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Abstract Modern microprocessors incorporate a variety of
architectural features, such as branch prediction and specu-
lative execution, which are not critical to the correctness of
their operation yet are essential towards improving perfor-
mance. Accordingly, while faults in the corresponding hard-
ware may not necessarily affect functional correctness, they
may, nevertheless, adversely impact performance. In this
paper, we investigate quantitatively the performance impact
of such faults using a superscalar, dynamically-scheduled,
out-of-order, Alpha-like microprocessor, on which we exe-
cute SPEC2000 integer benchmarks. We provide extensive
fault simulation-based experimental results that elucidate
the various aspects of performance faults and we discuss
how this information may guide the inclusion of addi-
tional hardware for performance loss recovery and yield
enhancement.
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1 Introduction

In their quest towards maximizing instruction level
parallelism (ILP) and, thereby, improving performance,
computer architects have equipped modern microproces-
sors with an impressive arsenal of advanced features.
Superscalar machines, advanced cache management strate-
gies, data pre-fetching, data value and branch prediction are
only a few examples of such techniques [1–6]. Out-of-order
instruction execution capabilities, in particular, combined
with advanced multi-level branch prediction schemes, play
a crucial role in today’s state-of-the-art, deeply-pipelined,
speculative processors [7–9]. Interestingly, many of these
architectural features are geared solely towards performance
improvement and their presence is not critical to the correct-
ness of execution. As a result, potential malfunctions in the
corresponding hardware may not jeopardize the outcome of
the workload executed by a microprocessor in any way other
than simply delaying it [10–12]. Hence, in this work, we
will refer to faults resulting in such benign malfunctions as
performance faults.

The research reported herein aims to investigate the
impact that such performance faults may have on the exe-
cution of typical microprocessor workload. To this end,
we employ the Register Transfer (RT-) Level model of an
Alpha-like microprocessor exhibiting most of the afore-
mentioned advanced architectural features, on which we
simulate execution of SPEC2000 benchmark programs.
Specifically, we seek to quantify the number of faults
that cause no functional discrepancy but only reduce
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performance, as well as the level of the incurred per-
formance degradation. Furthermore, we are interested in
assessing the relative importance of performance faults
across various workloads. Such information can poten-
tially guide the addition of hardware or the development of
software-based self-testing (SBST) [13] schemes to allevi-
ate the most crucial performance faults and recover the lost
performance, or even to enhance yield by adding hardware
that converts actual functionality faults into performance
faults. In fact, SBST schemes have been previously pro-
posed [14–16] to detect performance faults in the branch
prediction unit of processors. The work described herein,
however, extends the focus of studying the impact of per-
formance faults beyond the branch predictor, covering three
key modules of a modern microprocessor.

The rest of this paper is organized as follows. In
Section 2, we take a closer look at the concept of perfor-
mance faults and the underlying architectural features that
facilitate their existence. Then, in Section 3, we describe
the microprocessor model which serves as a vehicle for this
study and we provide a detailed description of the target
modules. In Section 4, we discuss the capabilities of the
simulation infrastructure which is used in this study. The
employed performance impact analysis method is detailed
in Section 5 and extensive results quantifying the impact
of performance faults are presented in Section 6. Detailed
examples of performance faults are given in Section 7. In
Section 8, we discuss the potential utility of this study in
guiding hardware addition for performance loss recovery
and yield enhancement. Conclusions are drawn in Section 9.

2 Performance Faults

Among the various architectural concepts that bring about
the class of performance faults, we pinpoint three promi-
nent ones: pipelining, superscalar design, and speculative
execution.

Instead of waiting for all necessary resources to become
available prior to execution of an instruction, pipelining
allows some of the involved tasks to be completed early.
Thus, resources that would otherwise be idle are utilized
and, subsequently, freed for use by other instructions,
increasing the overall performance. Faults which prevent
this early utilization of resources may not cause incor-
rect results but will reduce the throughput, hence incurring
performance degradation.

Superscalar processors increase performance by employ-
ing multiple functional units, often even of the same type,
in order to execute many instructions in parallel. Intri-
cate hardware-implemented algorithms are, consequently,
employed to optimally schedule execution of instructions
by these functional units. Hence, faults interfering with

this process may result in a suboptimal scheduling of
instructions that yields a correct, yet performance-impacted
execution.

Speculative execution aims to maximize performance
by leveraging resources that would otherwise be idle and
allowing instructions to proceed with execution even though
validity of the corresponding resources, or even the instruc-
tions themselves, is yet to be determined. Along with it
comes an inherent mechanism for discarding the specula-
tively executed instructions in case the speculation proves
to be incorrect. Speculation happens in various aspects of
modern microprocessors, involving control, data, or both
[17, 18]. The most common forms of speculation are those
predicting the direction of program control, particularly
involving prediction of the direction of branch instructions.
A number of data speculation mechanisms, such as value
prediction (e.g. index counter variables), address prediction
(e.g. addresses of array elements) and memory system opti-
mism (e.g. returning a value from a cache before checking
its validity) are also frequently employed Given the specu-
lative nature of these architectural features and the inherent
recovery mechanism, it is evident that faults interfering with
this process may not affect execution correctness but will
impact performance, sometimes even positively!

3 Study Framework

Our investigation on the impact of performance faults builds
upon a previously developed fault simulation infrastructure,
which is presented in detail in [19]. The employed model
is the Verilog implementation of an Alpha-like micropro-
cessor, called IVM (Illinois Verilog Model) [20, 21]. IVM
implements a subset of the instruction set of the Alpha
21264 microprocessor. Consisting of approximately 40,000
state elements, the IVM is rich in architectural features
including: superscalar, out-of-order execution, dynamically
scheduled pipeline, hybrid branch prediction and specula-
tive instruction execution. IVM can have up to 132 instruc-
tions in-flight through its 12-stage pipeline, supported by a
dynamic scheduler of 32 entries and 6 functional units. The
complexity of IVM reflects most of the features of modern,
high-performance microprocessors. Furthermore, it allows
simulation of the execution of actual workload, such as the
SPEC2000 benchmarks. Thus, it enables a realistic inves-
tigation of the impact of performance faults in modern
microprocessors. Along with the Verilog implementation of
IVM, we also make use of a functional simulator, which is
a part of the SimpleScalar tool suite and supports the full
instruction set of the Alpha 21264 microprocessor [22]. This
capability is crucial because it enables us to circumvent the
limitations of IVM, which does not support system calls
and floating point instructions. Such cases are handled by
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transferring the simulation state to the functional simulator,
executing the corresponding instructions, and transferring
the new state back to the Verilog model to resume simula-
tion. Figure 1 shows the block diagram of IVM, as presented
in [20].

