
5

MAGIC: Malicious Aging in Circuits/Cores

NAGHMEH KARIMI, New York University
ARUN KARTHIK KANUPARTHI, Security Center of Excellence, Intel Corporation
XUEYANG WANG, New York University
OZGUR SINANOGLU, New York University Abu Dhabi
RAMESH KARRI, New York University

The performance of an IC degrades over its lifetime, ultimately resulting in IC failure. In this article, we
present a hardware attack (called MAGIC) to maliciously accelerate NBTI aging effects in cores. In this
attack, we identify the input patterns that maliciously age the pipestages of a core. We then craft a program
that generates these patterns at the inputs of the targeted pipestage. We demonstrate the MAGIC-based
attack on the OpenSPARC processor. Executing this program dramatically accelerates the aging process
and degrades the processor’s performance by 10.92% in 1 month, bypassing existing aging mitigation and
timing-error correction schemes. We also present two low-cost techniques to thwart the proposed attack.

Categories and Subject Descriptors: B.8 [Performance and Reliability]; C.1 [Processor Architecture];
K.6.5 [Management of Computing and Information Systems]: Security and Protection

General Terms: Security, Design, Performance

Additional Key Words and Phrases: Hardware security, malicious aging acceleration, NBTI aging

ACM Reference Format:
Naghmeh Karimi, Arun Karthik Kanuparthi, Xueyang Wang, Ozgur Sinanoglu, and Ramesh Karri. 2015.
MAGIC: Malicious aging in circuits/cores. ACM Trans. Architec. Code Optim. 12, 1, Article 5 (April 2015),
25 pages.
DOI: http://dx.doi.org/10.1145/2724718

1. INTRODUCTION

With shrinking feature size and increasing complexity of microarchitectures, relia-
bility of integrated circuits (ICs) has become a main concern for IC designers. The
circuitry composing an IC degrades over its lifetime, ultimately resulting in IC failure
[Sinanoglu et al. 2013]. Performance degradation of an IC due to aging is influenced by
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the operating conditions of the circuit including temperature, voltage bias, and current
density [Feng et al. 2011]. Negative-Bias Temperature-Instability (NBTI) [Kufluoglu
and Alam 2007; Chakravarthi et al. 2004; Lu et al. 2009], Hot Carrier Injection (HCI)
[Saha et al. 2006], and gate Oxide Breakdown (OB) [Yeoh and Hu 1998; Rodriguez
et al. 2003] are a few runtime circuit degradation mechanisms.

NBTI occurs when traps are generated at the Si–SiO2 interface when a negative volt-
age is applied to a PMOS device [Bhardwaj et al. 2006]. NBTI increases the magnitude
of threshold voltage (Vth) of the PMOS transistor under stress and reduces the drain
current through it, and hence increases the delay through the distressed PMOS tran-
sistor. At the circuit level, this manifests as circuit timing and functional failure [Khan
et al. 2011]. As VLSI technology scales, NBTI significantly contributes in degrading
circuit reliability [Roy and Pan 2014; Liu and Chen 2014]. In practice, NBTI is becom-
ing an increasingly important reliability issue as the gate oxide gets thinner [Alam
et al. 2007; Mahapatra et al. 2006]. High-k gate dielectrics have worsened the effects of
NBTI on circuit performance [Wang et al. 2010]. In practice, not only planar MOSFET
devices but also FinFETs experience temporal NBTI performance degradation [Kükner
et al. 2014; Wang et al. 2012].

Two prevalent theories, Reaction-Diffusion (R-D) and Trapping/Detrapping (T-D),
have been proposed in the literature to explain NBTI. The R-D model explains the NBTI
phenomenon as the breaking and rebonding of hydrogen–silicon bonds at the silicon–
gate dielectric interface of PMOS devices [Schroder 2007; Cha et al. 2014]. The T-D
model considers a number of defect states with different energy levels as well as capture
and emission time constants. In the T-D model, the threshold voltage increases when a
trap captures a charge carrier from the channel of a PMOS device [Sutaria et al. 2015;
Grasser et al. 2010]. In this article, to evaluate the NBTI effects, we considered the
R-D model presented in Wang et al. [2010].

Guardbanding, gate sizing, voltage tuning (changing Vdd or Vth at runtime), and
body biasing are among the methods used to mitigate performance degradation due to
NBTI [Abella et al. 2007; Vattikonda et al. 2006; Bild et al. 2009; Lee and Kim 2011].
Modern processors integrate error detection and recovery circuits to protect against
timing errors, parametric variations, aging, and voltage drops [Sarangi et al. 2008;
Ernst et al. 2003; Bowman et al. 2011]. Aging-aware scheduling [Tiwari and Torrellas
2008] has been proposed to delay or hide the effect of aging in multicore processors.

1.1. Malicious Aging in Circuits/Cores Attack

While IC designers put tremendous effort into reducing aging effects and enhancing
the reliability of electronic chips, adversaries may aim at accelerating the wearout of
these chips. In practice, a malicious adversary may accelerate the aging process of an
IC and thus shorten the device’s lifespan. This type of hardware security threat results
in denial of service to the IC user and may cause catastrophic failure of the system.

In this article, we focus on accelerating processor failures. In particular, we focus on
NBTI effects and present a framework to wear out processors. The proposed attack is
based on the observations that circuit delay is input dependent and a circuit exhibits
its worst-case delay for specific input patterns [Wolrich et al. 1984]. This article aims to
identify those input patterns in a processor and build instructions that generate such
patterns.

Executing a malicious program that consists of these instructions on devices such
as mobile phones, tablets, and PCs accelerates IC failure and causes the chip to fail
sooner than expected (i.e., shortens the chip’s normal lifetime).

Assume that a processor has a service life of Y months (typically 60 months). Initially,
the processor has a critical path delay equal to C0. As the processor is used, the critical
path delay gradually increases due to aging. Thereby, after a period of t = Y, the critical
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Fig. 1 Impact of accelerated aging on critical path delay and illustration of MAGIC-based attack.

path delay increases to T0 (as shown in Figure 1). For the processor to be usable during
its expected lifetime, it needs to be clocked at a frequency no higher than f0 = 1/T0.
Thus, the designers add a guardband G = T0 − C0 to prevent any errors due to aging.
The guardband is usually within 5% to 10% of the processor bin frequency. However,
when processor aging is intentionally accelerated, the critical path delay reaches T0 at
time t = M months, where M � Y.1

1.2. Key Contributions

We present a circuit microarchitecture attack that maliciously accelerates aging in a
core (MAGIC). To the best of our knowledge, no prior work has presented a framework
to accelerate aging in the open literature. We demonstrate the MAGIC-based attack on
the OpenSPARC processor. The key contributions in this article are:

—Adapt VLSI test techniques to obtain the input patterns that accelerate the NBTI
aging of a core.

—Construct a MAGIC program that accelerates aging.
—Maliciously age the execute stage (E stage) in the OpenSPARC T1 processor

[Oracle 2006a]. When the MAGIC program is executed, the performance of the E
stage degrades by 10.92%, 13.25%, and 16.8% after 1, 2, and 6 months, respectively,
bypassing protection offered by existing timing error correction techniques, thereby
causing the processor to fail. The degradation has been evaluated by using the R-D
NBTI model presented in Wang et al. [2010].

—Propose two low-cost approaches to thwart the proposed attack. These schemes are
obtained by understanding the operation of the MAGIC attack.

