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Countering Modeling Attacks in PUF-based IoT

Security Solutions
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Hardware fingerprinting has emerged as a viable option for safeguarding IoT devices from cyberattacks. Such

a fingerprint is used to not only authenticate the interconnected devices but also to derive cryptographic keys

for ensuring data integrity and confidentiality. A Physically Unclonable Function (PUF) is deemed as an

effective fingerprinting mechanism for resource-constrained IoT devices since it is simple to implement and

imposes little overhead. A PUF design is realized based on the unintentional variations of microelectronics

manufacturing processes. When queried with input bits (challenge), a PUF outputs a response that depends

on such variations and this uniquely identifies the device. However, machine learning techniques constitute

a threat where intercepted challenge-response pairs (CRPs) could be used to model the PUF and predict

its output. This paper proposes an adversarial machine learning based methodology to counter such a threat.

An effective label flipping approach is proposed where the attacker’s model is poisoned by providing wrong

CRPs. We employ an adaptive poisoning strategy that factors in potentially leaked information, i.e., the in-

tercepted CRPs, and introduces randomness in the poisoning pattern to prevent exclusion of these wrong

CRPs as outliers. The server and client use a lightweight procedure to coordinate and predict poisoned CRP

exchanges. Specifically, we employ the same pseudo random number generator at communicating parties

to ensure synchronization and consensus between them, and to vary the poisoning pattern over time. Our

approach has been validated using datasets generated via a PUF implementation on an FPGA. The results

have confirmed the effectiveness of our approach in defeating prominent PUF modeling attack techniques in

the literature.
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1 INTRODUCTION

The major technological advances in recent years have enabled the incorporation of computa-
tion and communication capabilities in all sorts of devices. The notion of Internet of Things
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(IoT) refers to internetworking these devices at a large scale to serve a broad range of application
domains, such as healthcare, transportation, manufacturing, military, and tourism [1]. However,
the limited resources, pervasiveness and unsupervised operation, makes IoT devices vulnerable
to security attacks. Specifically, a device could be tampered with and manipulated. Moreover, the
diversity in device vendors allows cloning and malicious usage of replicated devices. Therefore,
IoT security is quite challenging and requires unconventional solutions.

As mentioned, the pervasiveness nature of IoT makes device authentication very crucial. Two
categories of authentication methodologies have been pursued in the literature. The first relies on
cryptography systems where digital signatures and keys are stored on the devices. Clearly, such a
methodology is not robust since adversaries can apply side channel analysis attacks to the phys-
ical device to retrieve the key, or fabricate a replicated circuitry to impersonate the real device
[13, 33]. The second methodology relies on unique device fingerprinting. Among the most no-
table techniques in this category are those employing Physically Unclonable Functions (PUFs)

[4, 11, 21].
A PUF design exploits variations in the device fabrication process to generate a fingerprint. A

PUF simply maps an input bit stream, referred to as challenge, to an output, referred to as response.
Since the process variations are random in nature and are independent of the fabricated devices,
a PUF cannot be cloned and its challenge-to-response mapping constitutes a signature for the
device. A PUF is deemed as an attractive choice for supporting IoT authentication since neither
the challenge nor the response is stored aboard the device [11, 13]. However, it has been shown
that advanced machine learning techniques could successively model the PUF operation using
some intercepted challenge-response pairs (CRPs) for training [10]. In fact, modeling the PUF
via machine learning techniques has been easier given the awareness of the PUF design despite
not knowing the process variation. The focus of this paper is on mitigating the vulnerability of
PUF-based authentication schemes to modeling attacks. A simple and lightweight mechanism is
proposed to diminish the risk of the PUF modeling and enable robust PUF-based authentication
of embedded devices.

Our mechanism counters the threat of PUF modeling using Adversarial Machine Learning

(AML) methodologies. AML opts to degrade the accuracy of data-driven models by injecting er-
roneous input. In the context of PUFs, such erroneous input corresponds to wrong association of
challenge and response. Such a poisoning approach should not be predictable to an eavesdropper,
yet both the server and client need to have agreement on the poisoning pattern. Moreover, AML
techniques are demanding in terms of computational resources and would thus constitute a ma-
jor burden if needed to be applied by an IoT device. To overcome these challenges, we propose a
Coordinated and Lightweight AML-based Countermeasure for PUF modeling attacks (Co-

LAC). Our countermeasure strives to degrade PUF modeling attempts while minimizing the load
on the IoT device and making it difficult for the adversary to distinguish between legitimate and
erroneous CRPs. CoLAC achieves its design goal by making the following contributions:

• Defense through implicit coordination: While the complexity of AML will be unbearable for
an IoT device, it is compatible with the capabilities of the server. AML involves two deci-
sions, namely, when data poisoning is applied and what data to be poisoned in order to
make the most impact on the adversary. CoLAC applies a simple strategy for the latter
and instruments implicit coordination for the former, i.e., deciding when to poison. Such

implicit coordination also allows both legitimate and poisonous data to be used for authenti-

cation; thereby no communication traffic overhead is imposed.
• Approximate estimation of adversary’s success: By intercepting the exchanged CRPs, an ad-

versary accumulates knowledge over time that translates to growing accuracy of the PUF
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model. AML-based data poisoning opts to degrade such a model. CoLAC triggers such poi-
soning when the model accuracy reaches a level that is deemed to be a threat. Tracking the
growth of the adversary’s model accuracy would require mimicking the modeling process,
which in essence implies running a machine learning algorithm for the used CRPs repeat-
edly. To avoid such computational burden, CoLAC uses the ratio of poisoned CRPs as an
approximated measure for accuracy; this allows the device and server to easily reach a mu-
tually agreed upon data poisoning decision without an explicit exchange of coordination
messages.

• Randomizing the data poisoning pattern: The AML strategy would be defeated if the adver-
sary could distinguish between legitimate and erroneous CRPs. Given how AML selects
what data to poison, an adversary cannot differentiate between CRPs based on the values
of challenge and response. Yet, the adversary can do that if a certain poisoning pattern
could be inferred. CoLAC tackles that by introducing randomization in the poisoning deci-
sion process. A pseudo random number generator is employed at both the device and server
that enables the generation of time-varying sequence of random numbers in a synchronized
way. Such randomization makes it difficult for the adversary to predict when poisoning will
take place while allowing both the device and server to implicitly agree on whether the next
CRP is legitimate or erroneous; although we use both legitimate and erroneous CRPs for
authentication, the corresponding responses are treated differently.

In summary, CoLAC is a lightweight mechanism that enables attack-resilient PUF-based au-
thentication of IoT devices without requiring hardware modification. We validate the robustness
of CoLAC using FPGA-generated dataset. The remainder of the paper is organized as follows. The
next section discusses the related work. Section 3 goes over our system and attack models. Sec-
tion 4 explores the ability of conventional adversarial machine learning techniques in countering
PUF modeling attacks. The analysis of Section 4 will be used to devise our proposed simple and ef-
fective PUF modeling countermeasure in Section 5. Section 6 reports the validation results. Finally,
the paper is concluded in Section 7.

2 RELATED WORK

As mentioned in the previous section, a PUF is deemed as an attractive security primitive. Partic-
ularly, strong PUFs are used for supporting device authentication. The focus of this paper is on
countering ML modeling attacks against PUF-based security solutions. Given the scope, we cover
related work on PUF-based authentication and published defense mechanisms against modeling
attacks. We note though that some published work has just studied the use of PUF to generate
cryptographic keys, without explicit consideration of device authentication [26, 34].