In this research, we focus on three key modules of the
IVM microprocessor, namely the Scheduler, the ReOrder
Buffer (ROB), and the Fetch Unit. The following subsec-
tions provide details on the functionality of these modules,
along with a discussion on how this functionality lends itself
to the existence of performance faults.

3.1 Scheduler

Functionality The Scheduler is a dynamic module which
contains an array of up to 32 instructions waiting to be
issued. Each instruction coming to the Scheduler resides
in this buffer until an acknowledgement is received from
the execution unit that it can start execution. At this time,
the corresponding location in the scheduler waiting list
is cleared for use by another newly arriving instruction.
Instructions are issued out of order depending on the follow-
ing factors:

– Availability of instructions in the Scheduler
– Avoidance of structural hazards
– Avoidance of data hazards

Fig. 1 IVM block diagram [20]

Structural hazards are considered by the Scheduler before
issuing an instruction. The IVM microprocessor has 6 func-
tional units: 2 simple, 1 complex, 1 branch and 2 memory
units. Thus, up to 6 instructions with the above limita-
tions on the type of instructions can be issued in each
clock cycle.

Write-After-Read (WAR) and Write-After-Write (WAW)
data hazards are taken care of by the Rename module of
IVM. Read-After-Write (RAW) data hazards, however, may
still exist due to dependencies between instruction operands.
To deal with such RAW hazards, the Scheduler uses the
Scoreboard method [23]. Based on the type of functional
unit that will be executing an instruction, the Scoreboard
determines when the destination register for this instruction
will be written and available for other instructions to read.
Consequently, the Scheduler prevents issuing of instructions
that need to use this register prior to the time that it becomes
available.

Possible Performance Faults Any fault that makes a register
appear to be ready for reading prior to its time of avail-
ability will make the processor issue the dependent instruc-
tions before their operands are actually ready. Nevertheless,
readiness of registers is checked again in the IVM Execu-
tion unit before instruction execution commences; thus, if
such a fault occurs, the execution unit makes the Sched-
uler reissue the instruction until the operands are really
ready. As a result, such faults only affect the performance
of the processor but not the correctness of its functionality.
Similarly, if a fault in the scoreboard prolongs the unavail-
able window for reading a register, dependent instructions
are issued with a delay which affects performance but
not correctness.

In addition, as shown in Fig. 2, in order to execute an
instruction the Scheduler sends the instruction, along with
an ‘issue’ and a ‘valid’ signal, to the corresponding func-
tional unit. The former indicates whether the instruction
has been issued to a functional unit, while the latter indi-
cates validity of the instruction. Both signals are set by
the Scheduler. When an instruction is issued, the readi-
ness of the corresponding operands is checked and two
acknowledge signals are sent back to the Scheduler for each
issued instruction. In fact, if for any reason the functional
unit can not start execution, the scheduler re-issues the
instruction. Hence, many faults disrupting this handshaking
protocol will only result in performance degradation but not
in erroneous functionality.

3.2 ReOrder Buffer

Functionality In a processor with out-of-order execution
capabilities, a ReOrder Buffer (ROB) module serves as the
mechanism to ensure in-order instruction commitment. This
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Fig. 2 Instruction execution
flow in IVM

is achieved by means of an identification number, called
ROBid, which the ROB assigns to each instruction that
comes to the Scheduler and which follows the instruction
until it commits. In IVM, the ROB has a queue of 64 loca-
tions, each of which corresponds to a dispatched instruction
that has yet to be committed. Instructions proceed from
IVM’s execution unit to the ROB, where up to 8 instructions
can be retired in each clock cycle, after a number of factors
are considered.

Specifically, upon completion of execution of an instruc-
tion, a number of signals are sent to the ROB from the
corresponding functional unit, as shown in Fig. 2. These sig-
nals include the ROBid of the instruction, a ‘Valid’ signal
signifying execution completion, an ‘Exception Reporting’
signal which indicates whether any exception was raised
during execution of a non-branch instruction, as well as a
‘Translation Lookaside Buffer (TLB) Miss’ and a ‘Load
Aliasing’ signal for Store and Load instructions. Based
on this information, the ROB ensures correct commitment
order by retiring Instruction J (instJ ) in clock cycle C if the
following conditions hold:

– No exception was raised during execution of instJ
– If instJ is either a Store or a Load instruction, no TLB

miss occurred
– If instJ is a Load instruction, no Load Aliasing

occurred
– Potential flush due to a mispredicted branch cannot

remove instJ from the ROB prior to its commitment
– Preceding instructions (i.e. dispatched with earlier

ROBid than instJ ) have either been retired in previous
clock cycles or retire in clock cycle C

– Only one branch instruction can be retired in a clock
cycle. If there are more branch instructions among
those that are ready to retire in clock cycle C,
only the instructions up to the second branch are
retired.

Possible Performance Faults The ROB compares the target
Program Counter (PC) of each branch instruction to the PC
of its next instruction. In case of a discrepancy, the pipeline

is flushed after retiring the branch instruction and the
target PC is sent to the Fetch Unit to show the address from
which the instructions should be fetched. Therefore, any
fault in the ROB that results in an unintended branch flush,
will result in fetching and executing the flushed instructions
again, thus decreasing the performance and throughput of
the pipeline.

In addition, the ROB sends a ‘Direction’ signal to the
Fetch Unit, indicating the outcome of the last retired branch
instruction (Taken or Not Taken). This signal is used by
the Fetch Unit, along with other parameters, to predict the
direction of the following branch instructions. Any fault that
changes this signal may affect the stream of instructions
that follow the next branch instruction and may result in
unintended pipeline flushes which, in turn, will affect the
performance of the processor.