The rest of the article is outlined as follows. Background on NBTI aging and its effect
on primitive logic gates is provided in Section 3. Section 4 presents the circuit-level
MAGIC-based attack and discusses its impact on IC reliability. The microarchitecture-
level MAGIC-based attack, the methodology to maliciously accelerate aging of cores and
craft assembly-level instructions from the processor’s instruction set, is described in
Section 5. Section 6 presents and discusses the experimental results. Section 7 explains
how MAGIC can bypass defenses that detect timing errors in digital circuits. Section 8
presents two microarchitecture-level techniques to thwart malicious aging. Section 9
discusses the practicality of the attack. Finally, Section 10 concludes the article.

2. ATTACK SCENARIOS AND THREAT MODEL

2.1. Attack Scenarios

Attack Scenario 1 (Warranty Attack): A consumer C purchases a smartphone man-
ufactured by company X. The warranty period for this device is W months. Consumer

1As will be shown in Section 6, M can be as small as 1 month.

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 1, Article 5, Publication date: April 2015.



5:4 N. Karimi et al.

Fig. 2. Processor design flow (solid box) and the MAGIC-based attack (dotted box). Using CAD tools, the
attacker identifies the critical path and the input patterns that put the gates in this path under maximum
stress. After processor ISA analysis, the attacker identifies assembly-level instructions that generate these
input patterns and builds the MAGIC program. Execution of this program accelerates processor aging and
causes products to fail sooner than their normal lifetime.

C uses the device for a while, but when the device is still under warranty, a physical
damage occurs (e.g., scratch on the LCD). C wants to get a new phone but the war-
ranty does not cover physical damage. C downloads the malicious program and the
OS from forums such as Cyanogenmod [Cyanogen], executes the malicious program to
intentionally wear out the device, and returns the device to X to get a new one.

Attack Scenario 2 (Planned Obsolescence): A malicious device manufacturer M
makes previously sold devices very slow in order to encourage (force) its customers to
buy an upgraded recently released device. In this scenario, company M sends a patch to
its customers shortly before releasing a new device. Installing such patch maliciously
makes the hardware slow and the users feel compelled to buy the recently released
hardware [Rosoff 2012; Worstall 2013; Rampell 2013; Skipworth 2012; Mims 2013].

Attack Scenario 3 (State-Sponsored Hardware Backdoor): A country G pur-
chases some military equipment (e.g., radars, antiaircraft weapons, satellites, commu-
nication equipment) from a company Y in another country. The company Y maliciously
inserts hardware backdoors on this equipment to be able to control the equipment re-
motely and execute the malicious program on it. The equipment is installed in country
G to take care of boarders even when there is no war. Company Y controls the equip-
ment remotely and maliciously accelerates aging and eventually causes the military
equipment to stop working properly.

In the first scenario, the user wants to make the device malfunction, while in the lat-
ter scenarios, the manufacturing company aims to wear out the device. These scenarios
highlight the proposed attack as a serious concern. In the warranty attack scenario,
the attack may not impose a considerable financial loss to the victim manufacturer, but
even wearing out a few devices may jeopardize the reputation of the manufacturer. In
the planned obsolescence scenario, the attacker aims at increasing its financial benefit
by encouraging its customers to buy the latest device. Finally, in the hardware backdoor
attack, the attacker intentionally jeopardizes the security of another country. Both the
planned obsolescence and hardware backdoor scenarios aim at making the hardware
stop working properly, but in these attacks, the malicious aging is hidden from the user
(i.e., pretending that the hardware is normally aged and hiding that the aging is due
to an external intervention).

2.2. Threat Model

Figure 2 shows the processor design flow (solid box) and depicts how the MAGIC-
based attack is launched during this process (dotted box). As shown, the design is
synthesized and the netlist and layout are generated. The layout is sent to the foundry
for fabrication. After IC testing, the fault-free ICs are shipped.
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The MAGIC-based attack can be implemented by different players. In the warranty
attack scenario, we have two major players: an expert attacker and a nonexpert ma-
licious user. An expert attacker is capable of using CAD and VLSI testing tools. He
or she also has expertise in processor microarchitecture. His or her goal is to create
the malicious program and distribute it to several malicious users in order to create
widespread damage. The expert attacker is an individual attacker who either profits by
selling the malicious program or is hired by a company that competes with the manu-
facturer of the targeted device. Even wearing out a few such devices may jeopardize the
reputation of the manufacturer. On the other hand, the nonexpert malicious user has
no expertise in CAD, VLSI, or processor microarchitecture.2 The malicious user’s goal
is to damage his or her device before the warranty period expires and get a new device
from the design company. The warranty attack is launched in four steps as follows:

—Step 1: An expert attacker obtains the netlist of the processor through a mali-
cious insider in the design house or by reverse engineering the manufactured chip3

[Torrance and James 2011].
—Step 2: The expert attacker identifies the critical path of the processor and obtains

input patterns that place this path under NBTI stress.
—Step 3: The expert attacker analyzes the processor Instruction Set Architecture

(ISA), crafts instructions that generate the previously mentioned patterns, and cre-
ates a malicious program using them.

—Step 4: Finally, the expert attacker uploads the malicious program to the Internet to
forums such as Crackberry or Cyanogenmod, from where several nonexpert malicious
users download and execute it on the targeted processors.

For the planned obsolescence and hardware backdoor scenarios, the manufacturing
company itself launches the attack for financial benefits or national security benefits,
respectively. In these two cases, the manufacturing company has access to the netlist.
Therefore, Step 1 is ignored. In addition, in these scenarios, the attack is implemented
by only one player, that is, the manufacturing company. Accordingly, the box shown in
dotted dark border in Figure 2 should be considered as embedded inside the solid box
for these two scenarios. The following steps are taken for these two scenarios:

—Step 1: The manufacturing company identifies the critical path of the processor and
obtains input patterns that place the critical path under NBTI stress.

—Step 2: The manufacturing company analyzes the processor ISA, crafts instructions
that generate the previously mentioned patterns, and creates a malicious program
using them.

—Step 3: For the planned obsolescence scenario, the manufacturing company sends
the malicious program to its customers shortly before/after an upgraded version of
the targeted device is released. For the hardware backdoor scenario, the malicious
program is stored on an on-chip ROM. The manufacturing company controls the
processor remotely and starts running the program when needed.

Note that the MAGIC-based warranty attack can be applied either in the test or in the
functional mode of the processor. In the test mode, logical inputs that age the processor
(obtained after Step 2) are applied through a JTAG port. Technical expertise is required
to launch the attack in the test mode, and it cannot be performed by nonexpert users.
However, in the functional mode, the malicious program (obtained after Step 3) is

2We assume that the nonexpert user has a hacked Operating System (OS) installed and has root access to
the targeted device.
3Reverse engineering is not impractical. Chipworks reverse-engineered Intel chipsets from 1992 onward,
including the 22nm Ivy Bridge.
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Fig. 3. (a) Percentage change in threshold voltage of a PMOS transistor over time. (b) Percentage change in
propagation delay of primitive logic gates as a function of stress time.

executed on the processor. This approach is easier and can be performed by anyone
who can download this program from the Internet. Hence, the impact of the attack is
widespread and dramatic. For the MAGIC-based planned obsolescence and hardware
backdoor attacks, the malicious program is executed in the functional mode.

3. PRELIMINARIES

3.1. Background on NBTI

NBTI is one of the leading factors in performance degradation of digital circuits. In
practice, a PMOS transistor experiences two phases of NBTI depending on its bias
condition. The first phase (i.e., the stress phase) occurs when the transistor is on (i.e.,
when a negative voltage is applied to its gate). In the stress phase, positive interface
traps are generated at the Si–SiO2 interface. As a result, the magnitude of the threshold
voltage of the transistor is increased. In the second phase (i.e., the recovery phase),
a positive voltage is applied to the gate of the transistor. In this phase, the threshold
voltage drift induced by NBTI during the stress phase can partially “recover.”