2.1 PUF-based Authentication

To support the secure transfer of data in IoT, the authors of [8] benefit from asymmetric crypto-
graphic schemes. They deploy PUFs in order to generate public and private keys to be used for
such data transfer. The proposed scheme is resilient against replay attacks, yet it is computation-
ally intensive. Wallrabenstein et al. [36] include a hardware implementation of an Elliptic Curve
cryptosystem on the IoT device to support secure transfer of data, and propose to embed a PUF
along with this cryptosystem to regenerate the private key when needed. However, the approach
requires some changes to be applied to the IoT hardware. Some work pursues multi-factor au-
thentication, e.g., by using a shared cryptographic key in addition to the CRP [19]. The focus of
Chatterjee et al. [9] is on avoiding the storage of CRPs on the server. They have proposed a solution
that incorporates identity-based encryption and keyed hash functions along with the PUF, in the
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authentication process. Mahalat et al. [27] have proposed a PUF-based mechanism for authenti-
cating IoT devices that are interconnected through WiFi links. Aman et al. [3] have also developed
a message-exchange protocol for authenticating devices using their PUFs.

Although the aforementioned authentication schemes are secure due to the unclonability na-
ture of PUFs, they either impose high overhead or are vulnerable to PUF modeling attacks where
the adversary can build the PUF model using a subset of the intercepted CRPs. Such modeling
can eventually facilitate replay, impersonation and other IoT related attacks, and should thus be
mitigated. CoLAC tackles such vulnerability. On the other hand, in [2] both device and communi-
cation link fingerprinting are pursued for authentication. The former is PUF-based, while the latter
is through matching the channel characteristics of the wireless link between the IoT device and
the verifier. A similar idea has been explored in [22]. Overall, the wireless channel fingerprinting
is too sensitive to channel noise variation and could in fact hinder successful authentication of
legitimate connection requests.

2.2 Modeling Attack Countermeasures

Employing machine learning techniques have been deemed effective in modeling the PUF and thus
violating its randomness property [10, 32]. To counter such a threat, several methods have been
proposed in the literature. Aman et al. [4] have conducted mutual authentication of IoT nodes with
a sequence of dependent challenges via generating each challenge bit-stream based on the previous
one. However, this method is vulnerable to impersonation if one challenge is leaked. Incorporating
a fake PUF along with the legitimate PUF has been pursued in [20]. The fake PUF is queried inter-
mittently so that wrong CRPs are introduced in the adversary’s PUF modeling dataset. Obviously,
this method suffers from hardware and communication overhead. In addition, only the challenge
response pairs related to the legitimate PUF are used for authentication. CoLAC, on the other
hand, uses both correct and poisoned responses to authenticate the device, and thus imposes no
communication overhead. The approach of [40] is to limit the number of used CRPs in order to
cap the attack accuracy. However, repeated usage of CRPs constitutes vulnerability for the device
to message replay attacks; hence such an approach is not applicable if authentication is required
very often. To mislead attackers, adversarial machine learning has been exploited by Wang et al.
[37]. Unlike CoLAC, the poisoning of the response is based on the challenge bits. However, such
a scheme has been defeated using Neural Networks, achieving PUF modeling accuracy of 96%
[45]. The authors also studied sequential data poisoning; yet the poisoning pattern is regular and
can be inferred. The scope of the work has been extended in [44], where the poisoning decision
is made by a function that relies on both the challenge bits and a specific bit-string; the latter is
generated either by an additional weak-PUF embedded in the circuit or via storing possible values
on chip, and hence imposing hardware changes. A key advantage of our CoLAC mechanism is
that it can be implemented without any hardware modification and hence is applicable to already-
deployed devices. Ebrahimabadi et al. [45] also utilize AML to introduce noisy data that degrades
PUF modeling attempts. Although successful against modeling attacks, the approach introduces
high computational overhead due to conducting ML-based modeling quite frequently.

Some schemes have employed a cryptosystem in order to mitigate the PUF modeling vulnera-
bility. For example, Vatajelu et al. [35] have proposed to encrypt challenge-bit streams via using
a hardware implementation of the AES algorithm, where the encryption key is generated using a
weak PUF. This method suffers from the large area overhead imposed due to the implementing AES
as well as adding an extra PUF for key generation. The approach of Gope et al. [18] does not trans-
mit responses; instead it uses the PUF output to generate a pseudo response through a sequence of
steps that are known to the communicating parties. The server includes a random number (nonce)
and employs a hashing function in its request; such a number is used by the device in generating
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the pseudo response. Similarly, PUF-IPA [14] applies a cryptographic hash of the PUF response
and stores only hashed (and encrypted) values in the database that are securely accessible by the
server. Although the SRAM-PUF based authentication scheme of [30] uses the SRAM address in-
stead of the challenge, it still applies a cryptographic hash and uses a nonce. Overall, this category
of schemes simply loses the PUF advantage by employing a cryptographic hash function which
constitutes significant computational overhead for the devices. CoLAC avoids such overhead. Also,
the hashing function needs to be agreed upon by the communicating parties. In addition, repeating
the nonce makes the system vulnerable to message reply and man-in-the-middle attacks.

Some techniques pursue a hardware-based methodology for countering modeling attacks by
either changing the PUF design or augmenting the PUF with additional circuits. For example, Ganji
et al. [17] takes advantage of programmable logic, e.g., FPGA, and proposes rolling out some of the
PUF stages, i.e., swapping them. To maximize the impact of the rollout, the most influential stages
(challenge bits) on the ML-model accuracy are picked. Meanwhile, PHEMAP [5] uses a sequencer
where the challenge Ci at time ti is a function of C0, C1, . . . , Ci−1. The interpose PUF [29] pursues
a variant of the XOR PUF; yet it has been recently shown to be vulnerable to modeling attacks
[38]. Dubrova et al. [12] use a CRC circuit to shuffle the challenge bits so that the adversary fails
to correlate the response to the challenge. The CRC polynomial is deemed to be a secret that the
device and server agree on. Gassend et al. [15] use a “Controlled” PUF that mutates the challenge
and response with hash functions.

On the other hand, Ma et al. [25] uses a weak-PUF to obfuscate the challenge of the main strong
PUF. Zalivaka et al. [42] have proposed an “Obfuscated” PUF design where the challenge is mu-
tated before feeding the PUF; the mutation is based on a predefined algorithm realized in hardware.
However, the incorporation of an additional circuit constitutes a major overhead and diminishes
the advantages of PUF as an authentication primitive for resource constrained IoT devices. Yu et al.
[41] embed PRNG in the XOR PUF design. The PRNG provides half the challenge bits and the other
half comes from the server. An eavesdropper will not know all the challenges. In addition to the
hardware overhead, the resilience of such an approach is questionable for an Arbiter-PUF as an
attacker might model the PUF with a reasonable accuracy using a subset of the challenge bits since
some challenge bits may have little impact on the PUF modeling accuracy Another approach that
pursues challenge obfuscation is proposed by Majzoobi et al. [28], where the challenge bit stream
is partially formed by the server and completed by the IoT device. The approach requires hard-
ware support including the implementation of encryption and random number generation. The
same argument applies to PUF-RAKE [31], where both the challenge and response are obfuscated
through random shuffling.