3.3 Fetch Unit

Functionality Speculative processors fetch instructions into
the pipeline before it is known whether they should be
executed or not. When a branch instruction is fetched,
its direction (Taken or Not Taken) is predicted immedi-
ately so that more instructions can be fetched, but the
actual direction status is only determined after it is exe-
cuted. At that point, if the prediction was incorrect, the
pipeline is flushed and the Fetch Unit resumes fetch-
ing instructions from the correct address [24]. The IVM
Fetch Unit fetches 4 adjacent instructions by reading two
lines from the instruction cache,1 and delivers them to
the Decoder. Fetch has 3 phases, F0, F1, and F2, shown
in Fig. 1.

F0 looks up the Branch Target Buffer (BTB) and Return
Address Stack, and makes a simple branch prediction which
feeds F1. In addition, F0 starts the first stage of the meta

1The instruction cache stores four 32-bit instructions per line, aligned
to 16 bytes. However, the first instruction to be fetched in each cycle
may not be aligned on a 16-byte boundary. Thus, to guarantee delivery
of 4 instructions, two cache lines need to be accessed.
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branch prediction. The BTB is structured as a multi-way
associative cache and is looked-up via a portion of the PC.
Note that all BTB ways are accessed simultaneously and
their tags are compared to the PC to determine whether the
data in any of the ways is a match. The predictor in the BTB
is per BTB entry (i.e. per branch). In IVM, each BTB has
256 two-bit locations.

F1, which has access to the instruction cache, com-
pletes the meta branch prediction and inserts the instruc-
tions fetched from the instruction cache into the fetch
queue. If the meta branch prediction does not match the
simple branch prediction from the BTB, the Fetch Unit
performs a mini pipeline flush, redirecting F0 to the
address predicted by the meta branch predictor and inval-
idating the instructions that were already fetched after
the branch.

F2, equipped with a 32 location queue, receives up to 8
instructions in each clock cycle and sends up to 4 instruc-
tions to the decoder. In essence, F2, decouples the Fetch
Unit from the rest of the processor.

Possible Performance Faults Any malfunction of the sim-
ple branch predictor in F0 or the meta branch predictor in F1
may cause an unexpected pipeline flush, either in phase F1
or later in the ROB after the branch instruction is executed,
causing performance degradation. Of course, the perfor-
mance lost by an unnecessary pipeline flush in the ROB is
more significant, as compared to the pipeline flush in the F1
phase.

In addition, since the BTB contents are used to pre-
dict the branch target address when a branch is predicted
as Taken, faults in the BTB may result in considerable
performance loss. Even if the branch is, indeed, correctly
predicted as Taken, a fault in the BTB contents will lead
the processor to execute an incorrect stream of instruc-
tions and will finally result in a pipeline flush after the
related branch instruction is executed and its correct tar-
get address is determined. Since this pipeline flush will
not happen until the branch instruction is retired in the
ROB, and considering the out-of-order instruction execu-
tion capability of IVM, flushing the pipeline may result
in dumping many executed instructions from the pipeline
and consuming many clock cycles to execute the correct
instructions.

4 Simulation Capabilities

One of the most valuable capabilities of IVM and its com-
plementary functional simulator is their ability to execute
SPEC2000 benchmarks, thus allowing simulation of real
workload. However, the IVM version that has this capa-
bility is, unfortunately, not synthesizable. Thus, we cannot

make use of gate-level fault simulation tools for the pur-
pose of this study. Instead, we employ an RT-Level fault
simulator2 which was developed and presented in detail in
[19], wherein fault injection is performed using a method
similar to the parallel saboteurs technique described in
[26]. Specifically, the Verilog model of each target mod-
ule is mutated and a Fault Controller module is added to
control all fault injection parameters, including the loca-
tion, type, as well as the start and stop injection times for
each fault.

In this method, a unique identification number, called
UID, is given to each entity (i.e. register or wire) of the
fault simulation target module. Then during simulation, the
Fault Controller is responsible for fault injection. In each
clock cycle, one bit of one entity is accessed and set to the
faulty value. When the Fault Controller activates the fault
clock (i.e. the signal that controls the fault simulation start-
ing and stopping clock cycle), each module compares the
broadcasted UID (i.e. the UID of the target fault simulation
signal which is set by the Fault Controller) to the UIDs of
its internal entities. If a match is found, the module modifies
the corresponding bit, as specified by the Fault Type coming
from the Fault Controller to the module.

Figure 3 shows a high-level diagram of this method,
which allows injection of either stuck-at or transient faults
with user-defined activation times to any entity defined in
the RT-Level Verilog model (dotted lines indicate hardware
added for fault simulation). As shown in this figure, each
storage element or wire is driven by a multiplexer which
is controlled by the Fault Controller to inject the appropri-
ate value to the intended location during the active fault
injection window.

5 Performance Impact Analysis Method

The aforementioned simulation capabilities provide us with
the necessary infrastructure to evaluate the impact of faults
in key speculative execution modules of a modern micro-
processor on its performance. Our main objective is to gain
insight regarding the extent of the problem, including both
the number of performance faults and the level of perfor-
mance degradation that they incur. To this end, we employ
the fault simulation-based performance evaluation approach
depicted in Fig. 4. Specifically, we start by simulating the
execution of k instructions of a typical workload and record-
ing the corresponding number of clock cycles, CCg(k),

2While our performance impact analysis is performed at the RT-Level,
we note that a recent study reveals a very strong correlation between
the impact of RT-Level and Gate-Level faults on the execution of work-
load in the IVM processor [25]; hence, we expect that the obtained
results are representative of what would be obtained through gate-level
fault simulation.
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Fig. 3 RT-level fault injection
method

along with the resulting architectural state,3 ASg(k), and
the machine state, MSg(k), of the golden (fault-free) micro-
processor model. We, then, repeat the simulation injecting
one fault at a time and recording the corresponding number
of clock cycles, CCf (k), along with the resulting archi-
tectural state, ASf (k), and the machine state, MSf (k), of
the faulty microprocessor model. A comparison between
the simulation outcomes classifies each fault to one of the
following types:

– Functionality Fault: A difference between the archi-
tectural states ASg(k) and ASf (k) of the golden and
faulty model, respectively, indicates a functionally
incorrect execution of the k instructions.