Threshold voltage drifts of a PMOS transistor under stress depend on the physical
parameters of the transistor, supply voltage, temperature, and stress time. Figure 3(a)
shows the threshold voltage drift of a PMOS transistor (at an operating temperature
of 80◦C) that is continuously under stress for 6 months as well as a transistor that is
under stress and recovery every other month. As shown, the NBTI effect is high in the
first couple of months, but the threshold voltage tends to saturate for long stress times.

Throughout this article, to evaluate the impact of NBTI on the performance of a logic
circuit under stress, we use the mathematical model presented in Wang et al. [2010].
In this model, the changes in threshold voltage of a PMOS transistor in stress and
recovery modes at time t are evaluated by Equation (1) and Equation (2), respectively:

�Vth = (Kv(t − t0)0.5 + 2n
√

�Vth0)
2n

(1)

�Vth = �Vth1

(
1 − 2ξ1te +

√
ξ2C(t − t1)

2tox + √
Ct

)
, (2)

where t0 and t1 denote the time at which the stress and recovery phases begin, respec-
tively; te denotes the effective oxide thickness; and ξ1 and ξ2 are 0.9 and 0.5, respectively.
Parameter n is the time exponent parameter, and for H2 diffusion, it is 1/6. Kv and C are
computed by using Equation (3), where Eox is the electrical field, T is the temperature,
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Fig. 4. Sample circuits (longest path P1 shown in bold).

and Ea, K1, T0, and k are constants. As shown in Equation (1), the magnitude of the
threshold voltage of a PMOS transistor is increased during stress time:

Kv =
(

qtox

εox

)3

K1
2Cox(Vgs − Vth)

√
Cexp

(
2Eox

E01

)
, C = exp(−Ea/kT )/T 0. (3)

Note that in this article, we focus on the malicious NBTI aging of two-dimensional
transistors and leave dealing with the malicious NBTI aging of FinFETs for future
work [Kükner et al. 2014; Wang et al. 2012].

3.2. Effect of NBTI Aging on Delay of Primitive Logic Gates

To evaluate the effect of NBTI on the propagation delay of primitive gates, we conducted
a series of HSpice simulations using 45nm technology with high-k dielectric, at a
nominal supply voltage (Vdd) of 1.1V and a nominal temperature of 80◦C. We first
extracted the nominal propagation delay of each primitive gate. Then, we evaluated the
change in threshold voltage using the model discussed in Section 3.1 assuming that the
gate is subjected to NBTI stress for different time durations. Finally, using the degraded
threshold voltage values, we ran HSpice simulations to extract the propagation delay
of each gate under NBTI stress. Figure 3(b) shows the change in propagation delay of
primitive logic gates over time when these gates are under NBTI stress. This figure
shows the case where the gates are continuously under NBTI stress and they do not
experience recovery. As shown, on average, the propagation delay of primitive gates is
increased by 19.9% under 1 month of stress. Although the propagation delay of each
gate increased over time, the increase is the most in the first couple of months.

4. CIRCUIT-LEVEL MAGIC-BASED ATTACK

4.1. Methodology

In this section, we describe our circuit-level attack to accelerate NBTI-related per-
formance degradation of a digital circuit. Consider the circuit shown in Figure 4(a).
Assume that path P1 (including G1, G3, and G4) is the timing-critical path of this
circuit. By holding the primary inputs constant at V1(ABCDE) = “d0ddd” (where d
stands for don’t care), the PMOS transistors of each gate in this path are kept “on,” and
therefore, all these gates experience NBTI aging. However, it is not always possible to
stress all the gates in the critical path of a circuit simultaneously. As another example,
consider the circuit in Figure 4(b). In this circuit, holding the primary inputs constant
at V1(ABCDE) = “d01dd” accelerates aging of G1 and G4, while holding the primary
inputs constant at V2(ABCDE) = “11ddd” accelerates aging of G3.

In this attack, we look for a minimal set of input patterns that, when applied to the
circuit, result in maximal NBTI stress. For the circuit shown in Figure 4(a), this set
includes only one input pattern, that is, ABCDE = “d0ddd”, while for the circuit in
Figure 4(b), this set includes two patterns, that is, ABCDE = “d01dd;11ddd”. We call
them MAGIC patterns.

To identify MAGIC patterns, we target the critical path of the circuit and find the
input patterns that put each individual gate on this path under NBTI stress. We
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Table I. MAGIC Patterns That Put Each Gate of the Critical Path of Figure 4(a)
and Figure 4(b) Under NBTI Stress

MAGIC Patterns That Stress Circuit
Gates in Figure 4(a) in Figure 4(b)

G1 “d0ddd” “d0ddd”
G3 “0dddd”, “d0ddd” “11ddd”
G4 “0dddd”, “d0ddd”, “dd0dd” “0d1dd”, “d01dd”

Fig. 5. (a) Digital circuit. (b) Timing error with increased critical path delay due to malicious aging.

then compress these patterns into a small set. To generate the patterns that put each
individual gate of the critical path under stress, we leverage automatic test-pattern
generation (ATPG) tools and target stuck-at-1 faults on the input of each gate in the
critical path (only the input residing on the critical path, and not all inputs of the
gates).

The second column of Table I shows the patterns that stress each gate of the circuit
shown in Figure 4(a). For example, to find the MAGIC patterns that place the value
of 0 on e and to stress gate G3, we assume that e is observable and then generate
the test patterns that detect the stuck-at-1 fault on e. We use a minimum-set-covering
algorithm to select a minimal set of vectors that put all the gates in the critical path
under NBTI stress. As shown in the second column of Table I, by applying input pattern
“d0ddd”, all gates of the critical path are stressed. The third column shows the similar
results for the circuit depicted in Figure 4(b). As shown, for this circuit, the minimal set
of patterns required to target all the gates of the critical path includes “d01dd; 11ddd”.

The magnitude of aging is determined by the duration that the MAGIC patterns are
continuously applied to the circuit, as well as the type of gates in the targeted path.4

Note that the postmanufacturing critical path may differ from the design-time critical
path due to process variations. Similarly, the critical path may change during the circuit
operation. In these cases, the attacker may have targeted a near-critical path and
generated MAGIC patterns for such path instead of the critical path. In these cases,
the MAGIC attack is still feasible but may take longer to make the circuit operate
improperly. A dynamic change of the critical path is less frequent in older technologies.

4.2. Impact of Circuit-Level Attack

Now consider the circuit in Figure 5(a). The combinational logic block between flip-
flops A and B is implemented using primitive logic gates. This digital circuit has a

4Due to the large number of paths in real circuits, in this attack, we consider the first 10 longest paths.
This is because (1) several paths may have approximately the same delay and (2) two paths with similar
delays may age differently; that is, our attack may degrade a near-critical path, making it the bottleneck. In
practice, from the set of considered paths, we select the path that ages the most.
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Fig. 6. (a) Microarchitecture of a SPARC processor. (b) Block diagram of the E stage.

critical path delay of T and runs at a clock frequency of f = 1/T . The output of
the combinational block, DA, is sampled by flip-flop B at the end of cycle 1, cycle 2,
and so forth. This is indicated in Figure 5(b) by curved arrow 1. When the gates in
the combinational logic block are maliciously aged, its critical path delay increases to
T + M. However, the digital circuit still operates at a frequency of f = 1/T , and hence
flip-flop B samples incorrect values of DA, as indicated by curved arrow 2 in Figure 5(b).

