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Masking countermeasures, used to thwart side-channel attacks, have been shown to be vulnerable tomask-extraction attacks. State-
of-the-artmask-extraction attacks on theAdvanced Encryption Standard (AES) algorithm target S-Box recomputation schemes but
have not been applied to scenarios where S-Boxes are precomputed offline. We propose an attack targeting precomputed S-Boxes
stored in nonvolatile memory. Our attack targets AES implemented in software protected by a low entropy masking scheme and
recovers the masks with 91% success rate. Recovering the secret key requires fewer power traces (in fact, by at least two orders of
magnitude) compared to a classical second-order attack. Moreover, we show that this attack remains viable in a noisy environment
or with a reduced number of leakage points. Eventually, we specify a method to enhance the countermeasure by selecting a suitable
coset of the masks set.

1. Introduction

Traditionally, a cryptographic algorithm was considered
secure if it withstood classical linear and differential crypt-
analysis. A side-channel attack exploits physical characteris-
tics of a device in order to recover secret information, such
as the encryption key. Power dissipation and electromag-
netic (EM) emanation side-channel attacks are of particular
concern because of their low implementation cost, ease of
use, and effectiveness in extracting secret information [1].
Power analysis attacks work because the amount of power
(or EM emanations) dissipated by a device is dependent on
the data being processed.TheAdvanced Encryption Standard
(AES) is the standard symmetric key encryption specified by
the National Institute of Standards and Technology (NIST)

[2] and is also included in ISO/IEC 18033-3:2010 [3]. It is
widely used in electronic systems such as automated teller
machines, telecommunications, and virtual private networks.
Traditional cryptanalysis cannot break AES. However, if AES
is not carefully implemented, side-channel attacks can leak
the secret key [1, 4–8].

1.1. Related Work. Masking variables is a well-known coun-
termeasure [9–12] to protect against side-channel attacks.
Sensitive variables are concealed by random variables. Mask-
ing comes in a variety of flavors; however, we consider only
theBoolean type in this paper. Booleanmasking splits a sensi-
tive variable 𝑥 into a number (𝑑+1) of shares by the exclusive-
or (XOR) operation 𝑥 = 𝑥

0
⊕ ⋅ ⋅ ⋅ ⊕𝑥

𝑑
. Each share is processed
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independently so that themeasured leakage depends on some
random value, rather than the sensitive information. A first-
order masking scheme uses one mask, whereas a 𝑑th-order
masking scheme uses𝑑masks. A (𝑑+1)th-order attack targets
the manipulation of 𝑑 + 1 manipulated variables that jointly
depend on a secret value. A𝑑th-ordermasking scheme can be
broken by a (𝑑+1)th-order attack [13].Masking strategies can
also be classified according to the amount of entropy used;
intuitively, the more the entropy in the set of masks is, the
more secure the implementations are against side-channel
analysis. Full Entropy Masking Schemes (FEMS) draw masks
from the entiremask set to conceal sensitive information [14].
In the case of AES, each plaintext byte is masked, and so each
mask can take on all 256 values from F8

2
. LowEntropyMasking

Schemes (LEMS) instead draw masks from a reduced mask
set, a strict subset of F8

2
[14, 15].

Masking the nonlinear portions of AES, that is, the sub-
stitution boxes (S-Boxes), can be costly. The masked S-Boxes
can be calculated on the fly for each encryption [9], securely
precomputed before encryption begins [16], or generated
offline and stored in Read-Only Memory (ROM) or in Ran-
domAccessMemory (RAM) [17].The S-Box precomputation
scheme suits AES, because the 16 S-Boxes are the same
(unlike, e.g., the Data Encryption Standard—DES). However,
the S-Box precomputation method significantly increases
total encryption time. The masked S-Box is typically recal-
culated for every encryption and this S-Box recomputation
can be as long as the entire AES operation, if not longer. For
instance, the authors in [13] describe AES implementation
that takes twice as long to encrypt a plaintext versus the equiv-
alent unprotected version; 33% of the runtime is spent calcu-
lating the masked S-Box.The frequent reuse of the mask dur-
ing the S-Box precomputation allows for horizontal attacks
(deemed horizontal because multiple points along a single
power trace are analyzed [18]), which exploit the high multi-
plicity of samples (namely, 256) to recover the mask [19–21].