– Performance Fault: When the architectural states
match, a difference between the clock cycles CCg(k)

and CCf (k) of the golden and faulty model, respec-
tively, indicates a functionally correct but performance-
impacted execution of the k instructions.

– Latent Fault: When the architectural states and pro-
gram execution durations match, a difference between
the machine states MSg(k) and MSf (k) of the golden
and faulty model, respectively, indicates that the fault

3The definitions of architectural state and architectural state corrup-
tion used herein are borrowed from [20], where it is stated that “In
IVM, Microarchitectural state consists of all the SRAM cells, latches,
and flip-flops used to implement a processor microarchitecture.
Architectural state is a subset of microarchitectural state defined as the
state of the machine that is exposed at the instruction set architecture
level (e.g., the program counter, register files, and memory state). So
Architectural state corruption is any change in PC, register files, and
memory state.”

affected a part of the microprocessor that is not
visible to the programmer and did not impact the
functional correctness or the performance of execut-
ing the k instructions. Yet it is not guaranteed that
it will not affect future instructions executed on the
microprocessor.

– Masked Fault: When no discrepancy exists between
the architectural states, program execution durations,
and machine states of the golden and faulty model,
respectively, the fault is suppressed and does not leave
any residual effect that may impact future instructions
executed on the microprocessor.

Besides being classified in one of the above types,
an injected fault may lead to a different simulation out-
come, namely stalling of the pipeline. As explained in
Section 3, the IVM microprocessor model lacks support for
certain instructions, such as system calls and floating-point
operations [19]. Even though the window of k instructions
is carefully chosen so that no such instruction is fetched
during program execution on the golden microprocessor
model, a fault may still cause the microprocessor to incor-
rectly call such instructions within the same window. In this
case, execution stalls due to the described microprocessor
model limitations, preventing classification of the fault in
one of the above types. Such faults are reported separately
by marking the corresponding runs as Stalled.

In the case of performance faults, the above method
also yields a quantitative assessment of the performance
impact by providing the difference in the number of clock
cycles for executing the k instructions, CCf (k) − CCg(k).
Interestingly, this difference may some times be negative,
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Fig. 4 Simulation outcome classification

i.e. the execution on the faulty microprocessor may be
actually faster than the execution on its fault-free counter-
part. This is expected, due to the speculative nature of the
hardware affected by such performance faults. For exam-
ple, a fault in the branch prediction unit which results in
predicting all branches as “Not Taken”, may increase per-
formance when running a program in which most of the
branches should, indeed, not be taken, yet the branch pre-
diction unit incorrectly predicts some of them as “Taken”.
Nevertheless, since speculative hardware is carefully
designed to improve overall execution, such oddities are
the minority. Most faults in this hardware are expected to
adversely impact performance.

As a final note regarding the number and impact of
performance faults, as assessed by fault-simulating a rep-
resentative workload, we raise caution that they only serve
as an indication of the magnitude of the problem. Indeed,
a considerable number of faults reported as masked may
actually be performance faults that have not been acti-
vated during the execution of this particular workload. For
example, speculative processors use a number of tables to
predict the branch target address. Any fault in these tables
may cause the running program to jump to an unintended
address and, subsequently, flush the pipeline when the real
target address is determined. However, only a small subset
of such faults will typically be activated during execution
of a sample workload, resulting in a reported number of
performance faults that is only a lower-bound and, most
probably, an underestimate. Therefore, in an effort to pro-
vide a more accurate count, we also manually perform a
structural analysis of the targeted microprocessor modules,
seeking faults akin to the ones that have been classified as
performance faults. For example, if a fault in one bit of
a register has been shown to be a performance fault, we
include in our list all faults in all bits of the register. We
call these faults potential performance faults and we report
them separately. To our knowledge, there currently does not
exist any method for either automatically identifying perfor-
mance faults or automatically generating workload that will

be affected by such faults, hence we rely on simulation of
typical workload.

6 Results and Analysis

In this section, we discuss the simulation setup used for our
study and we present and analyze the results.

6.1 Simulation Setup

Target Modules & Types of Injected Faults In this study, we
employ three modules of the IVM microprocessor namely
the ROB, the Scheduler and the Fetch Unit. Given
the varying degree of performance-enhancing functionality
of each of these three modules, which is briefly described
in Section 3, we expect to find a significantly different
number of performance faults in each of them. The single
stuck-at fault model is employed throughout our simulations
and faults are injected using the RTL model fault injection
technique of [19], which was briefly described in Section 4.
The second column of Table 1 reports the total number
of faults in each of the three modules. The third column
reports the number of faults that cause the pipeline to stall
due to limitations in the IVM model, as was explained in
the previous section. These faults are disregarded and our
study focuses on the remaining faults, which are listed in
the fourth column of the table. Among these, a thorough
manual analysis of the functionality of each module reveals
the number of potential performance faults, which are listed
in the fifth column of the table. As expected, the Fetch
Unit, which encompasses the branch prediction method
of IVM, devotes a very large percentage of its real-estate
to performance enhancement operations. The ROB, which
is in charge of ensuring in-order retirement of out-of-order
executed instructions, also comprises a considerable num-
ber of potential performance faults. Even the Scheduler,
through its speculative execution functionality, allows for a
tangible possibility of performance faults.
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Table 1 Statistics on RT-level
faults in each module IVM module Total number Faults causing Faults considered Potential performance

name of faults stalling in study faults

Scheduler 18,822 7,980 10,842 720 (6.64 %)

ROB 61,470 18,802 42,668 16,787 (39.34 %)

Fetch unit 364,490 742 363,748 321,675 (88.43 %)

Total 444,782 27,524 417,258 339,182 (81.28 %)