4.3. Discussion

The takeaways of the circuit-level attack are as follows:

—MAGIC patterns that stress the gates in the critical path are obtained using CAD
and VLSI test tools.

—A circuit-level MAGIC-based attack can be launched in the test mode of the IC by
scanning in the logical values through the JTAG port.

—Technical expertise and expensive equipment are required to launch the attack in
the test mode. Hence, the impact is not widespread.

5. MICROARCHITECTURE-LEVEL MAGIC-BASED ATTACK

A microarchitecture-level attack does not require a user to have expensive equipment
or technical expertise to launch the attack. The generated malicious MAGIC program
is executed on the targeted device in its functional mode.

5.1. The OpenSPARC Framework

We demonstrate the attack on the OpenSPARC T1 processor [Oracle 2006b]. We chose
this processor since its netlist is open for academic use. Note that the MAGIC-based
attack is generic and the MAGIC program can be generated for any processor based on
its netlist and instruction set.

The OpenSPARC processor is multithreaded. Each core includes four hardware
threads and one full register file per thread. The instruction cache (I-cache), data
cache (D-cache), and TLBs (ITLB and DTLB) are shared by the four threads in the
core. As Figure 6(a) shows, each core has a single-issue, six-stage pipeline including
Fetch (F), Thread Selection (T), Decode (D), Execute (E), Memory (M), and Write Back
(W). Maliciously aging each pipestage can jeopardize the correct functionality of the
processor.

The maximum frequency of a processor is determined by its slowest pipestage. Aging
such stage will result in timing errors. In the OpenSPARC processor, the E stage
(Figure 6(b)) is the slowest pipestage and we target it.

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 1, Article 5, Publication date: April 2015.
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Fig. 7. (a) The steps taken to generate the MAGIC program. The shaded and unshaded areas show the
circuit-level and microarchitecture-level MAGIC-based attacks, respectively. (b) State transition from a
random state to the MAGIC state by executing assembly-level instructions.

5.2. Methodology

The circuit-level attack is used to identify the patterns required to accelerate NBTI
aging in the critical path of the targeted processor. We analyze the processor ISA and
generate the MAGIC instructions that produce the MAGIC patterns. These instructions
build the MAGIC program. Figure 7(a) shows this procedure. To accelerate NBTI aging,
the flip-flops feeding the critical path should hold their values for a certain time; that
is, their contents should not be changed. We call this state of flip-flops the MAGIC
state. Once the processor is in the MAGIC state, MAGIC instructions are executed
repeatedly to hold the appropriate values on the flip-flops that feed the critical path.
The MAGIC program has two phases. In Phase 1, certain instructions are executed
to bring the processor to the MAGIC state. In Phase 2, the MAGIC instructions are
repeatedly executed. In this article, we only focus on the aging of combinational gates.
Intuitively, aging of flip-flops will benefit the attacker because propagation, setup, and
hold times vary with NBTI stress [Abrishami et al. 2008; Rao and Mahmoodi 2011].

5.3. Set the Processor in the MAGIC State

To place the critical path of the processor under NBTI stress, certain input patterns
should feed this path for a certain amount of time. Moreover, the flip-flops that feed
the critical path should hold appropriate values for the same time period. Setting all
the flip-flops leading to the critical path in the MAGIC state, before the MAGIC input
pattern is applied, is a nontrivial task. To feed these flip-flops with required values,
one option is to scan in the patterns in the test mode and freeze the test clock for a
certain time as discussed in the circuit-level attack. The same can be achieved in the
“functional mode” of the processor by executing certain instructions that can control these
flip-flops and eventually make a transition to the MAGIC state. These instructions are
selected from the instruction set of the processor. Repeating execution of the MAGIC
instructions for a certain time eliminates the need to freeze the clock signal.

The primary inputs that should be applied to the victim component (pipestage),
PIMAGIC , and the state of the flip-flops in the critical path, SMAGIC , before applying
these inputs are determined as discussed in Section 4. The next task is to set the flip-
flops to the MAGIC state. The MAGIC state can be obtained by applying a sequence
of instructions from a known initial state such as the state immediately before (after)
the boot sequence is initiated (completed). Since trusted computing initiatives such as
Trusted Boot prevent execution of these unknown instructions at boot time, the state
has to be changed only after the OS has finished booting.

We bring the victim component to the MAGIC state, SMAGIC , from any state by
applying a sequence of instructions that can control the flip-flops leading to the critical
path. Applying primary input PIi to any random state, Srnd, causes a transition to Si.
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Fig. 8. Maliciously aged E stage produces incorrect results, which are dispatched to the further stages
(M, W) in the pipeline, resulting in an incorrect program output.

When primary input PIi+1 is applied to state Si, state Si+1 is obtained. This process
continues until SMAGIC is reached. Then, the MAGIC patterns, PIMAGIC , are repeatedly
applied (Figure 7(b)). By setting constraints on the outputs of the flip-flops, the input
patterns that produce these outputs are obtained using an ATPG tool. This approach
can be used when only a few flip-flops should get predetermined values and the rest
can get arbitrary values (don’t-care values).

If all the flip-flops leading to the critical path cannot be set to a particular value by
executing any instruction, then the critical path cannot be put under maximum stress.
However, if a majority of those flip-flops are controllable, then the critical path can be
put under considerable stress as indicated by the results presented in Section 6.

5.4. Construct MAGIC Instructions

The inputs of one pipestage are the outputs of the previous pipestage (or the next
pipestages in cases where forwarding is required). For instance, the inputs to the
execute stage are outputs of the decode stage and a few inputs from the execute/memory
stages. To determine the corresponding input patterns of the decode stage, we map the
outputs of the decode stage to its inputs. Then, we analyze the inputs of the decode
stage along with the ISA to construct MAGIC instructions.

5.5. Impact of Microarchitecture-Level Attack

A timing error caused by malicious aging in a pipestage has an adverse effect on
program output. Execution of a program on an aged processor produces erroneous
results and may crash. Consider an instruction execution sequence on a SPARC core
shown in Figure 8. The E stage is maliciously aged. Thus, for instruction IK, at time
TN+3, the E stage produces incorrect results, which are sent to the M stage at time
TN+4 and to the W stage at time TN+5. These incorrect values are forwarded through
the W stage, producing incorrect program output.

6. RESULTS AND ANALYSIS

6.1. Experimental Setup

In our experiments, a series of HSpice simulations were conducted to evaluate the
effect of aging for each primary logic gate at discrete time units using the 45nm pre-
dictive technology model with high-k dielectric [Model 2007]. The source code for the
OpenSPARC T1 processor was obtained from Oracle [2006a]. The Synopsys Design
Compiler tool was used for logic synthesis. Synopsys PrimeTime was used for extract-
ing timing-critical paths. The scripts to select the final patterns and evaluate the attack
outcome were all implemented in Python. Synopsys Tetramax was used to obtain the
circuit-level patterns for state and primary inputs. Synopsys VCS was used for func-
tional simulations. In these experiments, the nominal supply voltage (Vdd) is assumed
to be 1.1V and the nominal temperature is 80◦C. Note that 80◦C is considered for the
core temperature. Core temperature (so-called Tjunction or operating temperature)
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Table II. SPARC Core Configuration Details