Computing offline the entire set of masked S-Boxes
(256 for FEMS) alleviates the extra runtime issue of S-Box
recomputation but requires at least 64 kilobytes of memory
which is beyond the capacity of embedded systems such as
smartcards. LEMS offers a tradeoff between complexity and
security. The space required for a LEMS using 16 masks out
of 256 masks is that needed to store 16 S-Boxes (namely, 4
kilobytes of storage). Removing the need for lengthy masked
S-Box precomputation, we notice that LEMS are less prone to
attacks such as those described in [19–21]. Additional masks
(as in high-order masking schemes) increase the complexity
and area overhead of the design, since these extra masks have
to be stored in memory or calculated at some point in time.
Therefore, first-order masking schemes are the mainstream
protection.

1.2. Contribution and Outline. Efficient first-order masking
schemes (FEMS using S-Box precomputation or LEMS such
as Rotating S-Box Masking [17]) reuse the same mask several
times, typically at each S-Box call; therefore, a horizontal
power analysis attack on 16 leakage points can reveal the
mask. We show that the state-of-the-art mask-extraction

attack [20] on S-Box precomputation can be retargeted
towards masked AES implementation. Indeed, the attack
presented in [19–21] is the core idea of this paper. At the time
of writing, a similar attack was published on the DPAContest
website [22] by Nakai et al. We want to stress that both works
were performed independently of each other. We therefore
add value by exploring the attack parameters in order to gain a
deeper understanding of the strength of the attack.This paper
has three main contributions. First, we show that the attack
can succeed even in the presence of noise: tiny information
on the mask can be extracted, enabling a first-order attack
in a second pass. Second, we find that this type of attack
outperforms a classical second-order attack with respect to
number of traces needed to recover the key.Third, we explore
improvements of the code employed formasks of theRotating
S-Box Masking countermeasure to make the exploitation of
the leakage more difficult.

The rest of the paper is organized as follows. Section 2
proposes the mask recovery attack and validates it using
publicly available data. Section 3 discusses the attack results
and attack parameters, compares the attack with a state-
of-the-art second-order attack [23] in noisy environments,
and proposes a countermeasure. Section 4 concludes the
paper and opens some perspectives. The Appendix exhibits a
constant Hamming weight code, but with resistance against
only first-order attacks. The countermeasure presented in
Section 3 and the tradeoff discussed in the Appendix are
two noticeable contributions with respect to the preliminary
conference version of this paper [24].

2. The Proposed Mask Recovery Attack

We describe the implemented countermeasure, power analy-
sis, and the proposed attack.

2.1. Rotating S-Box Masking. A first-order masking counter-
measure called Rotating S-Box Masking (RSM) [17] is shown
in Figure 1. The dotted boxes represent the additional steps
added to AES-256 by RSM. RSM is a Boolean-additive LEMS
and uses a total of 16 public-knowledge masks, 𝑚

0−15
∈

M ⊂ F8
2
, one for each byte of plaintext. At the start of

each encryption, a random offset 𝑗 ∈ [0 ⋅ ⋅ ⋅ 15] is drawn.
The offset can be thought of as the number of positions to
cyclically left-rotate the base set of masks, M

0
. The set of

masks with offset 𝑗 is denoted byM
𝑗
; for example, if the offset

𝑗 = 0, then the masks are deployed in the following order:
M
0
= 𝑚
0
, 𝑚
1
, 𝑚
2
, . . . , 𝑚

14
, 𝑚
15
. Thus, only 16 possibilities

exist for the order of the masks, since a shift greater than
15 simply wraps the set of masks around. The masks are
then XORed with the plaintext, and this result is XORed
with the first round key. The S-Box is replaced by 16 masked
S-Boxes, where each S-Box corresponds to an offset. This
avoids the penalty of the lengthy S-Box recomputation that
other masking schemes utilize (except masking schemes with
S-Box secure calculation [10, 12]). ShiftRows is unchanged
since the underlying data is not modified. The MixColumns
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Figure 1: AES-256 with the Rotating S-Box Masking (RSM) pro-
tection. RSM is a Low Entropy Masking Scheme. The dashed boxes
represent the operations added by RSM to AES.

operation is a special masked version. Afterwards, the next-
round masks are applied while simultaneously removing the
current-round masks, and the offset value is incremented. It
is important to stress that the data never appear unmasked.

Interestingly, an optimization of RSM in terms of speed
has been published in 2014 [25]. In this paper, we study the
genuine RSM, as implemented in the DPA Contest V4 [22].

2.2. Power Analysis. A generic power (or EM) analysis attack
has the following five steps [13]:

(1) Measure the power consumption (or EM) of a device
as it encrypts (resp., decrypts) a number of plaintexts
(resp., ciphertexts): we used EM traces provided by
the DPA Contest V4 [22], as detailed in Section 2.3.