In contrast to the aforementioned techniques, CoLAC is very lightweight, does not constrain
the usage of the available CRP combinations, and can be fully implemented in software. Only
the main PUF is implemented in hardware. A key advantage of CoLAC is its ability to ensure
robust authentication while preserving the fundamental PUF properties, namely, randomness and
uniqueness. Other advantages of CoLAC include: (1) it is not dependent on the PUF design and
works with any strong PUF circuit, (2) it is adaptive to the security threat as it applies poisoning
when the perceived accuracy of the machine learning model exceeds a certain bound, (3) it can be
applied to legacy PUF-equipped devices, and (4) it imposes no hardware overhead.

3 SYSTEM AND ATTACK MODELS

3.1 System Model and Preliminaries

In practice, two similar semiconductor devices typically have slight differences due to the uninten-
tional variations (imperfection) in the manufacturing process [21]. Such imperfection cannot be
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Fig. 1. Schematic diagram of an Arbiter-PUF, where the challenge bits control the individual multiplexers

and cause the input signal to experience different delays on distinct devices and consequently the latched

value (Q) would differ.

controlled by the manufacturer. The PUF design exploits such manufacturing variation to distin-
guish devices. In fact, even two similar PUF circuits implemented on the same silicon die behave
differently. Figure 1 shows an example PUF design, known as Arbiter-PUF, where each of the sig-
nals C0, . . . , Cn-1 affects the setting of the corresponding multiplexer and consequently the path
that the input signal travels until reaching the latch Q. Variations among devices will cause the
input signal to experience different propagation delays and hence the latched value could vary.
The bits C0, . . . , Cn-1 are referred to as the PUF challenge and the corresponding Q is called the
PUF response. The size of PUF reflects the number of challenge bits, i.e., n. Querying the circuit
in Figure 1 m times (with different challenges) enables the device to have a multi-bit PUF-based
identifier that is unique per device and constitutes a fingerprint. In other words, two PUF circuits
will provide different responses for a set of similar challenges. The strength of a PUF is character-
ized by the number of distinct CRPs it offers. The Arbiter-PUF, shown in Figure 1, is considered as
one of the strong PUFs and will be used as an example in the balance of this paper; nonetheless,
CoLAC can be applied to all other strong PUF designs. Note that week PUFs are mainly used for
key generation rather than authentication.

Implementing PUFs is simple and does not impose much area overhead. Therefore, PUFs have
been leveraged in devising hardware-assisted security solutions, especially for IoT where the in-
volved devices are resource-constrained. Particularly, authenticating a device is conducted by
checking the response of the embedded PUF to certain challenge bit-stream. The typical archi-
tecture, which we also assume, is to engage a trusted and secure server in the IoT. Such a server
will be loaded with a table of a subset of the challenge-response pairs of the embedded PUF on the
device. The server will send an authentication request to the device with a set of challenge bits, i.e.,
one of the entries in the table, and validate the device response against the table. The authentica-
tion process could be repeated periodically or based on application level criteria. Communication
between the IoT device and the server is over wireless links, and can thus be intercepted as we
explain next. We assume that reliable delivery of packets between the server and IoT devices is
ensured, e.g., through acknowledgements. We also assume that the noise effect on the PUF output
is mitigated through any of the conventional schemes such as the incorporation of error correction
codes [24], or circuit-level majority voting over repeated challenge application [23].

3.2 Attack Model

The objective of the adversary is to crack the authentication process in order to impersonate de-
vices, or inject malicious devices. The adversary will not have access to the embedded circuits
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on an IoT device for reverse engineering and will instead eavesdrop on the communication link
between the server and device, and then use the intercepted CRPs to model the PUF operation.
Machine learning algorithms have been shown to be quite effective in PUF modeling [42]. In fact,
by factoring in the PUF design methodology, machine learning could achieve high accuracy using
a relatively small training dataset, i.e., CRPs [37]. By modeling the PUF the adversary would be
able to clone the IoT device and could launch numerous subsequent attacks without being detected.
Moreover, the adversary would be able to impersonate the legitimate device and conduct malicious
activities that lead to expelling such a device from the network. Hence, PUF modeling attacks are
real threats that could diminish the utility of the PUF-based fingerprinting. The existence of such
adversarial behavior motivates the need to increase the resilience of the authentication mechanism
against PUF modeling techniques. We note that an adversary does not have access to (capture of)
the IoT device itself; hence attack strategies that exploit access to the PUF, e.g., reliability based
attacks, e.g., [7], are not within scope. An example scenario is when the PUF is used to authenticate
a node in a connected autonomous vehicles application, where accessing the vehicle’s electronic
system is not feasible.

In this paper, we mitigate machine learning based PUF modeling attacks by applying adversar-
ial classification techniques, i.e., AML. AML strives to degrade the model accuracy by injecting
erroneous data. Conventionally, AML is deemed a threat to data-driven designs; yet we use it as a
defense mechanism against PUF modeling attacks. However, in the context of PUF-based authen-
tication, an AML-based defense strategy ought to overcome the following challenges:

(1) It should prevent the adversary from distinguishing between correct and erroneous data,
and adapting the attack accordingly, e.g., by filtering out erroneous data. Specifically, there
should be no detectable pattern for the data poisoning process or discriminator indicator of
the legitimate/illegitimate data.

(2) Given the resource-constrained IoT devices, the decision process for what erroneous data
to inject and when to inject it should be lightweight in terms of processing and storage
requirements. Most existing AML techniques assume the availability of large amounts of
labeled instances. In addition, they have to consider the knowledge of the attacker when
injecting the poisoning data which involves non-trivial optimization formulation and many
constraints. A simple, yet effective, AML technique is needed.

(3) Both the server and the device have to coordinate in order to avoid failing the authentication
process due to the poisoned data that are shared to counter the PUF modeling attacks.

In the next section we study the effectiveness of conventional techniques in countering the PUF
modeling threat and then use such a study in devising our approach to meet the aforementioned
requirements.

4 APPLYING CONVENTIONAL AML STRATEGIES

Adversarial machine learning constitutes a threat for data-driven models. CoLAC employs AML as
a defense mechanism to thwart PUF modeling attempts. Given the nature of a data-driven method-
ology, the idea of AML is to inject erroneous data that affects the modeling accuracy and eventu-
ally leads to misclassification. Such a process is referred to as poisoning and evasion depending on
whether the erroneous data is injected at the time of training or testing. In the context of PUF, we
will use poisoning in both cases since we do not know the stage the adversary is at and how the
intercepted CRP will be used. We have studied the effectiveness of popular AML techniques for
countering PUF-modeling. In this section, we provide insight on how the PUF could be effectively
modeled, and an overview of how AML could be applied. We further discuss the results of applying
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some contemporary AML techniques. In the next section, we leverage the analysis and results of
this section in designing CoLAC.