Simulation Workload In order to investigate the impact of
performance faults, we used four quite different SPEC2000
benchmarks as the simulation workload for the IVM pro-
cessor, namely gcc, bzip2, gzip and mcf. The use of
four benchmarks ensures variability on the instructions exe-
cuted through the processor and the control logic that they
exercise. Each benchmark is first executed on the golden
(fault-free) microprocessor model to obtain the baseline
performance and then on each faulty model, in order to
apply the performance impact analysis method of Section 5.
In each simulation run, the functional simulator is used
to execute the first 50,000 clock cycles, thus bypassing
the initial system calls and other operations not imple-
mented in IVM and reaching a code segment that will not
stall the pipeline. Then, k = 10, 000 instructions of each
benchmark are executed using the RT-Level Verilog fault
simulator. The second column of Table 2 shows the num-
ber of clock cycles necessary to execute 10,000 instructions
of each benchmark on the golden microprocessor model.
The third column lists the number of conditional branches
executed within the 10,000 instructions. The fourth and
fifth columns list the number of mispredicted branches
in the golden model and the average number of mispre-
dicted branches in the faulty models, wherein the faults
resulted only in performance degradation, respectively. The
difference between these figures accounts, partially, for the
performance degradation incurred by such faults, although
mispredicted branches constitute only one of the many such
reasons.

6.2 Experimental Results

The results of our study are presented and discussed below.
Since this is a simulation-based study, the reported numbers
should serve as a general indication of the magnitude of the
problem rather than an absolute quantification.

Number of Performance Faults First, in Tables 3, 4, 5, and
6, we report the distribution of faults in each of the four
fault types discussed in Section 5 for gcc, bzip2, gzip
and mcf, respectively. For each benchmark, the results are
presented individually for each of the three modules and are
then accumulated. The first observation that can be made

based on the last two columns of these four tables is that
only a small subset of faults ends up affecting either the
functionality or the performance of executing the 10,000
instructions of each of the four benchmarks. The rest of the
faults are either masked or latent. This is expected, since
only a small portion of the functionality of the three mod-
ules is exercised by the code segments of these benchmarks.
As a result, most faults are either not excited at all (or are
excited but are logically suppressed), in which case they
are reported as masked, or linger around but do not end
up impacting the execution of the benchmark within the
executed number of instructions, in which case they are
reported as latent. We point out that, under appropriate exci-
tation, some of these masked or latent faults will end up
causing functional discrepancy, while others will end up
causing performance degradation. This can also be corrob-
orated by contrasting the number of identified performance
faults to the number of potential performance faults reported
in the last column of Table 1.

We now turn our focus to the faults that were classified as
either functionality or performance faults during the execu-
tion of the 10,000 instructions of the two benchmarks. The
distribution of these faults is shown individually for each
module and cumulatively in Figs. 5, 6, 7 and 8 for gcc,
bzip2, gzip and mcf, respectively. Evidently, among the
faults that end up affecting the execution of the 10,000
instructions of the four benchmarks, the vast majority only
impacts performance but not functionality. Of course, these
results are skewed by the fact that we are experimenting
with modules whose functionality is closely related to per-
formance enhancement, such as the Scheduler, the ROB,
and the Fetch Unit. Nevertheless, the key takeaway
point from the reported data is that there exists a significant
number of faults that will only cause performance degra-
dation but no functional discrepancy in the execution of a
program.

Incurred Performance Degradation The second question
we try to address concerns the magnitude of performance
degradation that the identified performance faults incur.
Tables 7, 8, 9 and 10 report the minimum, maximum,
and average performance degradation incurred by perfor-
mance faults in the execution of gcc, bzip2, gzip and
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Table 2 Statistics for executing 10,000 instructions of each benchmark

Benchmark Number of clock Number of Number of Average number of

cycles to execute conditional mispredicted branches mispredicted branches in

10,000 instructions branches in golden model models with performance faults

gcc 5,156 1,270 51 107

bzip2 6,127 823 21 45

gzip 16,299 218 13 51

mcf 19,084 357 12 114

Table 3 Fault classification results for gcc

Module name Total faults Functionality faults Performance faults Latent faults Masked faults

Scheduler 10,842 149 (1.3 %) 530 (4.8 %) 4,056 (37.4 %) 6,107 (56.3 %)

ROB 42,668 945 (2.2 %) 9,845 (23.0 %) 9,514 (22.3 %) 22,364 (52.4 %)

Fetch unit 363,748 10 (< 0.1 %) 3,420 (0.9 %) 132,074 (36.3 %) 228,244 (62.7 %)

Total 417,258 1,104 (0.3 %) 13,795 (3.3 %) 145,644 (34.9 %) 256,715 (61.5 %)

Table 4 Fault classification results for bzip2

Module name Total faults Functionality faults Performance faults Latent faults Masked faults

Scheduler 10,842 92 (1.0 %) 549 (5.0 %) 3,908 (36.0 %) 6,293 (58.0 %)

ROB 42,668 603 (1.4 %) 8,677 (20.3 %) 10,890 (25.5 %) 22,498 (52.7 %)

Fetch unit 363,748 15 (< 0.1 %) 7,284 (2.0 %) 130,305 (35.8 %) 226,144 (62.2 %)

Total 417,258 710 (0.2 %) 16,510 (3.9 %) 145,103 (34.8 %) 254,935 (61.1 %)

Table 5 Fault classification results for gzip

Module name Total faults Functionality faults Performance faults Latent faults Masked faults

Scheduler 10,842 41 (0.4 %) 215 (2.0 %) 4,051 (37.4 %) 6,535 (60.2 %)

ROB 42,668 423 (1.0 %) 4,416 (10.3 %) 14,022 (32.9 %) 23,807 (55.8 %)

Fetch unit 363,748 10 (< 0.1 %) 1,279 (0.3 %) 133,045 (36.6 %) 229,414 (63.0 %)

Total 417,258 474 (0.1 %) 5,910 (1.4 %) 151,118 (36.2 %) 259,756 (62.2 %)

Table 6 Fault classification results for mcf

Module name Total faults Functionality faults Performance faults Latent faults Masked faults

Scheduler 10,842 9 (< 0.1 %) 16 (0.1 %) 3,922 (36.2 %) 6,895 (63.6 %)

ROB 42,668 257 (0.6 %) 2,192 (5.1 %) 16,219 (38.0 %) 24,000 (56.2 %)

Fetch unit 363,748 7 (< 0.1 %) 1,109 (0.3 %) 133,235 (36.7 %) 229,397 (63.0 %)