(2) Choose an intermediate result of the target algorithm
to attack: normally, a part of the algorithm that
operates on the key is attacked. However, we wish first
to recover the used masks (of course, the masks set
is public, but not the order in which they are used),
so we target the loading of the masks, as described in
Section 2.5.

(3) Calculate the intermediate results for all secret
hypotheses: in this case, there are 16 possibilities for
the mask set, shown in matrixM in Section 2.6.

(4) Apply a hypothetical power model to the calculated
intermediate results: we used the Hamming weight
power model, as described in Section 2.6.

(5) Compare the measured power consumption to
the hypothetical power consumption to determine

the secret key (or a small part of the key): this is
explained in more detail in Section 2.6.

This attack is performed in two stages: (1) the preprocessing
mask recovery stage and (2) CPA attack to recover the key.
The basic idea is to recover an estimate of the masks from
each power trace and then launch a horizontal (attacking
many samples from a single trace) CPA attack against the
16 possible combinations of the mask. Recovering the masks
allows us to undo the countermeasure so thatwe can correctly
predict some intermediate value, for example, the S-Box
output. Thus, a second CPA attack, vertical (attacking the
same time instance across many traces) this time, reveals the
key. Both stages are first-order attacks.

2.3. Experimental Setup. The AES-256 RSM is implemented
on anAtmelATMega-163 smartcard connected to a SASEBO-
W board [22]. EM traces were captured using a Langer EM
near-field probe RF-U 5-2, sampled at 500MS/s by a Lecroy
Waverunner 6100A oscilloscope.

2.4. Leakage Detection. In order to attack efficiently, it is
important to precisely locate the leaking samples in the traces:
this is the purpose of the leakage detection phase.

We use Normalized Interclass Variance (NICV) [26],
which is an analysis of variance (ANOVA) 𝐹-test, to identify
leakage in power traces.TheNICV relies on publicly available
information (such as known plaintexts or ciphertexts). Let 𝑇
be the set of power traces and let 𝑋 be the corresponding
set of plaintext bytes. The NICV is calculated as NICV =

Var(E[𝑇 | 𝑋])/Var(𝑇), where E is the expectation operator,
Var is the variance operator, and 0 ⩽ |NICV| ⩽ 1. It is thus a
normalized indicator of leakage, which does not require the
knowledge of the key. Figure 2 shows the NICV calculated
for each plaintext byte using 10,000 traces and reveals useful
information to the attacker.With knowledge of the algorithm,
he/she can distinguish when different operations take place.
The 16 peaks in Figure 2(a) from samples 0 to 75, 000 suggest
the AddRoundKey operation, while the second set of 16
peaks beginning at sample point 105 signifies the SubBytes
operation. An attacker can use this knowledge to extract
leakage samples that belong to a certain operation.

The attacker now has a rough idea of the time frame
when each operation takes place and can even determine the
amount of time to process each byte by examining Δ, the dis-
tance between the peaks in Figure 2(b). Figure 2(a) shows that
each plaintext byte is operated on only once before it enters
the S-Box; that is, there is only one time interval when leakage
occurs for each plaintext byte before the S-Box. Therefore,
the plaintext loading, masking operation, and AddRoundKey
must all take place within the same time interval. Moreover,
the order and morphology of each NICV curve tell the
attacker that the same set of operations is applied 16 times in
a row, beginning with byte 0 and ending with byte 15. Conse-
quently, the attacker now has an idea about the mask order.

2.5. Extract Leaky Samples. The attacker then chooses a
window 𝑊 of width Δ and extracts possible candidates for
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Figure 2: NICV for each plaintext byte over 10, 000 traces. (a) AES operations are identifiable. (b) NICV for the first 3 bytes of plaintext. Each
byte exhibits similar characteristics, which implies the operation taking place a number times, but each time processing different data.

the time samples when each mask is loaded.The attacker can
use the NICV (or some other leakage detection tool [26] such
as Sum-of-Square Differences (SOSD) or Sum-of-Square
𝑡-test (SOST)) to minimize the amount of points he/she will
attack by considering only leakage measurements above a
certain threshold (determined empirically), or he/she can
simply attack every point in the window. The attacker selects
𝜏 samples to attack from a single power trace and stores their
leakage measurements, V, into the first column of the 𝜏 × 16

matrix V. Each column of V is then filled in by extracting
the leakage measurement located exactly Δ samples further
from the previous measurement:

V =

[

[

[

[

[

[

[

𝑡
0

𝑡
0
+ Δ 𝑡

0
+ 2Δ ⋅ ⋅ ⋅ 𝑡

0
+ 15Δ

𝑡
1

𝑡
1
+ Δ 𝑡

1
+ 2Δ ⋅ ⋅ ⋅ 𝑡

1
+ 15Δ

.