4.1 PUF Modeling

Assume that the adversary is building a classifier that can be parametrized by a set of weights

W, determined using a dataset S = {CRPi }μi=γ , and validated against the set V = {CRPj }βj=α . Here

γ , μ, α , β are symbolic representations to show the size of training and test sets used in machine
learning. The V and S sets are disjoint and their size can be similar or different. The classifier is
fed with CRPs. We use the Arbiter-PUF as an example to illustrate how the modeling attack could
be applied. Considering the architecture of an Arbiter-PUF shown in Figure 1, the propagation
delay of the input transition to the output is dependent on the challenge bits and the delays of
the multiplexers. Hence, the behavior of such a PUF circuit can be modeled by an additive delay
function where the response bit is generated based on the sum of delays in all stages (each stage
includes two multiplexers fed by the same challenge bit), where the delay of a stage depends on the
corresponding challenge bit. The response for a challenge C = (c0, . . . , cn−1) is determined based
of the sign of the delay differences in the top and bottom paths feeding the arbiter (latch). Modeling
an Arbiter-PUF can thus be captured by the following, often referred to as the mapping function
[32]:

Δ = ω, φ

ω =
(
ω0,ω1, . . . ,ωn

)

φ (C ) =
(
φ0 (C ) ,φ1 (C ) , . . . .φn−1 (C ) , 1

)

where φ j (C ) =
n−1∏
i=j

(1 − 2ci ) j = 0, 1, 2, 3, . . . , n − 1 (1)

where Δ is the sign of the difference of the propagation delays of two paths feeding the arbiter (S-R
latch in Figure 1)ω is a vector of weights that reflect the influence of the multiplexers’ delays, andφ
is a function of input challenge bit-stream. Since the PUF operates in a cascaded way, the output of a
stage depends on the challenge bit of such a stage and the delay of the previous stage. The mapping
function captures such dependency by

∏n−1
i=j (1 − 2ci ) j = 0, 1, 2, 3, . . . , n − 1. Assume ρ0

i and ρ1
i

are the delays at stage i for the uncrossed and crossed signal paths, respectively. The objective is to
determine the vectorω that encodes the multiplexer delays and use it along with the challenge bits
to determine the response according to the sign of Δ using Equation (1). Hereω = (ω0,ω2, . . . ,ωn ),

where ωi is calculated as follows [32]: ω0 =
ρ0

1−ρ1
1

2 , ωi =
ρ0

i−1+ρ1
i−1−ρ1

i
+ρ0

i

2 f or i = 1, 2, . . . ,n − 1 and

ωn =
ρ0

n−1+ρ1
n−1

2 . Thus, the role of machine learning is to find the response by training the model to
regulate ω.

When factoring in the mapping function, a neural network (NN) classifier yields 90% accuracy
for modeling a 64-bit Arbiter-PUF with as low as 500 CRPs. This shows how serious the PUF mod-
eling attack could be and why devising an effective countermeasure is important. Since the PUF
modeling attack is in essence data-driven, we will use adversarial machine learning as a defense
mechanism.

4.2 Countering PUF-modeling Through AML

Given the PUF modeling attack discussed above, AML opts to introduce a poisonous set of data,
P = {CRPk }γk=δ

, to maximize a loss function l (W , CRPj ) evaluated over V, i.e., j = α , α_1, . . . , β .
Such a loss function is relative to the accuracy of the PUF model. AML strategies can be divided
according to their data manipulation, i.e., determining the set P, into gradient-based poisoning and
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Fig. 2. The effectiveness of the label flipping adversarial machine learning strategy as a function of the

poisoning rate.

label flipping [39]. The idea for both categories is to fool the PUF modeling classifier of the attacker
by providing wrong CRPs; yet the approach is different. The gradient-based strategy strives to in-
troduce noise to some of the data items such that they get misclassified. Determining the altered
data is through formulating a complex optimization to maximize the loss in the model accuracy
while limiting the noise amount to a minimum value, e.g., ɛ. Moreover, the results of the optimiza-
tion is real numbers and optimality could be lost when approximated to binary values. Therefore,
gradient based poisoning is not suited in countering PUF modeling attacks. Label flipping, on
the other hand, strives to modify the attributes (label) of some data items such that their classifica-
tion changes, i.e., flips from one class to another. Picking the set of data items to be flipped is also
subject to optimization where the fewest items are selected to maximize the model loss. Nonethe-
less, the optimization formulation is significantly less complex compared to the gradient-based
strategy. Moreover, label flipping can be applied without such an optimization. In other words,
the data items could be picked randomly, and thus becomes more suited for applications where
heavy computational overhead is undesirable. In the context of PUF modeling, label flipping sim-
ply modifies the response sent back from the IoT device. Regardless of the AML strategy, both the
server and IoT devices have to independently determine when to poison and for what challenge.
Given the advantages of label-flipping in terms of simplicity and being applicable using randomly
picked challenges, it is deemed suitable for CoLAC. We have evaluated the effectiveness of such
AML strategy using data generated from a 64-bit implementation of an Arbiter-PUF on a Xilinx
ARTIX7 FPGA. For that we have followed the recommended steps in [29], where each stage of
the Arbiter-PUF (composed of two multiplexers) is implemented using a 5-to-2 LUT. In the con-
sidered FPGA, each slice includes four LUTs, so-called BELs. Based on [29] suggestion, we used
the same Bell to place the LUTs in each slice. We have then studied the performance of the label
flipping scheme when 4,000 CRPs are exchanged (intercepted by the attacker). We assume that
two-thirds of the CRPs are used for training and the remaining for testing. We vary the number
of poisoned CRPs (poisoning rate) and monitor the accuracy during the test to assess the ability
of the AML technique. The results are reported in Figure 2 and demonstrate the effectiveness of
the label flipping strategy, where the accuracy could be diminished to about 50% which is ideal for
binary classification like the case for PUF modeling. As the percentage of poisoned data increases,
the accuracy rises again which is expected since the adversary will be able to predict the erroneous
(poisoned) response; in other words, the adversary will be able to model the altered PUF behav-
ior. In fact, the accuracy decline and rise, after the turning point, are proportional to the ratio of
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poisoned CRPs in the dataset. These observations are very important since in CoLAC, coordination
between the server and the IoT device is implicit and thus both the server and the device ought to
apply AML to reach the same decision. In the next section we present the details of CoLAC.

5 PUF-MODELING COUNTERMEASURE

CoLAC opts to degrade the adversary’s ability for modeling the employed PUF while: (i) avoid-
ing overburdening the IoT device, and (ii) preventing the adversary from inferring the protection
methodology. To achieve the design objectives, CoLAC: (1) employs AML to inject erroneous (poi-
sonous) data to the adversary’s model and diminishes its accuracy, (2) limits the overhead on the
IoT by applying lightweight procedure for deciding when to transmit poisonous data, (3) instru-
ments implicit coordination between the server and the IoT device so that no information is leaked
about the protection scheme through message exchange, and (4) randomizes the data poisoning
pattern so that the adversary cannot predict and filter erroneous data to defeat the provisioned pro-
tection. CoLAC can be viewed to consist of three functional modules, namely, coordinated AML
application, poisoning pattern control, and poisoned data generation, as will be explained in the
balance of this section.

5.1 Coordinated AML Application

As shown in the previous section, AML is an effective methodology for degrading the adversary’s
modeling attack on the embedded PUF. CoLAC employs AML, yet it avoids engaging the IoT de-
vice in complex computation. Fundamentally, applying AML is associated with two questions:
(i) when data poisoning is warranted, and (ii) how the poisoned data is determined. The two ques-
tions obviously involve both the server and IoT device. Although data poisoning targets the ad-
versary, if uncoordinated it would cause failure in authenticating the IoT device. In other words,
both the server and the IoT device ought to mutually agree on whether a poisonous CRP will be
generated next. Such coordination could be realized explicitly or implicitly. The former entails
message exchange between the server and the IoT device; basically the server could be making the
decision and just instruct the IoT device to send the wrong response to the challenge. However,
such a strategy is vulnerable since the adversary could intercept these messages and differentiate
between legitimate and poisonous responses. Recall that the adversary is assumed to eavesdrop on
all message exchange between the server and the IoT device. Therefore, CoLAC favors implicit co-
ordination where both communicating parties simultaneously and independently reach the same
decision on whether to poison the next CRP or not.