Parameter Specification
Threads 4
L1 I-Cache 16KB, 4-way (Line Size: 32 bytes, Latency: 2 cycles)
L1 D-Cache 8KB, 4-way (Line Size: 16 bytes, Latency: 2 cycles)
L2 Cache 3MB, 12-way (Latency: 12 cycles)
ITLB/DTLB/Load Miss Queue 64/64/4 entries
Store Buffer 32 entries for four threads
Memory Latency: 100 cycles

Fig. 9. Bit fields and values obtained for the 32-bit SPARC MAGIC instruction.

differs from CPU temperature (so-called Tcase) and is also considerably higher than
the ambient temperature. As discussed in Inkley [2008], on average, the target oper-
ating temperature for 45nm Intel processors is around 90◦C. Therefore, given that the
MAGIC program is executed continuously on the targeted core, considering 80◦C as
the nominal temperature for our simulation is justified. The effect of aging over time
was estimated by using the mathematical model presented in Wang et al. [2010] and
was described in Section 3. We found the threshold-voltage change over time for the
transistors in the critical path. Then, we used HSpice to evaluate the delay of each
gate in the critical path using the extracted threshold voltage and used it to compute
the postaging critical path delay. This methodology for aging was previously used in
several reliability studies [Bild et al. 2009; Lee and Kim 2011; Sarangi et al. 2008;
Ernst et al. 2003; Bowman et al. 2011].

The gem5 cycle accurate simulator was used to run benchmarks from the SPEC
CPU2006 and PARSEC benchmark suites and evaluate the performance degradation
due to malicious aging. The configuration of the SPARC core used in these simulations
is shown in Table II.

6.2. Experimental Results

6.2.1. MAGIC Assembly Instructions. We used Synopsys PrimeTime to find the critical
path of the E stage. This path is located in the bypass logic (Figure 6(b)) and includes
110 gates (46 AND gates, 15 INV gates, 46 OR gates, and three XOR gates). The input
pattern that accelerates NBTI aging in the critical path was mapped to the primary
inputs of the Execution Unit (EXU). Of the 603 primary inputs to the Estage, 563 were
observed to be don’t cares. The remaining 40 inputs were:

—ifu exu useimm d = 1 (immediate operand must be used),
—ifu exu imm data d[31:0] = 00000FED (immediate value),
—ifu exu usecin d = 0 (carry-in must not be used),
—ifu exu dbrinst d = 0 (instruction is not a branch type),
—ifu exu invert d = 0 (do not invert the second operand),
—ifu exu casa d = 0, clk in = 0 (clock), se = 0 (scan disable), and se hold = 0.

These 40 inputs to the E stage were the outputs of the decode stage. Inputs to the
D stage that produce these outputs were obtained by analyzing the decode logic. The
obtained instruction is shown in Figure 9. The primary opcode, op, which corresponds
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to the bits 31-30 of the 32-bit instruction, was “10.” Thereby, the instruction must be an
arithmetic instruction. Bit field 29-25 indicates the destination register, rd. All these
bits were don’t cares. The 6-bit function opcode, op3, was observed to be “0d01dd”.
Hence, the instruction can either be a SUB, SUBcc, ANDN, ANDNcc, ORN, ORNcc,
XNOR, or XNORcc.5 We arbitrarily chose to use the SUB instruction (while using
any of the other instructions would have the same effect). Bit field 18-14 indicates
the first source operand, rs1. All these bits were don’t cares. Bit 13 indicates whether
the instruction is an immediate instruction or not. Since it was “1,” the lower 13 bits
indicate the immediate value. The signed immediate value was 0FED. We arbitrarily
chose to use r12 as rs1 and r20 as rd. Thus, the first MAGIC instruction was SUB r12,
0FED, r20. We used the method discussed in Section 4 to find the minimum number of
instructions by applying which NBTI aging is accelerated. As a result, two instructions
were extracted. The second MAGIC instruction, SUB r4, 001A, r27, was also crafted
in a manner similar to the first MAGIC instruction. These two MAGIC instructions
collectively put the critical path under maximum NBTI stress.

6.2.2. Possible MAGIC instructions. As Figure 9 shows, 19 bits in the 32-bit instruction
are either “0” or “1” and the rest are don’t cares. All five rd bits are don’t cares.
Hence, any of the possible 25 = 32 registers can be used as the destination register.
Similarly, any of the possible 32 registers can be used as the source register rs1. For
the function field, op3, with three don’t cares, eight functions are possible. Thus, a
total of 32 × 32 × 8 = 8,192 MAGIC instructions are possible. However, a MAGIC
instruction cannot have the same source and destination register; execution of such
an instruction will modify the MAGIC state. Thus, a total of 8,192 − 32 × 8 = 7,936
MAGIC instructions are possible.

6.2.3. Driving to the MAGIC State. Seventy-seven flip-flops had to be set to appropriate
values (“0” or “1”) to reach the MAGIC state. All 77 flip-flops were controllable. The
primary inputs to the E stage were analyzed and the information was used to trace
back to the decode stage and construct the 32 bits of the instruction. The opcodes and
operands were obtained and the instructions were crafted. Table III shows the sequence
of instructions (1 through 12) that need to be applied to drive the processor to the
MAGIC state from any random state. As shown in this table, after placing the processor
to the MAGIC state, each MAGIC instruction (instruction 14 and instruction 21) is
executed for an extended period of time. Note that the number of instructions to reach
the MAGIC state is specific to the ISA and the critical path. For the OpenSPARC
execute stage, it is 12. It could be longer for other ISAs and paths. In the table, the
contents in bold indicate the alternate options that are possible. For instance, for
instruction 1, the secondary opcode is “0000dd”. Thus, the possible instructions are
“000000” (ADD), “000001” (AND), “000010” (OR), and “000011” (XOR). The alternate
options are presented as comments in Table III. Instructions 13, 19, 20, 26, and 27
have been selected such that they do not modify the MAGIC state. These instructions
implement a loop and repeatedly execute MAGIC instructions 1 and 2. By repeated
execution of MAGIC instruction 1 (14 to 18) and MAGIC instruction 2 (21 to 25),
we effectively increase the number of times the MAGIC instructions are executed.
To overcome the limitation on the upper bound of a branch counter, an attacker can
put several instances of MAGIC instruction 1 and MAGIC instruction 2 to effectively
increase the number of times the MAGIC instructions are executed (Table III shows
five occurrences of MAGIC instruction 1 and MAGIC instruction 2). Note that the
MAGIC instructions are also selected among alternatives such that they do not change
the MAGIC state.

5If the instruction has cc as postfix, it sets the condition flags. Otherwise, it does not.

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 1, Article 5, Publication date: April 2015.



5:14 N. Karimi et al.