.

.

.

.

.

.

.

. d
.
.
.

𝑡
𝜏−1

𝑡
𝜏−1

+ Δ 𝑡
𝜏−1

+ 2Δ ⋅ ⋅ ⋅ 𝑡
𝜏−1

+ 15Δ

]

]

]

]

]

]

]

. (1)

2.6. Recover the Mask Offset. The next step is to launch a
modified CPA attack on the subtraces in V. Since we do
not know in which order the masks were loaded, we guess
every combination, as shown in the 16 × 16 matrix M =

[M
0
⋅ ⋅ ⋅M

15
]
⊤. Each column of M corresponds to an offset

applied to the base set of masksM
0
, where

M =

[

[

[

[

[

[

[

𝑚
0

𝑚
1
𝑚
2
⋅ ⋅ ⋅ 𝑚

15

𝑚
1

𝑚
2
𝑚
3
⋅ ⋅ ⋅ 𝑚

0

.

.

.

.

.

.

.

.

. d
.
.
.

𝑚
15

𝑚
0
𝑚
1
⋅ ⋅ ⋅ 𝑚

14

]

]

]

]

]

]

]

. (2)

We apply a Hamming weight power model 𝑤
𝐻
(⋅) to the

mask matrix M, which is generally a good model for micro-
processors [13, 27]. The hypothetical power consumption is
H = 𝑤

𝐻
(M). The next step is to compare the modeled

power consumption with the measured power consumption.
If we assume the power model to be linear, for example,
Hamming weight or Hamming distance, a natural choice for
the attack is the correlation coefficient. Correlation power
analysis (CPA) evaluates the amount of correlation between

a set of measured power traces 𝑇 and a model of the key-
dependent device leakage, 𝐿 [5], and is calculated for every
time sample. Pearson’s correlation coefficient is calculated as
𝜌(𝑇, 𝐿) = cov(𝑇, 𝐿)/(𝜎

𝑇
𝜎
𝐿
); however, this can be difficult

(or impossible) to compute, and so we instead use an
estimate 𝜌 (where |𝜌| ⩽ 1) which is calculated as ∑𝑛−1

𝑖=0
(𝑡
𝑖
−

𝑡
𝑖
)(𝑙
𝑖
− 𝑙
𝑖
)/√∑

𝑛−1

𝑖=0
(𝑡
𝑖
− 𝑡
𝑖
)
2
∑
𝑛−1

𝑖=0
(𝑙
𝑖
− 𝑙
𝑖
)
2 for the set of traces

𝑇 (containing 𝑛 traces 𝑡
𝑖
) and hypothetical power model

𝐿, containing 𝑛 hypothetical power consumption values 𝑙.
Wrong guesses for the key will have correlations close to 0,
while the correct guess will have |𝜌| close to 1 (assuming the
power model is accurate). We calculate 𝜌(V,H), which leads
to 16 correlation coefficients. Each correlation coefficient
corresponds to a mask offset. By choosing the location where
max 𝜌(V,H) occurs, we can guess the offset. The overall
procedure is exhibited in Algorithm 1. Using the offset guess,
we can predict the S-Box output and deploy a CPA attack to
recover the key.

3. Results

This attack is feasible since the device leaks the Hamming
weight of the masks when they are loaded from memory.
Once the masks are recovered, extracting the key is straight-
forward. Our attack requires 10.1 traces to fully recover the
key, while an attack on unprotected implementation requires
9.9 traces and can be considered as a lower bound regarding
the number of traces. Our attack is close to that bound;
the reason that we need slightly more traces is because we
do not always correctly guess the offset. Comparing our
offset guesses with the actual mask offsets, we were able to
successfully guess the offset 91% of the time. Recall that the
estimation error of the mean in a Bernoulli process is 𝑝(1 −
𝑝)/𝑛rep, where 𝑝 = 0.91 and 𝑛rep is the number of repetitions;
namely, 𝑛rep = 10, 000. The success rate is estimated over
10, 000 traces with accuracy ≈ 10

−5.