In CoLAC, the decision to poison a CRP is based on the accumulated adversary’s knowledge
about the PUF. Basically, poisoning is warranted when the adversary intercepts a sufficient number
of legitimate CRPs to yield an accurate PUF model. CoLAC provides a parameter for the maximum
accuracy level that could be tolerated; such a level is PUF- and application-dependent. Note that
poisoning all CRPs is not beneficial as the adversary can easily model the PUF in that case as well.
The idea behind CoLAC is that when the adversary’s model reaches such an accuracy level, the
model should be degraded by injecting erroneous data. To assess the accuracy, one would have to
run the same machine learning technique that the adversary applies. Firstly, such a technique is
unknown to both server and the IoT node, although powerful modeling such as Neural Networks

(NN) and Support Vector Machine (SVM) scheme would give enough insight on the accuracy
that the adversary can achieve [32]. Secondly, although applying the ML technique is conceivable
at the server, this will impose significant overhead on the IoT device. Therefore, CoLAC employs a
simplified method by monitoring the running average of the legitimate CRPs over time; we refer to
such an average as the perceived accuracy (PACC), which constitutes a measure of information
leakage about CoLAC’s operation. The idea is based on the conclusion from Section 4 (shown as
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Label Flipping in Figure 2), where the degradation in PUF modeling accuracy is proportional to the
percentage of poisonous data. Thus, by keeping the ratio of legitimate CRPs to the total number
of exchanged CRPs below some specific threshold, the accuracy of the adversary’s model could
be capped. On the other hand, given that poisoning in the context of PUF is a simple negation of
the response, excessive poisoning may allow an adversary to model the PUF behavior. Assuming P

and N to be the number of poisonous and legitimate (not poisoned) CRPs, we define the poisoning
rate as:

PRate =
P

P + N
(2)

As a rule of thumb, the perceived PUF modeling accuracy using Q and Q̄ are:

PAccN = (1 − PRate ) =
N

P + N
(3)

PAccP = PRate =
P

P + N
(4)

The perceived accuracy of the PUF model will thus be:

Perceived Accuracy (PACC ) = max(PAccN , PAccP ) =max
( N

P + N
,

P

P + N

)
(5)

CoLAC opts to cap the model perceived accuracy, e.g., Equation (5). Since PAccP = 1 −
PAccN , CoLAC monitors only PAccN and employs two bounds. The upper bound corresponds
to when legitimate CRPs dominates, and the lower bound opts to prevent PUF modeling through
the poisoned CRPs. We will refer to these bounds by UB and LB, respectively. To avoid exceeding
UB, P should grow so that PAccN diminishes. Meanwhile, PAccP reflects the perceived modeling
accuracy based on using the poisonous data; thus, LB implies sustaining the value of N relatively
high, and consequently P is to decrease. Since the poisoning decision depends on the poisoning rate
that can be simultaneously monitored by the IoT device and server, both communicating parties
will be synchronized. Both the server and IoT consider the perceived accuracy of the adversary’s
PUF model. However, as will be confirmed by the experiments in Section 5, the poisoning pat-
tern should also remain unpredictable. CoLAC provides a provision to inject randomness in the
poisoning pattern as discussed in the next subsection.

To address the second question about how to determine the data to be poisoned, we note that the
attacker uses the intercepted CRPs to model the PUF. Thus, a poisoned CRP simply associates the
wrong response to the challenge. Given the binary nature of the response, poisoning the response
is simply through toggling the output of the PUF circuit. Thus, the IoT device role in the poisoning
process is very lightweight and it needs to just know when to change the response. Through
implicit coordination, CoLAC makes it easy for the IoT device to determine whether the response
needs to be complemented (negated) and thus CoLAC completely spares the IoT device from any
complex computation. The server, on the other hand, could apply more elaborate AML to identify
the best challenge to use so that the adversary model is degraded the most; however, we found such
complexity to be unwarranted, as will be shown in Section 6. In other words, CoLAC is lightweight
for the server as well and thus enables scalability for large IoT networks.

Note that as mentioned in Section 3.1, we assume that the noise effect on the PUF output is
mitigated through the incorporation of error correction codes [24], or circuit-level majority voting
over repeated challenge application [23]. With such noise mitigation, the server receives very
few noisy responses (in the case of pursuing repeated challenge applications) or finds out that
the received response is not what expected (when error correction codes that are used and the
corrected part does not match the data). In both cases the server updates its running average to be
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in sync with the node but may query the node again with another challenge to find out whether
the mismatch was due to noise or due to a malicious attack, e.g., impersonation.

5.2 Poisoning Pattern Control

One of the main advantages of CoLAC is the implicit coordination between the server and the IoT
device. Such coordination not only avoids vulnerabilities caused by explicit message exchange,
but also allows the poisoned CRPs to be in fact a means for authentication. If the server concludes
that poisoning is to take place and the IoT device follows the prescribed process by providing the
negated version of the correct response, the server considers that as an attestation of the authen-
ticity of the IoT device. In the previous subsection, we have alluded to how the two communicating
parties arrive at the same conclusion by monitoring the percentage of legitimate CRPs over time.
We note, nonetheless, that an adversary may apply techniques like recurrent neural networks

(RNN) to infer the poisoning pattern and filter the erroneous data. Particularly, Long-Short Term

Memory (LSTM) models are well suited for such analysis. In Section 6, we show how LSTM may
be applied for such a purpose. Thus, in order to sustain the effectiveness of the employed AML-
based strategy, CoLAC introduces randomization in the poisoning pattern.

CoLAC introduces consensus-based randomization in the poisoning decision process. Both the
IoT device and the server generate a time-varying sequence of random numbers in a synchronized
way using the same pseudo random number generator (PRNG). Such randomization makes
it difficult for the adversary to predict when poisoning will take place while allowing both the
device and the server to implicitly agree on whether the next CRP is legitimate or erroneous. Both
the IoT device and the server need to apply a pre-agreed upon PRNG algorithm and seed. We note

that IoT devices may employ different PRNGs, as long as each pre-agrees with the server, thus any
gained knowledge about a certain device, cannot in general be applicable to another. The seed
also can be derived from an identification number (ID) of the device. At the device side, the
PRNG and seed generation functions could be implemented in hardware or software. At the time
of device enrollment, which is often controlled and assumed to be secure, the server gets to know
the ID of the IoT device and the employed PRNG algorithm and seed generation function based
on the device ID. The specific PRNG and seed generation function will be applied by the server
in software. We note that the strength of CoLAC is not solely dependent on the secrecy of the
PRNG and the seed. As we discussed above, CoLAC fundamentally poisons the CRPs collected
by the eavesdropper, where the poisoning process is adaptively activated based on the perceived
accuracy of the ML modeling attack; the generated random numbers are just used to make the
poisoning pattern unpredictable, as we explain below and validate in Section 6.

An important issue is the uniformity of the distribution of generated random numbers. Some
generators could naturally yield non-uniform distributions; moreover, the system designer could
just decide to introduce non-uniformity by combining multiple popular seed-based approaches
so that it becomes much harder for an adversary to infer the distribution [16]. However, non-
uniformity of the generated random numbers could let the accuracy of the attacker model inter-
mittently exceed the desired level and risk the entire authentication process. Therefore, CoLAC
does not make any assumption on which random number generation methodology is used and on
the distribution of the generated random numbers, e.g., whether uniform or not. Basically, CoLAC
pursues a quite general approach that controls the poisoning process so that the accuracy of the
adversary’s model is capped. In Section 6, we study the effect of the uniformity of the random
number distribution on the performance of CoLAC.