Total 417,258 273 (< 0.1 %) 3,317 (0.8 %) 153,376 (36.7 %) 260,292 (62.4 %)
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Fig. 5 Distribution of
functionality and performance
faults for gcc

Fig. 6 Distribution of
functionality and performance
faults for bzip2

Fig. 7 Distribution of
functionality and performance
faults for gzip

Fig. 8 Distribution of
functionality and performance
faults for mcf
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Table 7 Performance degradation incurred in gcc (Baseline = 5, 156
clock cycles)

Module Minimum Maximum Average

Scheduler −38(−0.7 %) +4, 621(+89.6 %) +569(+11.0 %)

ROB −13(−0.2 %) +88, 694(+1720.0 %) +778(+15.0 %)

Fetch unit −249(−4.8 %) +16, 990(+329 %) +2, 213(+42.9 %)

Overall −249(−4.8 %) +88, 694(+1720.0 %) +1, 126(+21.8 %)

mcf, respectively. The provided figures show the differ-
ence in the number of clock cycles that it takes to complete
the 10,000 instructions in the presence of a performance
fault. We remind that the number of clock cycles it takes
to execute these instructions in the golden model is 5,156
for gcc, 6,127 for bzip2, 16,299 for gzip and 19,084
for mcf.

As can be observed, due to the branch prediction and
other speculative execution aspects of modern micropro-
cessors, some performance faults actually speed up the
execution of the instructions. Hence, the minimum per-
formance degradation is negative, i.e. it is a performance
improvement. At the other end of the spectrum, the worst
performance faults incur a very large degradation, often
orders of magnitude worse that the performance of the
golden model. On average, the identified performance faults
incur a performance degradation of 1,126 clock cycles
(21.8 %) in the execution of gcc, 779 clock cycles (12.7 %)
in the execution of bzip2, 486 clock cycles (2.9 %) in the
execution of gzip and 1,193 clock cycles (6.2 %) in the
execution of mcf. The key takeaway point from the reported
data is that the impact of performance faults is quite sig-
nificant, warranting further investigation of methods for
recovering the lost performance.

Consistency of Relative Impact The third point that we
investigate concerns the relative impact of performance
faults on different benchmarks. Specifically, we first exam-
ine the number of performance faults that are activated in
more than one of the four benchmarks. For example, let
us consider the performance faults that occur during he
simulation runs of both gcc and bzip2. The results are

Table 8 Performance degradation incurred in bzip2 (Baseline =
6, 127 clock cycles)

Module Minimum Maximum Average

Scheduler −201(−3.2 %) +1, 668(+27.2 %) +46(+0.7 %)

ROB −74(−1.2 %) +86, 465(+1411.0 %) +253(+4.1 %)

Fetch unit −205(−3.3 %) +19, 253(+314.0 %) +1, 461(+23.8 %)

Overall −205(−3.3 %) +86, 465(+1411 %) +779(+12.7 %)

Table 9 Performance degradation incurred in gzip (Baseline =
16, 299 clock cycles)

Module Minimum Maximum Average

Scheduler −2, 219(−13.6 %) +1, 811(+11.1 %) +122(+0.7 %)

ROB −867(−5.3 %) +72, 686(+445 %) +603(+3.7 %)

Fetch unit −776(−4.8 %) +1, 337(+8.2 %) +144(+0.9 %)

Overall −2, 219(−13.6 %) +72, 686(+445 %) +486(+2.9 %)

shown in Fig. 9 individually for each module and cumu-
latively. Overall, while only 20,013 out of the 339,182
possible performance faults (5.9 %) are activated when exe-
cuting 10,000 instructions of either gcc or bzip2, which
in a uniform distribution would imply a very small inter-
section set, more than half of them (10,292, i.e. 51.42 %)
are actually activated in both benchmarks. The situation is
similar for any other pair of benchmarks. To further demon-
strate this point, Fig. 10 shows the number of performance
faults that are activated in at least one, two, three, or all
four benchmarks, individually for each module as well as
cumulatively. These results imply that some performance
faults have consistently a much higher probability of acti-
vation, independent of the workload being executed by the
processor, hence they are more critical.

By further examining the impact of performance faults
that are activated in more than one benchmark we obtain
another very interesting result that corroborates our obser-
vation regarding their relative importance. Consider, for
example, the performance faults that are activated in both
of the two benchmarks gcc and bzip2. For each of these
two benchmarks, we create a rank-ordered list of all these
faults based on decreasing performance degradation impact.
If a fault lies in position i on the gcc list and position j
on the bzip2 list, we compute |i − j | and we report the
average over all faults, individually for each module and
cumulatively, in the third column of Table 11. As may be
observed, while the overall fault list includes 10,292 faults,
the average difference in the ranking of importance of a fault
to the two benchmarks is only 198 positions, i.e. 1.92 %,
clearly indicating consistency of relative impact of a per-
formance fault across different workloads. Furthermore, we

Table 10 Performance degradation incurred in mcf (Baseline =
19, 084 clock cycles)

Module Minimum Maximum Average

Scheduler −1, 872(−9.8 %) +3, 490(+18.3 %) +345(+1.8 %)

ROB −1, 343(−7.0 %) +83, 008(+435 %) +1, 079(+5.6 %)

Fetch unit −520(−2.7 %) +4, 083(+21.4 %) +1, 433(+7.5 %)

Overall −1, 872(−9.8 %) +83, 008(+435 %) +1, 193(+6.2 %)



362 J Electron Test (2013) 29:351–366

Fig. 9 Consistency of Activated Performance Faults in gcc and bzip2

compare the actual degradation (i.e. additional clock cycles)
incurred by each performance fault on the execution of
the two benchmarks. Specifically, if a fault incurs x clock
cycles of performance degradation on gcc and y on bzip2,
we compute |x − y| and we report the average over all
faults, individually for each module and cumulatively, in the
fourth column of Table 11. The percentages in the paren-
theses next to these numbers express the average difference
between the impact of faults as a percentage of the aver-
age execution time of these two benchmarks (i.e. divided
by (5,156+6,127)/2). As may be observed, the average dif-
ference in performance degradation incurred by the 10,292
faults that are activated both in gcc and bzip2 in only
722 clock cycles (12.80 %), further supporting our observa-
tion regarding consistency of relative impact. It is also worth
noting that the top-10 performance faults in the impact-
based, rank-ordered lists for gcc and bzip2 are exactly

the same. Similar results are obtained for any other pair of
benchmarks.