3.1. Mask Recovery Success Rate. Figure 4(a) shows the
success rate of recovering the mask for various signal-to-
noise ratios (SNRs). The probability of correctly guessing the
offset at random is 1/16, or 6.25%: we exceed this value for all
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input: Window when masking is thought to occur𝑊
A single power trace 𝑡
Length of masking operation Δ

Mask matrixM
Output: The mask setM

𝑔
and the mask offset 𝑔

(1) 𝜏 ← ChooseSamples(𝑊); // leakage Detection

(2) 𝑟 ← 0; // row index for subtrace matrix V

(3) for 𝑖 ∈ 𝜏 do
(4) for 𝑗 ← 0 to 15 do
(5) 𝑙𝑘𝑔 ← 𝑡(𝑖 + 𝑗 ⋅ Δ); // measured leakage at sample i

for byte j

(6) V[𝑟, 𝑗] ← 𝑙𝑘𝑔; // build subtrace matrix

(7) end
(8) 𝑟 ← 𝑟 + 1; // increment row index

(9) end
(10)H ← 𝑤

𝐻
(M); // mask Hamming weight

(11) return 𝑔 ← argmax 𝜌(V,H); // recover the mask offset

(12) return M
𝑔
← M[:, 𝑔]; // guessed mask set

Algorithm 1: Mask recovery.

M
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 co

rr
ec

tly
 g

ue
ss

ed
 (%
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Figure 3: Mask recovery success rate as a function of number of
masks attacked.

SNRs > 2
5 (i.e., 𝜎noise > 30). Therefore, using our method is

preferred for naively guessing for most noise levels.

3.2. Tweaking the Algorithm Parameters. We examine how
the algorithm parameters affect the mask recovery success
rate. If only one mask (out of a possible 16) is attacked,
the success rate equates to the expected value for naively
guessing themask. Indeed, with 1mask, there is no “rotation”
possible; hence, the mask is “horizontally indistinguishable.”
Thus, an attacker gains no advantage by trying to recover
the mask by attacking only one sample, since the extra
computation time does not lead to an increase in success
rate. However, attacking 2 masks, that is, {𝑚

0
, 𝑚
1
}, allows

the pair to be distinguished with 11% success rate, slightly
outperforming naive guessing. As shown in Figure 3, the
success rate increases linearly as the number of masks
increases, demonstrating the positive relationship between
mask entropy and number of masks attacked.

The attacker can also vary the width of the window where
he/she suspects the masking operation to occur. Enlarging
the window linearly increases the computational effort; that

is, increasing the width by 𝑛 samples leads to an attack
complexity of O(𝑛). Compare this to a second-order attack,
where an increase in 𝑛 samples requires 𝑛(𝑛−1)/2 calculations
[28], or complexity O(𝑛2).

3.3. Comparison with State of the Art in the Presence of Noise.
Noise increases the difficulty of carrying out a successful
power attack; that is, an attacker is required to measure more
power traces. Common sources of noise include electronic
noise from other circuit components, measurement errors,
and clock jitter [13, 27]. Most of the noise in cryptographic
devices can be approximated by a normal distribution
∼ N(0, 𝜎

2
) [13]. In order to determine the influence of noise

on our attack, we artificially corrupt the power traces by
introducing additive white Gaussian noise ∼ N(0, 𝜎

2
).

We compare our attack with a state-of-the-art second-
order attack, namely, the bivariate attack, using a centered
product as combination function in [23]. This type of attack
is ideal for first-order masking schemes implemented in
software and was proven to be optimal in the presence of
noise [23].

Figure 4(b) shows the evolution of global success rate
(GSR) as a function of number of traces attacked and signal-
to-noise ratio (SNR). GSR is the probability to recover the full
key. We define an attack as being successful if GSR ⩾ 80%;
conversely, we define a failed attack if the GSR fails to reach
80% within 10,000 traces. The best-case attack scenario is
SNR = 2.689; that is, no artificial noise is added.The best-case
mask recovery attack requires 10 traces to succeed, whereas
the best-case second-order attack does not succeed until 300
traces. The mask recovery attack is more resilient to noise
since, for a given number of power traces, the success rate
will be higher for all SNRs. Regardless of the noise level, our
mask recovery attack (empirically) reveals the key faster than
a traditional bivariate attack.
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Figure 4: (a) Mask recovery success rate for 10,000 traces. (b) Global success rate (GSR) versus number of traces for different noise levels.
The mask recovery attack outperforms the second-order attack by at least two orders of magnitude at every SNR.

The mask recovery attack outperforms the second-order
attack by about two orders of magnitude for SNR ⩾ 0.289.
The second-order attack fails for SNR < 0.289, whereas the
mask recovery attack succeeds for 0.035 ⩽ SNR ⩽ 2.689.
The lower performance of the second-order attack can be
attributed to the leakage combination function. Indeed, by
combining multiple leakages, the noise is amplified [23]. By
choosing an optimal prediction function, the noise ampli-
fication can be minimized, but much more traces must be
analyzed for a successful attack as shown in Figure 4(b).