Since both the IoT device and the server use the same PRNG, and apply the same poisoning deci-
sion process, the PRNGs at both communicating parties will be synchronized and generate similar
sequences of random numbers. The process goes as follows. The server considers the perceived
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Fig. 3. Block diagram summary of the operation of CoLAC at both the server side and at the IoT device.

accuracy of the adversary’s PUF model; for that a running average of legitimate CRPs is used,
i.e., PAccN. When PAccN surpasses a certain bound, e.g., 60%, poisoning at a certain rate is deemed
necessary to cap the accuracy. To avoid periodic poisoning patterns, a random number, R∈[0, 1],
is generated and compared with a qualifier, Δ∈[0, 1]. When PAccN surpasses the considered upper
bound and R > 0.5Δ, the CRP is poisoned. In practice, the qualifier is meant to introduce variabil-
ity for when poisoned CRPs are exchanged after the accuracy bound is violated. For example, if
R follows a uniform random distribution, setting Δ = 0.5 implies 75% probability of poisoning a
CRP. The same value of Δ will be used at the server and IoT device.The value of Δ is dependent on
the distribution of the implemented PRNG and is determined during the node enrollment in IoT.
In the next subsection, we discuss the effect of Δ on the performance.

Again, the PRNGs at both communicating parties are synchronized and will yield the same
number which is to be compared with the same Δ. Recall also that CoLAC assumes guaranteed
message delivery through the underlying communication protocols, e.g., at the link or transport
layers. Thus, the server and IoT device will have the same statistics about how many poisoned
CRPs have been exchanged, and both will calculate the same value of PAccN and come to the same
conclusion. The entire CoLAC scheme is summarized in Figure 3. PAccN will be updated after every
exchanged CPR, both legitimate and poisoned. AML is applied all the time at a rate consistent with
PAccN. CoLAC strives to keep PAccN within an interval that prevents the adversary from modeling
the PUF using legitimate or poisonous CRPs. When such an accuracy estimate is below a preset
lower bound, LB, AML is deemed as unwarranted in order to prevent modeling using poisoned
CRPs; yet CoLAC poisons at a very low, rather than zero, rate in order to sustain the randomness
of the poisoning pattern. Similarly, when PAccN exceeds an upper bound UB, CoLAC boosts the
poisoning rate to decrease the accuracy. When LB < PAccN < UB, CoLAC strives to sustain such
accuracy by balancing the frequency of poisoned and legitimate CRPs.

Injecting randomness in the poisoning patterns is by employing a PRNG. To determine whether
a poisonous CRP is pursued next, the generator is queried to get a random number and such
a number is compared to a qualifier, Δ. The use of such a qualifier is based on the relationship
between PAccN and both LB and UB. When LB < PAccN < UB, poisoning will take place only if the
random number exceeds Δ. Since CoLAC opts to keep PAccN within the bounds, the value of Δ
should enable an approximately 50% poisoning rate so that the accuracy does not change much.
When PAccN is out of bounds, the qualifier is adjusted to diminish or boost the poisoning rate
based on whether LB or UB is violated, respectively. In Figure 3, the value of Δ is adjusted by a
factor of ½ to boost the poisoning rate, i.e., having higher probability for the random number to
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exceed the qualifier value. To decrease the poisoning rate, Δ is still adjusted by a factor of ½ while
the comparison is negated. We note that the ½ factor is just an example to illustrate the idea; the
adjustment of the qualifier will be discussed in the next subsection.

As explained in Section 4, AML-based label flipping is to pick the challenge bit pattern for which
a poisoned response causes the most degradation of the adversary’s PUF model. Such selection
involves solving an optimization formulation. Nonetheless, CoLAC takes advantage of the fact
that label flipping can be applied through random selection of the misclassified data items, i.e.,
challenges. Thus, regardless of whether a poisonous or legitimate CRP is pursued, CoLAC selects
the challenge based on whatever criteria the server applies, e.g., sequentially from a table of device
specific CRPs. As shown in Section 6, the performance will not be affected much compared to
selection of challenges using an elaborate label flipping optimization.

5.3 Poisoned Data Generation

In order to ensure the robustness of our PUF modeling countermeasure, CoLAC pursues a prob-
abilistic poisoning pattern while balancing between the poisoning/legitimate CRP rates. The goal
is not only to degrade the PUF modeling ability of the adversary but also to keep the pattern of the
poisoned CRP obscured. CoLAC strives to maintain PAccN within the specified range regardless of
the random number distribution. Figure 4(a) shows a state diagram representation of CoLAC oper-
ation. While Figure 3 captures the interaction between the server and IoT device, Figure 4(a) tracks
the accuracy and focuses more on the poisoning data generation, specifically when the response
of a challenge is to be inverted. The accuracy of the model is captured by PAccN, and is represented
by three states, Low, Medium and High. Again PAccN reflects what the IoT device and the server
perceive about the adversary’s model accuracy. The Medium state is deemed the ideal in terms of
protection since PAccN is within the desired range, i.e., LB ≤ PAccN ≤ UB. The High state reflects a
major increase in PAccN that warrants growing the poisoning rate; the Low state corresponds to
excessive poisoning that could risk modeling the PUF. Being in any of these three states is based on
the value of PAccN; meanwhile, the transition to poisoning and legit states depends on the random
number (RND).

As shown in Figure 3, the decision on whether to poison the next CRP would depend on the
value of the random number relative to Δ. If the generated random numbers are uniformly dis-
tributed in the range [0, 1], the poisoning rate will be very much regulated and the accuracy of
the adversary’s model will stay close to the desired pound. However, non-uniformly distributed
random numbers could lead to a scenario where a long sequence of CPR exchanges go without
poisoning and allow the adversary’s modeling accuracy to grow to an undesirable level. Although
the selection of what PRNG to employ is a system designer decision where certain PRNG proper-
ties can indeed be ensured, CoLAC avoids dependence on the uniformity profile of the generated
random numbers. Such a feature keeps CoLAC effective regardless of which PRNG is being picked.
We validate the effect of the uniformity of the PRNGs in Section 6.

If the distribution of the generated random numbers is known, the median would be the appro-
priate setting of Δ. If the PRNG is uniform, making Δ = 0.5 will be ideal as the number of legitimate
and poisoned CRPs will be balanced and PAccN will stay in the Medium state. However, as noted
above, CoLAC does not make assumptions about the PRNG. Figure 3 illustrates the overall co-
ordination mechanism where the poisoning rate is regulated by a factor of 0.5, i.e., diminished
or boosted by 50% when the accuracy violates LB and UB, respectively. In the state diagram of
Figure 4(a) we are generalizing such a regulator, denoted by α , to be used along with the qualifier
Δ. The setting of α depends on the state of the modeling accuracy and is pre-agreed upon between
the server and IoT device. The objective is to instrument fine-grained control of the poisoning
pattern. In the Medium state, the value of α is set to 1 implying that Δ will control the poisoning
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rate. However, if the generated random numbers are not uniformly distributed and the median is
unknown, such a balance could be violated and PAccN will be in the Low or High state depending
on the skewness of the random numbers distribution. The regulator α is responsible for adjusting
the poisoning rate in such a case. Basically, being in the High state, implies insufficient poisoning
because the random numbers distribution is skewed towards the range [0, Δ], which causes the
transmission of legitimate CRPs to be more frequent than poisoned CRPs. Thus, decreasing α opts
to adjust the poisoning rate. Similar logic applies when being in the Low state. Note that poison-
ing takes place in the High state when RND > α .Δ, and in the Low state when RND < α .Δ; thus
diminishing the value of α would suffice in both cases.