To further demonstrate this point, in Table 12 we report
the same information across all four benchmarks. The
second column of the table indicates the number of per-
formance faults that affect all four benchmark per module
and cumulatively. Once again, we create a rank-ordered list
of all these faults based on decreasing performance degra-
dation impact. If a fault lies in position i on the gcc list,
position j on the bzip2 list, k on the gzip list, and posi-
tion l on the mcf list, we compute (|i−j |+|i−k|+|i− l|+
|j −k|+|j −l|+|k−l|)/6 and we report the average over all
faults in the third column of the table. As may be observed,
while the overall list of common performance faults across
the four benchmarks has 1,828 elements, the average differ-
ence in the rank-ordered lists of the four benchmarks is only
60 positions, i.e. 3.28 %. Similarly, in the fourth column

Fig. 10 Commonality of activated performance faults across multiple benchmarks
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Table 11 Impact consistency across gcc & bzip2

Module Faults in Average Average

name intersection ranking impact

of gcc & bzip2 Difference Difference

Scheduler 475 37 (7.78 %) 94 (1.67 %)

ROB 7,546 173 (2.29 %) 605 (10.72 %)

Fetch unit 2,271 74 (3.25 %) 1,240 (21.97 %)

Overall 10,292 198 (1.92 %) 722 (12.80 %)

we compare the actual degradation that a performance fault
causes in each of the four benchmarks. Specifically, if a fault
incurs x clock cycles of performance degradation on gcc,
y on bzip2, z on bzip2 and w on bzip2, we compute
(|x−y|+|x−z|+|x−w|+|y−z|+|y−w|+z−w|)/6 and
we report the average over all faults, individually for each
module and cumulatively. The percentages in the parenthe-
ses next to these numbers express the average difference
between the impact of faults as a percentage of the aver-
age execution time of the four benchmarks (i.e. divided by
(5,156+6,127+16,299+19,084)/4). The results show that
the average difference in performance degradation incurred
by the 1,828 faults in the intersection of the four bench-
marks is only 1,606 clock cycles (13.77 %), further cor-
roborating our observation regarding impact consistency of
performance faults.

Based on the above observations, the key takeaway
conjecture is that the activation probability, as well as
the relative impact of performance faults are consistent
across different benchmarks. Hence, additional hardware
expended towards alleviating the impact of such faults and
reclaiming the lost performance would benefit the entire
microprocessor workload.

7 Examples of Performance Faults

In this section, we discuss in detail and we experimentally
demonstrate the impact of a few examples of performance
faults in IVM using SPEC2000 benchmarks. We note that
the impact of each such fault is reflected in a difference

Table 12 Impact consistency across all four benchmarks

Module Faults in Average Average

name intersection of ranking impact

all Benchmarks Difference Difference

Scheduler 6 0 (0.00 %) 1,853 (15.88 %)

ROB 1,272 26 (2.04 %) 643 (5.51 %)

Fetch Unit 550 44 (8.00 %) 3,832 (32.85 %)

Overall 1,828 60 (3.28 %) 1,606 (13.77 %)

between the number of clock cycles needed to execute a
specific number of instructions on the faulty and golden
microprocessor model. We note, however, that this dif-
ference may be either positive or negative, implying a
performance degradation or a performance improvement,
respectively. The results are summarized in Table 13, where
each row corresponds to one of these examples. The sec-
ond, third, and fourth column of the table list the running
benchmark, the name of the IVM signal on which a fault is
injected, and the number of executed instructions, respec-
tively. The last two columns provide the number of the clock
cycles required to run these instructions in the two models.

Example 1 As was explained in Section 3.1, up to 6 instruc-
tions may be issued by IVM in each clock cycle, including
up to 2 simple, 1 complex, 1 branch and 2 memory instruc-
tions. For each functional unit, in turn, the Scheduler exam-
ines the array of available instructions, picks the first one
that matches the type of the functional unit and places it to
the corresponding output port. At the same time, it sets the
valid bit of this output port to ‘1’, in order to notify the func-
tional unit that it can commence execution. Only after this
valid bit is set to ‘1’ is the issued bit corresponding to this
instruction also set to ‘1’, signifying that the instruction has
been issued.

Let us assume now that, in the golden model, a sim-
ple instruction i is issued for execution to simple unit 1
in clock cycle c by placing it to the corresponding out-
put port and setting the valid simple1 signal to ‘1’. If
a stuck-at 0 fault is injected in valid simple1 signal, then
simple unit 1 will not start executing instruction i and the
issued signal corresponding to this instruction will remain
‘0’. Immediately thereafter, the Scheduler will seek an avail-
able instruction to issue for execution to simple unit 2 in
clock cycle c. The first such unissued instruction will again
be instruction i. Hence, the instruction that would be issued
to simple unit 2 in clock cycle c if the valid simple1 sig-
nal was not stuck at ‘0’ will now have to wait since there
is no other simple unit available in clock cycle c. The same
process will be repeated every time the Scheduler will try
to issue an instruction to simple unit 1, effectively making
the processor operate with only one simple unit. Instruc-
tions will still be executed correctly, yet the throughput will
be lower. Hence, the fault valid simple1 stuck-at 0 is a
performance fault. As shown in the first row of Table 13,
when running 50,000 instructions of gcc, this fault incurs a
performance degradation of 15.42 %.