3.4. How to Defend against this Attack? The mask set M is a
linear code of parameters [8, 4, 4] and of weights enumerator
polynomial 𝑋

8
+ 14𝑋

4
𝑌
4
+ 𝑌
8, which means that one

codeword has a Hamming weight of 0, another one has a
Hamming weight of 8, and the remaining 14 have Hamming
weights of 4. One possible solution to thwart this attack is
to generate all the masks with the same Hamming weight
(called constant-weight codes). In this case, every column
in the hypothetical power matrix H would be identical. If
this constant-weight code strategy is applied, the designer
must carefully consider which masks are chosen, so that the
amount of leaked information is minimized. The constant-
weight code strategy can defend against our attack and
against first-order attacks only. No set of constant-weight
code masks can defend against second-order (or higher)
attacks as proved in the Appendix. This only applies to 8-bit
software implementation, that is, a typical smartcard; we did
not consider other architectures.

The constant-weight code strategy assumes all bits in a
computer word leak equally, which is not realistic. Thus, we
propose an alternative countermeasure that requires no extra
resources, defends against mask-recovery attacks, and pro-
vides the same protection against first-order attacks as plain
RSM. The strategy consists in (approximately) balancing the
Hamming weights of the codewords belonging to M. It has
been proven in [29] that all the cosets𝑦⊕M (for𝑦 ∈ F8

2
) of the

studied codeM provide the same level of security, regarding

monovariate attacks. Three options exist for the weight dis-
tribution. The probability that a randomly chosen element of
the code hasHammingweight ℎ is given below, for ℎ ∈ ⟦0, 8⟧:

(1) (1/16, 0, 0, 0, 14/16, 0, 0, 0, 1/16) if 𝑦 ∈ M.

(2) (0, 1/16, 0, 7/16, 0, 7/16, 0, 1/16, 0) if there is one
codeword of weight 1 in 𝑦 ⊕M.

(3) (0, 0, 4/16, 0, 8/16, 0, 4/16, 0, 0) if there is one code-
word of weight 2 in 𝑦 ⊕M.

This means that F8
2
can be partitioned in three partitions:

C
1
, C
2
, and C

3
. The distribution of 𝑤

𝐻
(𝑦 ⊕ M) is given in

Figure 5, along with some noncentral moments (of degrees 1,
2, 3, and 4).

Now, by the property of the code, the variance of the
Hamming weights is the same in those three cases. Namely, it
is equal to 2. Indeed, the expectation of theHammingweights
is 4 in all four cases.Thus, the expectation of the square of the
centered Hamming weights is, respectively, equal to

2 =

1

16

× (−4)
2
+

14

16

× 0 +

1

16

× (4)
2

=

1

16

× (−3)
2
+

7

16

× (−1)
2
+

7

16

× (1)
2
+

1

16

× (3)
2

=

4

16

× (−2)
2
+

8

16

× 0 +

4

16

× (2)
2
.

(3)

Still, it is clear that if there is a leakage in “SPA” (Simple
Power Analysis), then it is more advantageous to use the code
such that the Hamming weight distribution is taking only
values 2, 4, and 6. So, for instance, an improvement can be
obtained by using

M
󸀠
= {0x02, 0x0d, 0x34, 0x3b, 0x51, 0x5e, 0x67,

0x68, 0x97, 0x98, 0xa1, 0xae, 0xc4, 0xcb, 0xf2,

0xfd}

(4)
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Figure 5: Distribution ℎ ∈ ⟦0, 8⟧ of the Hamming weights of the cosets 𝑦 ⊕M of the RSM codeM.

instead of

M = {0x00, 0x0f, 0x36, 0x39, 0x53, 0x5c, 0x65,

0x6a, 0x95, 0x9a, 0xa3, 0xac, 0xc6, 0xc9, 0xf0,

0xff} .

(5)

The variance of the code has not changed, only the amplitude
of the patterns. Whereas the original code had a range of
amplitudes from 0 to 8, the new code has a range from 2 to
6. Thus, in the presence of noise, the SNR is reduced by 50%,
making it more difficult to recover the mask.

This is reflected in Figure 5 by the new proposed affine
code M󸀠 = M ⊕ 0x2 (see (4)) having a smaller kurtosis
(4th-degree moment) than linear codeM (see (5)). Reducing
the first (nonzero) correlating moment is indeed the strategy
of state-of-the-art side-channel attacks on masking schemes
[30].