Now we would like to direct attention to how to set α andΔ, and the implication of their settings
on the performance of CoLAC. As also indicated by the results in Figure 2, ideally PAccN should
be around 50%, which means that for the attacker it is equally probable for a PUF response to be
legitimate or poisonous. In essence, UB and LB reflect how much deviation from 50% PAccN could
be. Hence, it is often the case that (UB – 0.5) is equal to (0.5 - LB) and consequently the same setting
of α could be used in the Low and High states. Generally, the setting of α is subject to tradeoff. On
the one hand, a small α quickly adjusts PAccN, and thus accelerates the return to the Medium state.
On the other hand, it is desirable to switch between transmissions of poisoned and legitimate CRPs
in order to obfuscate the poisoning pattern and thus having α = 0 would not be preferred. The best
value of α is dependent on the skewness of the random numbers distribution. An option is to set
α to a small constant, e.g., 0.3, to accelerate the return of PAccN to within the desired range. In
Section 6, we experiment with a static setting of α . We also check the effect of having α = 0, which
means that the High and Low states imply always poisoning and not poisoning, respectively. Such
a case is marked in dotted brown arrows in Figure 4(a). Finally, α could be gradually diminished
overtime to expedite the return to the Medium state. If such a dynamic change is implemented,
it should be pre-agreed upon between the server and IoT device. For example, in the High state
α could start with a value of 0.7 and decrease by a factor, e.g., 2, for every number, say 5, of
consecutive legitimate CRPs, or diminish by a factor that is proportional to how far PAccN is from
UB. A comparison of the static and dynamic setting ofα will be provided in Section 6. The following
Lemmas prove key CoLAC properties.

Lemma #1. CoLAC guarantees staying within bounds with dynamic or zero setting of α in the Low

and High states.

Proof. We note that ideally RND should be compared with the median of the random number
distribution. Nonetheless, CoLAC applies an adaptive poisoning rate adjustment strategy that is
independent of the employed PRNG. Let’s first consider the case when α = 0 in the Low and High
states. In such a case, the state diagram is reduced to what is shown in Figure 4(b), where the
High and Low states become equivalent to the Poison and Legit states, respectively. In essence,
the randomness of the poisoning pattern is ignored when the accuracy range is violated. Based on
Equation (3), PAccN is inversely proportional to P; thus, by continuously poisoning, the PAccN will
diminish and eventually return to the Medium (safe) state. The same applies for the PAccP (i.e.,
when PAccN < LB) where sending only legitimate CRPs will grow N in Equation (5) and decrease
PAccP , and consequently increase PAccN, until the qualification of the Medium state is met. Thus,
for α = 0 CoLAC guarantees returning to the Medium state.

Similar logic is applied when α is dynamically set. By progressively reducing α while being in
the High state, the probability that RND exceedsα .Δ, grows. By continuous reduction,α eventually
reaches zero and the state diagram becomes what is shown in Figure 4(b). The same effect happens
in the Low state when α is reduced. Hence, CoLAC guarantees returning to the Medium state
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Fig. 4. (a) State transition diagram description of

the operation of CoLAC; (b) Reduced state diagram

when randomized poisoning is ignored in case of

accuracy gets out of bound.

Fig. 5. Pseudo code summary of the CoLAC

approach.

when the value of α is adaptively reduced. Figure 5 shows the pseudo code summary of CoLAC
that corresponds to the state diagram in Figure 4(a). �

Lemma #2. CoLAC achieves its goal regardless of the uniformity of the random number generator.

Proof. Let’s first assume that the distribution of the generated random numbers is known. In
such a case, selecting Δ =median would suffice for keeping a balance between poisoned and legit-
imate CRPs; hence the value of PAccN and PAccP will be sustained around 50% while being in the
Medium state. If the median is unused or unknown, a skewed distribution of random numbers can
either have more instances less than Δ or more than Δ. The former would lead to reduced poison-
ing rate (increasing PAccN ) and could cause transition to the High state. As shown by Lemma 1,
an appropriate setting of α will regulate the poisoning rate and enable retransition to the Medium
state. Similarly, if the random number generator is biased towards larger numbers than Δ, the fre-
quency of poisoned CRPs dominates and PAccP grows. Again, when the increased poisoning rate
causes transition to the Low state. Lemma 1 confirms the ability of CoLAC to bring PAccP down
by increasing the poisoning rate through adjusting α . Thus, CoLAC is robust against variations in
the random number distribution. �

Lemma #3. CoLAC is a lightweight approach that imposes little computational and no communi-

cation overhead.
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Table 1. The Randomness Results for the Implemented PUF based on the NIST Test

Test Passed/
Total

P-Value Test Passed/
Total

P-Value Test Passed/
Total

P-Value

Frequency 99/100 0.54 FFT 99/100 0.50 Serial 98/100 0.49

Frequency Block 100/100 0.51 Non-Overlap. Template 99/100 0.51 Approx. Entropy 100/100 0.51

Runs 98/100 0.50 Overlap. Template 100/100 0.59 Cumulative Sums 99/100 0.54

The longest Run 99/100 0.49 Universal 5/5 0.99 Random exc. 2/2 0.57

Binary Matrix Ranks 33/33 0.50 Linear Complexity Test 4/4 0.70 Random exc. Var. 2/2 0.40

Proof. CoLAC is designed to suit resource-constrained IoT devices. The poisoning process is
simply to toggle the binary response of a PUF, which is a simple negation operation. In an authen-
tication round, the decision for poisoning a response involves: (1) the tracking of the perceived
adversary’s modeling accuracy, PAccN, which simply reflects the poisoning rate and constitutes
very simple math, and (2) the generation of a random number, which depends on the complex-
ity of the employed PRNG. We note that CoLAC mitigates the effect of PRNG non-uniformity, and
thus a lightweight PRNG, e.g., with linear complexity, could be used. Moreover, the PRNG could be
implemented in hardware as well. On the other hand, CoLAC uses both legitimate and poisoned
responses in authenticating the device and hence it imposes no communication overhead. �

6 VALIDATION EXPERIMENTS

To validate the effectiveness of CoLAC, we have implemented a 64-bit Arbiter-PUF on Xilinx AR-
TIX7 FPGA.

6.1 Test Environment

In our experiments, we have dedicated one FPGA with an embedded PUF to represent the IoT
device. The implemented 64-bit Arbiter PUF occupied 243 LUTs and 88 Slice as reported by Xilinx
Vivado software. The FPGA board uses the UART protocol for connecting to a PC; the latter plays
the role of the server (verifier). The PC generates 40,000 random bit-streams to be used as PUF chal-
lenges for the IoT device. The related response is sent back to the PC via the UART. To evaluate the
reliability of the proposed architecture in different temperatures, we applied 20,000 randomly gen-
erated challenges to the PUF and measured the hamming distance of the responses when a similar
challenge is applied. We considered the base temperature as 30°C and repeated the experiments in
0°C, 60°C and 90°C, where on average the discrepancy of responses was 0.65%, 0.92%, and 1.78%
in these temperatures, respectively. This demonstrates the reliability of our design. Moreover, the
noise effect in the same temperature resulted in a negligible (0.25%) discrepancy in response, which
confirms the robustness of our implementation.