Table III. MAGIC Program

1: ADD r0, r7, r8 ; AND/OR/XOR
2: SUB r7, RIS, r13 ; ANDN/ORN/XNOR, r15
3: ORCC r6, r17, r15 ; ORCC, r5/r7
4: ADDcc r11, r23, r23 ; r22, r22
5: XOR r23, 16741, r15 ; r22
6: ADD r27, r18, r26 ; AND, r8
7: ORcc r12, r18, r11 ; r8, r22
8: AND r8, r12, r19 ; r24
9: SETHI 0AAAAA, r10 ; r11/r14/r15
10: OR r10, 23A, r16 ;
11: SETHI 0231B, r4 ; ILLTRAP
12: OR r10, 23A, r16 ;
13: ADD r0, r0, r30 ; Clearing r30

; MAGIC state reached
14: SUB r12, 0FED, r20 ; MAGIC instruction 1
15: SUB r12, 0FED, r20 ; MAGIC instruction 1
16: SUB r12, 0FED, r20 ; MAGIC instruction 1
17: SUB r12, 0FED, r20 ; MAGIC instruction 1
18: SUB r12, 0FED, r20 ; MAGIC instruction 1
19: ADDcc r30, 1, r30 ; Counter
20: BVS 14: ; Branch to 14 if no overflow
21: SUB r4, 001A, r27 ; MAGIC instruction 2
22: SUB r4, 001A, r27 ; MAGIC instruction 2
23: SUB r4, 001A, r27 ; MAGIC instruction 2
24: SUB r4, 001A, r27 ; MAGIC instruction 2
25: SUB r4, 001A, r27 ; MAGIC instruction 2
26: SUBcc r30, 1, r30 ; Counter
27: BNE 21: ; Branch to 21 if zero flag not set

Increasing the switching activity in a core increases the core power dissipation and
temperature and in turn the NBTI effects (as discussed in Section 3). Accordingly, to
increase the switching activity of the targeted core, instead of repeatedly executing
each MAGIC instruction (e.g., instructions 14 to 18 in Table III), we can extract a
number of alternatives as discussed earlier and interleave those instructions in the
loop.

6.2.4. Performance Degradation of SPARC. This set of results quantifies the effect of
MAGIC in degrading the performance of the SPARC core. Figure 10(a) shows the
magnitude of performance degradation of the E stage when MAGIC instructions are
applied to this microprocessor for 1 to 6 months. The results show the maximum perfor-
mance degradation that the E stage experiences when MAGIC instructions are applied
to the processor. On average, the performance of the execution unit is degraded by
10.92% after 1 month, by 13.25% after 2 months, and by 16.8% after 6 months. Note
that in the results, we didn’t consider the NBTI effects that resulted from the burn-in
test process of the processor. We assume that the state-of-the-art NBTI controlling
schemes [Chakraborty and Pan 2011] are applied during the burn-in test process to
decrease the NBTI effects.

Effectiveness of MAGIC instructions vis-a-vis random instructions: To com-
pare the effectiveness of MAGIC instructions with randomly generated instructions
in accelerating NBTI aging, we generated a pair of random instructions and continu-
ously executed each instruction on the SPARC processor. We repeated this experiment
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Fig. 10. (a) Comparing the effect of MAGIC versus random instructions in change of the critical path delay
of the OpenSPARC processor. (b) Bypassing a 10% guardband in 1 month by using MAGIC to attack the
OpenSPARC processor.

Fig. 11. Percentage change in critical path delay of SPARC E stage due to partial control of MAGIC state.

10 times (i.e., for 10 pairs of randomly generated instructions) and showed the average
result in Figure 10(a) while applying random instructions for 1 to 6 months. Applying
random instructions does not have a significant effect on the performance. On aver-
age, the performance of the E stage degrades by 0.28% after 1 month and by 0.41%
after 6 months. This observation reinforces the effectiveness of MAGIC instructions in
intentional performance degradation of processors.

Assume that in OpenSPARC, the guardband protects against timing errors that
result in an up to 10% change of the critical path delay (G = 0.1×C0, where C0 is
the critical path delay). When the MAGIC program is executed, the critical path delay
increases by 10.92% in 1 month (M = 1 month), bypassing the protection offered by the
guardband. The MAGIC attack on the SPARC processor is shown in Figure 10(b).

6.2.5. Partial Control of the MAGIC State. If all the flip-flops leading to the critical path are
not controllable, the gates in the critical path will not be maximally stressed. However,
the critical path can still be stressed if the number of controllable flip-flops is close to
the total number. As shown in Figure 11, if only 10 arbitrarily selected flip-flops out
of a total 77 flip-flops are controllable, the critical path delay is only changed 0.71%
after 1 month and 1.03% after 6 months. If 20 flip-flops are controllable, the change in
critical path delay is 0.91% after 1 month and 1.57% after 6 months. However, if the
number of controllable flip-flops increases to 60 (70), the change in critical path delay
is 9.95% (13.73%) after 6 months.
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7. EFFECTIVENESS OF MAGIC AGAINST RELATED WORK

In this section, we will discuss how MAGIC bypasses current protection mechanisms.

7.1. Circuit-Level NBTI Effect Mitigation Techniques

Razor [Ernst et al. 2003] dynamically detects and corrects circuit timing errors. Razor
samples the pipestages twice, one with a normal clock and the other with a delayed
clock, and compares the samples to detect any error. If an error is detected, error recov-
ery is performed by using clock gating or counterflow pipelining. In clock gating, when
an error is detected, the entire pipeline is stalled for one cycle. In counterflow pipelin-
ing, when an error is detected, the effect of the erroneous computation is nullified, the
pipeline is flushed, and the instruction is re-executed from the failing stage. An alter-
nate approach toward dynamic variation tolerance has been proposed in Bowman et al.
[2011], where error-differential sequentials (EDSs) and tunable replica circuits (TRCs)
are embedded in the processor core to detect delay faults. Both Razor and EDS-TRC
were designed to detect timing errors in the margin range of 2% to 10%.

Assume that the methods discussed previously are used against MAGIC-based at-
tacks. The clock is delayed enough to detect the timing errors caused by MAGIC. Then,
the error recovery techniques are used to correct these errors. One recovery method
flushes the pipeline and re-executes the faulty instruction several times (10 times in
Bowman et al. [2011]) at the same clock frequency, after which normal execution con-
tinues. This method cannot correct the timing errors caused by MAGIC because the
same error will reoccur due to increased critical path delay. A second recovery method
replays errant instructions at half the clock frequency to guarantee correct execution
even if dynamic variations persist. This technique corrects the timing errors, but the
processor is forced to run at half the bin frequency to prevent erroneous results.

An internal node control technique to mitigate NBTI effects has been proposed in
Bild et al. [2012]. In this scheme, internal node controls are inserted at the outputs of
individual gates to force them to specific values when a core and accordingly its critical
path are inactive. This method cannot be used against MAGIC-based attacks since in
such attacks, instructions are executed continuously.

Using a variable supply voltage to characterize the physical-level properties of an
IC by means of a set of nonlinear equations is proposed in Wei and Potkonjak [2011].
However, this method cannot be applied to processors that include millions of gates.

7.2. Architecture-Level NBTI Effect Mitigation Techniques

Penelope [Abella et al. 2007] applies certain input patterns that reverse the effect of
aging to idle components in the processor. Penelope cannot be used to protect against
MAGIC since the MAGIC instructions are executed continuously. Thus, the critical
path is never idle and cannot recover.

Facelift [Tiwari and Torrellas 2008] hides the effect of aging in multicore processors
through aging-driven application scheduling. Jobs that speed up aging, such as high-
temperature jobs, are scheduled to run on the faster cores and the low-temperature
jobs are issued to the slower cores. Thereby, the slowest core ages the slowest and the
fastest core ages the quickest. Thus, the effect of aging is hidden. Facelift cannot protect
against MAGIC, since once the program is scheduled, MAGIC accelerates aging on the
core.

Increasing the idle ratio of the functional units of a processor to decrease NBTI
effects is also considered in Corbetta and Fornaciari [2012] and Oboril et al. [2012]. The
former presents an instruction allocation strategy and the latter proposes a scheduling
scheme to increase the idle ratio of timing-critical components. However, these methods

ACM Transactions on Architecture and Code Optimization, Vol. 12, No. 1, Article 5, Publication date: April 2015.



MAGIC: Malicious Aging in Circuits/Cores 5:17

cannot be used to protect against MAGIC since the MAGIC instructions are executed
continuously and the critical path is never idle.