4. Conclusion and Perspectives

We demonstrated how to recover a set of masks used in
software implementation of AES with RSM. Our attack
outperforms a traditional bivariate attack by two orders of
magnitude and can succeed even in heavy noise. We show
how the attack parameters affect the success rate; namely,
attacking just 2 (out of 16) yields a better mask recovery
success rate versus naive guessing. It is not enough to say
implementation is first-order (or second-order, etc.) secure.
Indeed, we showed that the countermeasure that could stop
our attack can only defend against traditional first-order
attacks. Further avenues of research involve empirically vali-
dating the countermeasure and extending this attack to other
masking schemes (including higher-ordermasking schemes).
Besides, it is interesting to study the security gain obtained by
stacking other protections, such as S-Boxes shuffling, on top
of RSM. Similar directions can be found in this prospective
document [31] which gives the roadmap of the forthcoming
DPA Contest V4 contests.

Appendix

Constant-weight codes are codes where all codewords share
the same Hamming weight. They are also called 𝑚 of 𝑛

codes. Of particular interest are balanced codes, introduced
by Knuth in 1986 [32], since they fit the basic requirement of
masking. A special case for codes of length 𝑛 = 8 is 6b/8b
codes [33], used in serial communication lines to maintain
DC balance in a communications system. However, in this
6b/8b code, there are 64 codewords, which is too large. Our
requirements on the code can be summarized as follows: (1)
the codewords must all have the same weight; (2) the code
must have a large dual distance (see requirement explained in
[34, 35]); (3) the codemust have a size less than or equal to 16
(the number of AES substitution boxes). Nonzero balanced
codes are nonlinear. Indeed, a linear code contains the null
vector.Thus, the codewords have zero weight, and so the only
linear balanced code is {0}.

Care must be taken that, in this appendix, “balanced” can
have two meanings depending on the context:

Horizontally: it can be that each codeword contains
an equal number of zero and one bits.

Vertically: each component (or tuples of components)
is represented uniformly.

It is possible to find balanced codes with size two. For
instance, on 𝑛 = 8 bits, the code made up of codewords
(01010101)

2
and (10101010)

2
is balanced. This is equivalent

to saying that the code has dual distance at least 2. However,
its dual distance is exactly 2: it allows protection against
first-order attacks and not against zero-offset second-order
attacks. The pair of two components is not balanced. For
example, the two least significant bits of the codewords are
(01)
2
and (10)

2
: the values (00)

2
and (11)

2
aremissing. In fact,

a code of dual distance 3must have at least a size 4. We need
first a lemma about codes of length 𝑛with constant weight𝑤.

Lemma A.1. Let 𝐶 be a code of length 𝑛 and constant weight
𝑤. If 𝐶 is balanced, then 𝑛 is even and 𝑤 = 𝑛/2.
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Proof. A balanced code is such that, for all 𝑎 of unitary
Hamming weight (𝑤

𝐻
(𝑎) = 1), ∑

𝑐∈𝐶
(−1)
𝑎⋅𝑐

= 0. Now,

∑

𝑎/𝑤𝐻(𝑎)=1

∑

𝑐∈𝐶

(−1)
𝑎⋅𝑐

= ∑

𝑐∈𝐶

∑

𝑎/𝑤𝐻(𝑎)=1

(−1)
𝑎⋅𝑐

= ∑

𝑐∈𝐶

∑

𝑎/𝑤𝐻(𝑎)=1

(1 − 2 (𝑎 ⋅ 𝑐))

= ∑

𝑐∈𝐶

(𝑛 − 2 ∑

𝑎/𝑤𝐻(𝑎)=1

(𝑎 ⋅ 𝑐))

= |𝐶| (𝑛 − 2𝑤) .

(A.1)

This sum is also equal to zero, so we have 𝑛 = 2𝑤.

We have this practically relevant result.

Proposition A.2. A constant Hamming weight binary code
has dual distance strictly less than 3.

Proof. Let 𝑓 be the indicator of a constant Hamming weight
code 𝐶. We define the Fourier transform of 𝑓 as ̂

𝑓(𝑎) =

∑
𝑥
𝑓(𝑥)(−1)

𝑎⋅𝑥. If 𝐶 has dual distance 3, then, for all 𝑖, 𝑗 =

1, . . . , 𝑛, 𝑖 ̸= 𝑗, we have ̂
𝑓(𝑒
𝑖
⊕𝑒
𝑗
) = 0, where 𝑒

𝑖
is the vector of

Hamming weight 1 in which the only 1 is at coordinate 𝑖. So
we have ∑𝑛

𝑖=1
̂
𝑓(𝑒
𝑖
⊕ 𝑒
𝑗
) =

̂
𝑓(0) = |𝐶|, which is also

∑

𝑥∈𝐶

(−1)
𝑥𝑗

𝑛

∑

𝑖=1

(−1)
𝑥𝑖
= ∑

𝑥∈𝐶

(−1)
𝑥𝑗
(𝑛 − 2𝑤

𝐻
(𝑥)) = 0. (A.2)

Therefore, 𝐶 is empty.