Example 2 A similar situation occurs with the two mem-
ory units in IVM: a stuck-at 0 fault in valid memory2 will
effectively make IVM operate with only one memory unit
and will prolong the run time of programs. However, in
some odd cases this fault may actually lead to improved
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Table 13 Impact of example performance faults

Ex. Work- Target # of # of Clock # of Clock

load signal Instr. cycles cycles

(golden) (faulty)

1 gcc valid simple1 50,000 41,724 48,162

2 gcc valid memory2 10,000 5,156 5,442

2 gcc valid memory2 50,000 41,724 41,256

3 bzip2 rob pctag f 15,000 8,464 10,530

3 bzip2 rob pctag f 50,000 22,748 22,654

4 bzip2 tk addr 50,000 22,748 67,015

performance. This happens because when all instructions
end up using the same memory unit, more internal data
forwarding can be performed when load aliasing occurs,
thus speeding up execution. The second and third rows of
Table 13 quantify the impact of this performance fault when
executing 10,000 and 50,000 instructions of gcc, respec-
tively. In the first case, a performance degradation of 5.54 %
is incurred, while in the second case, performance actually
improves by 1.12 %!

Example 3 In IVM, in order to enforce in-order commit-
ment of the out-of-order executed instructions, each of the
64 ROB entries holding an instruction also includes a 64-bit
field rob pctag f , which holds the PC of the next instruc-
tion. Thus, when a branch instruction is ready to be retired,
its corresponding entry in the ROB contains both the cor-
rect target PC address and the actual PC address that the
next instruction was fetched from based on the predicted
branch direction. Prior to retiring a branch instruction, these
two fields are compared and, if they do not match, the
pipeline is flushed and the correct target PC address of
the branch is sent to the Fetch Unit to resume execution
accordingly.

Assume now that a branch is correctly predicted, but due
to a stuck-at fault in the field rob pctag f , the above com-
parison fails, causing the ROB to assume that the branch
prediction was incorrect and to flush the pipeline, thus
adversely affecting performance. The next time around, the
branch will most likely end up in a different entry of the
ROB and the comparison will succeed, so the workload will
still be executed correctly. We should also mention that,
as discussed in Section 3.3, whenever a branch instruction
retires, the ROB sends the corresponding branch direction
(i.e. Taken or Not Taken) to the Fetch Unit, which uses it
along with other parameters to decide the prediction of sub-
sequent branches. Thus any unexpected branch flush, such
as the one described above, may alter the subsequent branch
predictions and, in turn, the stream of fetched instructions.
Interestingly, since predictions are not always correct, this
may lead to either performance degradation or performance

gain. The fourth and fifth rows of Table 13 quantify the
impact of two different stuck-at faults in a rob pctag f

entry while executing 15,000 and 50,000 instructions of
bzip2, respectively. In the first case, a performance degra-
dation of 24.40 % is incurred, while in the second case,
performance actually improves by 0.41 %!

Example 4 When the Fetch Unit of IVM receives a branch
instruction, it employs a multi-level method to predict
whether the branch should be taken or not, as well as to
determine the branch target address in the case that it is pre-
dicted as taken. Suppose that the register tk addr, which
holds the target address of given branch instruction has a
stuck-at fault. In this case, if this branch is predicted as
taken, the subsequent instructions are fetched from an incor-
rect address. Eventually, however, even if the branch direc-
tion was correctly predicted as taken, the ROB will identify
the discrepancy between the predicted branch target address
and the correct one, as explained in the previous example.
Hence, the pipeline will be flushed and the operation will
resume from the correct branch target address. Nevertheless,
resources and clock cycles will have been wasted on unnec-
essary instructions, effectively degrading performance. The
last row in Table 13 quantifies the impact of a stuck-at fault
in tk addr when executing 50,000 instructions of bzip2,
which degrades by 194.59 %.

8 Utility of Performance Impact Info

Information regarding the relative impact of performance
faults may be utilized to guide design modifications for
recovering the lost performance. In other words, akin to
the traditional fault-tolerant design approach, which ensures
correct functionality in the presence of faults, one may
think of this as a performance degradation-tolerant design
approach, which ensures the expected performance level.
Consider, for example, the IVM branch prediction method,
as discussed in Section 3.3. The process involves a local
predictor with 1024 three-bit locations and a gshare pre-
dictor with 4096 two-bit locations. Faults in these tables
do not affect functionality but only impact performance.
Nevertheless, equipping these tables with error recovery
mechanisms ensures their correct operation and, thereby,
recovers the lost performance. As a point of reference, in
Example 4 of Section 7, 2,356 out of the 4,117 (57.22 %)
branch instructions were mispredicted in the faulty model,
as compared to only 21 branch instructions (0.51 %) that
were mispredicted in the golden model. Use of mem-
ory error recovery methods could potentially recover the
performance loss.

In addition to hardware modifications for ensuring
performance, one may also envision the use of additional
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hardware to convert actual functionality faults into per-
formance faults, thereby improving yield. In other words,
through such hardware, a device that in the presence of a
fault would be discarded as faulty, may be salvaged since
it can operate correctly, yet at reduced performance. For
example, as we discussed in Section 3.2, up to 8 instruc-
tions are retired from the ROB module in the IVM processor
in each clock cycle. A fault in any one of the 8 ROB out-
put ports will result in a functionality fault, since the first
instruction to be stored there will never retire, stalling the
pipeline. A small self-test controller examining the oper-
ational health of these ports and isolating the faulty one
would enable the processor to continue operating, yet with
degraded performance. With this solution, execution of
40,000 instructions of gcc, which take 33,024 clock cycles
in the golden model and which would never execute in the
faulty model, may now be executed in 33,925 clock cycles,
i.e. with a performance degradation of 2.72 %.

9 Conclusion

Various architectural features aiming to improve micropro-
cessor performance give rise to a new type of faults which
do not affect correctness but only prolong program exe-
cution. As we demonstrated through a quantitative study
employing the IVM microprocessor model and SPEC2000
benchmarks, a sizeable number of faults in various modules
of a microprocessor are, indeed, such performance faults
and the incurred performance degradation is, often, very sig-
nificant. Interestingly, the relative impact of performance
faults is consistent across different workloads. Hence,
besides extending our study to more modules and bench-
marks, the continuation of this research will also investigate
methods for proving that a fault can only cause performance
degradation and automatically generating appropriate test
sequences, as well as hardware methods for recovering the
incurred performance loss and improving yield. Finally, an
additional application of the identification of performance
faults is in the development of compact Software-Based
Self Test (SBST) methods. In such methods, marking per-
formance faults prior to the test generation process, could
extensively decrease the number of test patterns applied
during each test as well as the test application time.
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