7.3. Guardbanding

Guardbanding is the current industrial practice to cope with transistor aging and
voltage droops [Agarwal et al. 2007]. It entails slowing down the clock frequency (i.e.,
adding timing margin during design) based on the worst degradation the transistors
might experience during their lifetime. The guardbands ensure that enough current
passes through the processor to keep it above the threshold voltage and in turn ensure
that the processor functionality is intact for an average period of 5 to 7 years [Tiwari
and Torrellas 2008]. However, inserting wide guardbands degrades performance and
increases energy consumption. Hence, processor design companies usually have small
guardbands, typically 10% [Agarwal et al. 2007]. However, the MAGIC-based attack
can deteriorate the critical path by 11% and cause erroneous results in 1 month.

7.4. OS Context Switching and Timer Interrupts

Context switching is an essential feature of a multitasking operating system. A con-
text switch is the process of storing/restoring the state (context) of a process so that
execution can be resumed from the same point at a later time. This enables multiple
processes to share a single CPU. Every time a context switch occurs, the MAGIC state
is lost. Hence, it makes the proposed attack ineffective. Similarly, the OS’s task sched-
uler periodically interrupts execution to reschedule the priorities of running processes.
During every OS timer interrupt, the MAGIC state is lost. However, as mentioned in
Section 2.2, in the MAGIC-based attack, the attacker has total control over the system
and the OS such that the OS does not perform a context switch or timer interrupt.

7.5. Core Frequency Scaling

In order to conserve power, the core operates at different frequencies depending on the
amount of activity. If the core is active and busy doing something, it will run at a higher
frequency (turbo). When idle, it will run at a lower frequency (unturbo). When running
at lower frequencies, such as fmax/2, the increase in critical path delay due to execution
of the MAGIC program will not cause timing errors. This is because of the longer clock
period at lower frequencies. These core frequency turbo/unturbo decisions are made
by the OS based on the configuration made during the BIOS setting. Since the OS is
under the attacker’s control, for the warranty attack and hardware backdoor attack,
the attacker can turn off this feature and successfully launch the proposed attack.
For the planned obsolescence attack, the attacker benefits from frequency scaling and
making the device slower. Therefore, for such attack, the attacker turns on this feature.

7.6. Monitoring CPU Utilization

A straightforward solution to detect the MAGIC-based attack is to monitor the CPU
utilization. Since the malicious program needs to run for several weeks, it is very easy
to detect the MAGIC attack. However, in the MAGIC-based warranty attack, the user
is the attacker and simply ignores the monitors or disables them. For the other two
attack scenarios, the manufacturing company launches the attack and hence disables
the CPU monitoring feature.

7.7. Dynamic Integrity Checking Techniques

Dynamic integrity checking algorithms investigate the correct operation of a processor
during its runtime [Austin 1999; Rotenberg 1999; Kasbekar and Das 2001]. DIVA
[Austin 1999] compares the output of the execution unit with the output of a robust
on-chip functional unit during the normal operation of the processor. In case of a
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discrepancy, a roll-back is performed and the processor state is changed to the state
before the error occurs and the faulty instruction is re-executed. Although DIVA can
detect the MAGIC attack, it can’t prevent it since the effect of the MAGIC attack is not
transient. Kasbekar and Das [2001] present a selective check-pointing and roll-back
algorithm to recover from the transient faults. Similar to DIVA, this method cannot
prevent MAGIC since MAGIC effects are not transient.

AR-SMT [Rotenberg 1999] is another dynamic integrity checking scheme that em-
ploys redundant multithreading without lockstepping. It combines program-level time
redundancy and instruction re-execution to provide fault tolerance. However, AR-SMT
can only be used to recover from transient faults. Indeed, it cannot prevent MAGIC-
based attacks since both the primary and redundant threads produce the same incor-
rect output.

7.8. Pipeline Flush

Flushing the pipeline will modify the architectural and physical state of the processors.
Therefore, at first glance, one may consider periodically flushing the pipeline as a useful
method to prevent malicious aging. In this case, when program execution resumes, the
component being aged would not be in the MAGIC state. Thus, although the MAGIC
instruction is repeatedly executed, the critical path would not be placed under stress.
However, this technique cannot prevent MAGIC attack. In practice, by applying a small
modification to the MAGIC program, the attacker can prevent such countermeasures.
In fact, if the MAGIC program is located in a larger loop, then the flip-flops will
periodically place in the MAGIC state and therefore the MAGIC-based attack cannot
be prevented. As an example, consider the MAGIC program shown in Table III. By
placing all 27 instructions shown in that table in a larger loop, pipeline flushing will not
be helpful in preventing the MAGIC-based attacks. Accordingly, the MAGIC program
crafted to maliciously attack the SPARC processor (Table III) should include such loop,
but for the sake of space, we avoid representing the MAGIC program with such loop in
another table.

8. PREVENTING MALICIOUS AGING

Protection mechanisms such as those described in Section 7 can only detect an erro-
neous computation after the processor has been maliciously aged but cannot prevent
the malicious aging process. For a MAGIC-based attack to be successful, it is crucial
for the processor to be in the MAGIC state while the MAGIC instructions are executed
repeatedly for prolonged periods. If a defense mechanism can prevent any of these from
happening, the proposed attack can be thwarted.

A straightforward solution to thwart the MAGIC attack is to abort execution when a
particular instruction is continuously executed for a certain number of times. However,
this solution results in false-positives for certain types of benchmarks that repeatedly
apply certain instructions. Also, it is not appropriate for SIMD (Single Instruction Mul-
tiple Data) processors, where the same instruction is executed several times. Another
simple solution is to modify the decoder such that it generates semantic equivalents
for MAGIC instructions. For instance, a subtract instruction is decoded as an add in-
struction, but one of the operands is the two’s complement of the original operand. This
approach fails when the attacker attempts to age the near-critical paths instead of the
critical path. In this section, we propose two techniques that void the requirements of
the MACIC-based attack and prevent malicious aging in processor cores.

8.1. Thread Migration

Thread migration is usually performed to get the best performance/watt or reduce
the energy delay product in heterogeneous processors [Saripalli et al. 2011]. However,
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Fig. 12. (a) Illustration of thread migration. (b) Performance overhead of periodic thread migration.

thread migration can also prevent malicious aging. Periodic migration of the threads
executing on one core to another core causes the physical state to change from the
MAGIC state. Thus, instructions that are executed after thread migration will not
accelerate the aging of the transistors.

Thread migration is expensive. It involves transferring the dirty cache lines from
one private cache to the other through the shared cache as shown in Figure 12(a). The
architectural state of the registers must be transferred too. If performed too often, it
increases the performance overhead.

We modified the gem5 cycle accurate simulator [Binkert et al. 2011] to implement the
previous thread mitigation methodology. We implemented periodic thread migration
in a two-core SPARC processor, with each core containing four threads, and evaluated
the performance overhead using benchmarks from the SPEC CPU2006 suite. Each
core is configured as shown in Table II. Periodically, all the threads from core 0 are
migrated to core 1 and vice versa. In this article, we assumed a core-to-core migration
latency of 400 cycles. We assume that the threads from one core are forced to migrate
to the other core after 2 billion instructions have been executed. To get the highest
performance overhead possible, we assume that all the lines in the cache are dirty;
that is, all the lines must be transferred to the other core. The performance impact was
evaluated using workloads from the multithreaded PARSEC benchmark suite. The
average performance overhead was 0.14%. Figure 12(b) illustrates the performance
overhead of forced thread migration.