Proposition A.2 says that we can have constant Hamming
weight codewords, but simply with protection against first-
order attacks.

Example A.3 (𝑛 = 8 and 𝑤 = 4). The following (nonlinear)
code has parameters (8, 16, 2). It has constant Hamming
weight 𝑛/2 = 4 and is balanced (more precisely, it has dual
distance 2):

𝐶 = {0x0f, 0xf0, 0x33, 0xcc, 0x55, 0xaa, 0x66,

0x99, 0xe1, 0x1e, 0xd2, 0x2d, 0xb4, 0x4b,

0x78, 0x87} .

(A.3)

In order to better highlight the two dimensions of balancing
of this code, we represent it in Table 1 in binary and add a
“sum of bits” column and line.

Thus, this code can protect as well against

(i) horizontal side-channel analyses, since all codewords
have the sameHammingweight (namely, 𝑛/2 = 4 bit),

(ii) vertical side-channel analyses, since each component
is statistically balanced (i.e., each bit as probability
8/16 = 1/2).

Table 1: Horizontally and vertically balanced codewith length 8 and
16 codewords.

Components Sum of bits
8 7 6 5 4 3 2 1

Codewords

0 0 0 0 1 1 1 1 4
1 1 1 1 0 0 0 0 4
0 0 1 1 0 0 1 1 4
1 1 0 0 1 1 0 0 4
0 1 0 1 0 1 0 1 4
1 0 1 0 1 0 1 0 4
0 1 1 0 0 1 1 0 4
1 0 0 1 1 0 0 1 4
1 1 1 0 0 0 0 1 4
0 0 0 1 1 1 1 0 4
1 1 0 1 0 0 1 0 4
0 0 1 0 1 1 0 1 4
1 0 1 1 0 1 0 0 4
0 1 0 0 1 0 1 1 4
0 1 1 1 1 0 0 0 4
1 0 0 0 0 1 1 1 4

Sum of bits 8 8 8 8 8 8 8 8
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[5] É. Brier, C. Christophe, and F. Olivier, “Correlation power
analysis with a leakage model,” in Cryptographic Hardware and
Embedded Systems—CHES 2004, M. Joye and Q. Jean-Jacques,
Eds., vol. 3156 of Lecture Notes in Computer Science, pp. 16–29,
Springer, Heidelberg, Germany, 2004.

[6] A. Bogdanov, “Multiple-differential side-channel collision
attacks on AES,” in Cryptographic Hardware and Embedded
Systems—CHES 2008, E. Oswald and P. Rohatgi, Eds., vol.
5154 of Lecture Notes in Computer Science, pp. 30–44, Springer,
Berlin, Germany, 2008.

[7] A. Moradi, O. Mischke, and T. Eisenbarth, “Correlation-
enhanced power analysis collision attack,” in Cryptographic
Hardware and Embedded Systems, CHES 2010, S. Mangard and
F.-X. Standaert, Eds., vol. 6225 of Lecture Notes in Computer
Science, pp. 125–139, Springer, Berlin, Germany, 2010.

[8] B. Gierlichs, L. Batina, P. Tuyls, and B. Preneel, “Mutual infor-
mation analysis,” in Cryptographic Hardware and Embedded
Systems—CHES 2008, E. Oswald and P. Rohatgi, Eds., vol. 5154
of Lecture Notes in Computer Science, pp. 426–442, Springer,
Heidelberg, Germany, 2008.

[9] E. Prouff and M. Rivain, “A generic method for secure sbox
implementation,” in Information Security Applications, S. Kim,
M. Yung, and H.-W. Lee, Eds., vol. 4867 of Lecture Notes
in Computer Science, pp. 227–244, Springer, Berlin, Germany,
2007.

[10] M. Rivain and E. Prouff, “Provably secure higher-ordermasking
of AES,” in Cryptographic Hardware and Embedded Systems,
CHES 2010, S. Mangard and F.-X. Standaert, Eds., vol. 6225 of
LectureNotes in Computer Science, pp. 413–427, Springer, Berlin,
Germany, 2010.

[11] E. Prouff, C. Giraud, and S. Aumônier, “Provably secure S-box
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