism architecture for System-on-a-Chip products. He has
published several papers in leading conferences and journals in the
areas of VLSI testing and fault tolerance. He mentors several academic
research projects funded by Intel. He was a corecipient of the 2001 Best
Paper Award at the VLSI Test Symposium. He serves on the technical
program committee of several IEEE conferences and workshops. He
was the program chair of the International Test Synthesis Workshop in
2009. He is a member of the IEEE.

Chandrasekharan (Chandra) Tirumurti is a
research scientist with the Design and Technol-
ogy Solutions group at Intel Corporation based
in Santa Clara, California. His current focus is on
strategic manufacturing test initiatives for main-
stream CPUs. As an alumnus of Indian Institute
of Technology, Kharagpur, India, has wide
experience in many areas of CAD and design,
including simulation, data path synthesis, defect
oriented testing, and fault tolerance. He has

published several papers in the areas of Test and Fault Tolerance. He
mentors funded research and SRC projects actively for the Intel and is
an avid cricketer. He is a member of the IEEE.

Yiorgos Makris received the diploma degree in
computer engineering and informatics from the
University of Patras, Greece, in 1995, and the
MS and PhD degrees in computer science and
engineering from the University of California,
San Diego, in 1997 and 2001, respectively. He,
then, spent over 10 years as a faculty of
Electrical Engineering and of Computer Science
at Yale University, and he is currently an
associate professor of Electrical Engineering at

The University of Texas at Dallas, where he leads the Trusted and
Reliable Architectures (TRELA) Research Group. His current research
interests include soft-error mitigation in digital circuits, machine learning-
based testing of analog/RF circuits, mitigation of hardware Trojans, as
well as test and reliability of asynchronous circuits. He serves on the
organizing and program committees of many conferences in the areas
of test and reliability and is the program chair for the 2011 Test
Technology Education Program (TTEP) of the IEEE Test Technology
Technical Council (TTTC). He is a senior member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

KARIMI ET AL.: WORKLOAD-COGNIZANT CONCURRENT ERROR DETECTION IN THE SCHEDULER OF A MODERN MICROPROCESSOR 1287

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on September 30,2020 at 18:47:55 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