8.2. Application of Inverse Patterns

One approach to thwart the MAGIC attack is to periodically allow the transistors in the
critical path to recover. This can be achieved by issuing healing instructions. Healing
instructions generate input patterns at the critical path that cause the transistors to
recover from NBTI stress. Periodic execution of these instructions has two benefits:
(1) it results in a loss of the MAGIC state, and (2) it causes the transistors to recover.

The healing patterns can be obtained in a manner similar to that used for generating
the patterns that stress the transistors. To generate the healing patterns, we first
target each gate in the critical path and find a set of patterns that apply a “1” to their
input. Using a minimum-set-covering algorithm (Section 4.1), we select a minimal set of
vectors that put all the gates in the critical path under NBTI recovery. The instructions
that generate these patterns are then generated in a manner similar to that used for
crafting MAGIC instructions. The healing instructions must be crafted such that their
execution does not affect the architectural state of the executing program.
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Fig. 13. (a) Microarchitecture support to apply inverse patterns to the gates of the critical path. Shaded
blocks indicate the new components. (b) Performance overhead due to periodic application of inverse MAGIC
instructions.

Figure 13(a) shows the required microarchitectural modifications to support periodic
recovery. A counter is added between the instruction queue (IQ) and the instruction
decode stage to keep track of the number of issued instructions. The Max signal is
set when the counter reaches its maximum value. When set, Max chooses the healing
instructions instead of instructions from the IQ. Healing instructions are precalculated,
stored on-chip, and periodically executed. Figure 13(b) shows the performance overhead
incurred by SPEC CPU2006 benchmarks on a SPARC processor if a period of 2 billion
instructions is chosen and the healing instructions are applied for 1,000 cycles. The
average performance overhead is 0.18%.

Note that in a circuit, several paths may have approximately the same delay. In such
case, if a near-critical path is targeted for aging instead of the critical path, the MAGIC
attack is still feasible. However, since the healing patterns have been generated to
target the critical path, applying such patterns may not be useful in thwarting the
attack. One may think of monitoring all paths during the operation of the circuit to
detect the degraded path and to apply healing patterns related to the detected path.
However, due to the large number of paths in a circuit, it is not feasible to monitor all
paths. An alternative solution would be a hybrid scheme including applying healing
instructions and periodic thread migration. In this case, if the critical path has been
targeted by MAGIC, periodically applying healing patterns and thread migration both
thwart the attack. Otherwise, if a near-critical path has been targeted by MAGIC, then
the thread migration would help in recovery.

9. DISCUSSION

Can the device be used during the attack period? In a MAGIC-based attack, only
one core is targeted and executes the MAGIC program. Hence, the device is functional
during the attack period and can be used normally. However, it is slower since the
targeted core is busy.

Do process variations affect MAGIC? The postmanufacturing critical path may
differ from the design-time critical path due to process variations. After manufacturing,
when the MAGIC program is executed, the design-time critical path will age and
become longer than the manufacture-time critical path. We observed that the top
10 longest paths in the E stage of OpenSPARC were very close to each other (2%
difference). Figure 14(a) shows the change in critical path delay for the longest path
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Fig. 14. (a) Effect of process variations on changing the delay of the longest (Path1) and 10th longest
path (Path10). Path1 produces erroneous results after 1 month and Path10 after 2 months. (b) Effect of
temperature on changing the delay of the longest path.

Fig. 15. Comparing the effect of MAGIC-based attack on SPARC E stage using different fabrication
technologies.

(Path1) and the 10th longest path (Path10). The delay of Path1 increases by 10% in less
than 1 month, and the delay of Path10 increases by 10% in 2 months. The difference
between the delay change of these paths is just 3% after 6 months. After manufacturing,
if the critical path changes, we still age the design-time critical path. It might take
slightly longer for this path to bypass the protection offered by guardbanding (an extra
month in the case of Path1 and Path10), but it will eventually produce erroneous
results.

How does the technology impact MAGIC? As discussed in Section 1, even though
tremendous efforts have been spent to improve the fabrication process, the impact of
NBTI on circuit performance has become severe, especially after the introduction of
high-k gate dielectrics since the 45nm technology node [Wang et al. 2010]. Figure 15
shows the magnitude of performance degradation of the E stage of the SPARC processor
fabricated using different technologies when MAGIC instructions are applied to this
microprocessor for 1 to 6 months at the operating temperature of 80◦C. The results
confirm the severity of NBTI degradation in high-k technologies.

Is layout needed to create the MAGIC program? The expert attacker may
use the netlist or layout of the processor to identify the critical path and the input
patterns that place such path under NBTI stress. However, having access to the netlist
will suffice. In practice, layout synthesis tools may insert a number of buffers in the
netlist, but inserting buffers does not change the aging patterns. On the other hand,
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by inserting buffers, the postlayout critical path may differ from the postnetlist critical
path. But, as discussed earlier, we can still age the design-time critical path and wear
out the device.

Is it possible to generate MAGIC patterns for other pipestages? MAGIC pat-
terns can be generated for any pipeline stage. For OpenSPARC, we chose the E stage
since it includes the critical path of the entire chip.

How does temperature impact MAGIC? As discussed in Section 3, the change
in threshold voltage, and in turn the critical path delay, is directly affected by the
temperature. When operated at higher temperatures, the devices age faster. Thus,
temperature is another knob for the attacker. Figure 14(b) shows the impact of oper-
ating temperature on the increase of critical path delay. When the MAGIC program
is executed at an operating temperature of 100◦C, the critical path delay increases by
12.9% after 1 month, 15.68% after 2 months, and 20.13% after 6 months. The difference
between the change in critical path delay when the temperature is 80◦C and 100◦C is
2.02% after 1 month and 3.32% after 6 months. Note that, in the MAGIC-based attack,
the malicious program is executed on the processor continuously and so the “Operating
Temperature” increases rapidly.

Do pipeline bubbles from non-MAGIC instructions reduce the aging effects?
Non-MAGIC instructions are selected such that they do not modify the MAGIC state.
The flip-flops lead the critical path to hold their values, and the inputs feeding the gates
in the critical path do not change. Thus, bubbles due to non-MAGIC instructions do
not allow the gates in the critical path to recover. The recovery due to bubbles caused
by loop-ending branches is negligible.

10. CONCLUSION AND FUTURE WORK

This article presented MAGIC, a technique to maliciously accelerate the NBTI-based
aging of cores. By analyzing the structural information of the processor, a sequence
of assembly instructions that accelerate the aging process was developed. A program
consisting of these instructions was crafted. By executing this application, the core is
maliciously aged and the chip fails sooner than expected. We demonstrated the MAGIC
attack on the OpenSPARC processor and showed that the critical path delay can be in-
creased by 10.92% in just 1 month, bypassing the protection offered by traditional aging
tolerance techniques such as guardbanding or resilient microprocessors. We proposed
two microarchitectural modifications to prevent malicious aging of processors.

While MAGIC was demonstrated on the E stage of a SPARC processor, it can be
customized to other processor architectures such as ARM and MIPS, whose source code
is publicly available. While SPARC is an in-order processor, we believe that MAGIC can
also be applied to out-of-order processors. We are currently investigating the feasibility
of MAGIC on out-of-order processors. We are also working on generating patterns
to accelerate aging due to other mechanisms such as hot carrier injection and gate
oxide breakdown. In this article, we showed the feasibility of the MAGIC-based attack
using simulation tools. Demonstrating the impact of the proposed attack on fabricated
chips is our next trivial direction in this research. Finally, we are working on hiding
the MAGIC program within another seemingly innocuous application, which, when
executed by even nonmalicious users, causes chip failure.
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