The randomness of the implemented 64-bit Arbiter-PUF was evaluated using 15 statistical tests,
published by NIST for assessing the randomness of true random generators [6], with 5,000,000
randomly selected challenge bit-streams. The responses were divided into 100 blocks each includ-
ing 50,000 responses, and we applied the NIST tests to each block. Note that some of the tests
(e.g., Universal) need larger blocks, hence we partitioned our responses accordingly. As shown
in Table 1, our PUF structure has passed almost all tests, which confirms the randomness of our
implemented PUF. To show that our proposed scheme does not change the randomness of the
transferred responses, we have applied the NIST tests to the transferred responses after applying
CoLAC, i.e., the poisoned responses generated by CoLAC. The results are shown in Table 2 and are
very similar to those in Table 1; confirming the randomness of the CoLAC- generated responses.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 3, Article 46. Pub. date: March 2022.



46:18 W. Lalouani et al.

Table 2. The Randomness Results for the Poisoned PUF Responses based on the NIST Test

Test Passed/
Total

P-Value Test Passed/
Total

P-Value Test Passed/
Total

P-Value

Frequency 99/100 0.54 FFT 99/100 0.50 Serial 98/100 0.49

Frequency Block 100/100 0.51 Non-Overlap. Template 98/100 0.49 Approx. Entropy 100/100 0.51

Runs 98/100 0.50 Overlap. Template 100/100 0.59 Cumulative Sums 99/100 0.54

The longest Run 99/100 0.49 Universal 5/5 0.99 Random exc. 2/2 0.57

Binary Matrix Ranks 33/33 0.50 Linear Complexity Test 4/4 0.70 Random exc. Var. 2/2 0.40

To assess the power overhead, the PUF was isolated from the underlying circuit; the power con-
sumption of a 64-bit PUF with 16 response bits was the measured by the Xilinx Power Estimator
tool and found to be 0.002W. We have considered an adversary that intercepts all exchanged CRPs
and pursues the following two attack scenarios: (i) applying the PUF modeling scheme of [32],
and (ii) employing a machine learning scheme to recognize the poisoning pattern given partial
knowledge of correct and erroneous CRPs. The latter opts to assess CoLAC’s ability of obscur-
ing the poisoning pattern. The validation experiments and results are discussed in the rest of the
section. We employed the SVM, Logistic Regression (LR), and NN as representatives of ML tech-
niques that an adversary pursues to conduct a modeling attack against the deployed PUFs. Note
that the CMA-ES scheme that has been proposed in [7] to model the PUF based on the sensitivity
of its response to environmental noise, e.g. temperature or voltage variations, is not applicable
in our case since: (i) an eavesdropper doesn’t have physical access to the PUF to repeat the same
query multiple times to benefit from the measurement noise in PUF modeling, instead intercept-
ing the exchanged CRPs is the most viable means, and (ii) even if the PUF is queried with the
same challenge once a while, the node’s response to the same query may change due to poison-
ing. This confuses the adversary as CMA-ES may consider the poisoned data as measurement
noise.

6.2 Experiment Setup

In order to study the performance of CoLAC, we have conducted three experiments. For the three
experiments, we have considered both uniform random generator and non-uniform Gaussian dis-
tribution. For the latter we considered three variants with the same μ = 0.2, and σ = 0.1, 0.3, and
0.7. We note that the Gaussian distribution is trimmed at 0 and 1 and that the three configurations
have different skewness and kurtosis. The first experiment is for measuring the accuracy of the ad-
versary’s PUF modeling, where we divide the CRP dataset captured by the eavesdropper randomly
into two subsets for supporting the training and test phases. We take the average of the accuracy
for 30 different runs. For the second experiment, we capture the effect of the size of the dataset
used by the adversary in modeling the PUF. Such an experiment opts to gauge CoLAC robustness
overtime as the adversary potentially intercepts more CRPs.

For the third experiment, we assess the ability of the adversary to detect the poisoning pattern
where the CRPs in the training set are labeled as correct and erroneous. Although such a scenario
is not practical given the difficulty for the eavesdropper to distinguish between poisonous and
legitimate data, we opt to assess the resilience of CoLAC even under such a rare scenario. The idea
is to assess the adversary’s ability to predict whether the response at time epoch t is legitimate or
poisonous, when knowing the classification of the CRPs in the previous n time epochs. To detect
the pattern, we use an LSTM that is trained for 100 epochs with batch size of 1024 CRPs. The
LSTM is fed with a sequence of numbers of consecutive CRPs labeled as legitimate or poisoned.
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Basically, we have labeled the binary values representing responses as correct “C” and erroneous
“E”, and converted them into a sequence that reflects the lengths of legitimate and poisoned runs.
For example, for the sequence “CCCEECEEE” we feed the LSTM with “3, 2, 1, 3” where the number
indicates the count of correct or erroneous responses. After training the LSTM, we start predicting
the upcoming pattern until we have our entire test dataset. Then, the prediction accuracy is used
to indicate the attacker’s ability to infer the poisoning pattern. We again note that the use of
LSTM is not for modeling the PUF, but rather for predicting the poisoning pattern; the LSTM is
applied only as a means for validating CoLAC. We also compare the performance of our lightweight
approach with a version where an elaborate label flipping optimization is applied to determine
what challenge to use next, as will be explained in the following.

6.3 Challenge Selection Optimization

CoLAC pursues a label flipping AML strategy. As pointed out in Section 4, a label flipping
strategy could be applied with and without optimizing the challenge selection. Ideally, each
time data poisoning is to take place, an optimal CRP is picked to inflict the most degradation
on the adversary’s model. However, this optimization would entail excessive reformation of the
ML model by the server based on how frequently it is done and the solution domain (number
of all possible CRPs); clearly such an approach would impose undesirable overhead. Therefore,
CoLAC pursues random selection of challenge bit streams in order to limit the overhead. To
gauge the effect of such a decision on performance, we have studied the impact of the challenge
selection optimization when incorporated within CoLAC. In the experiment, we consider a
variant of CoLAC in which CRPs within a certain time window are selected for each poisoning
and legitimate transmission. Basically, considering the set of challenges Θ = {C1, . . . , Cm} that
are to be used in the next m iterations, i.e., authentication rounds, we determine an exact order
of the challenges to be transmitted. The responses for these challenges may be poisoned when
both the server and the IoT device decide to do so, according to the state diagram in Figure 4(a).
To elaborate, we define the ordered list Ψ = {ψ 1, . . . , ψm} of the challenges in Θ. In essence, the
list Ψ represents the sequence of challenges sent by the server in the next m iterations, i.e., ψ i,
reflects the challenge used in the ith authentication round. The ordering criterion is the current
PUF modeling accuracy and the impact of the challenge on the loss function. For the former, we
note that PAccN and PAccP are players; therefore we strive to minimize the difference between
them which implies becoming closer to 50% overall modeling accuracy. Let σi be |PAccN − PAccP |
at the ith round. Based on Equations (3) and (4), ξ = | N−P

N+P
|. Given that ξ is used for ranking the

challenges in Θ, we simply take ξ = |N − P |. Let δi be the accuracy loss, introduced by challenge
Ci∈Θ. The label flipping optimization is then to assign the challenge with the highest loss to the
authentication round with the largest σ ; this is concisely captured by:

(↓
i |�C⊥j ∈ (∧ ≡

[[
σ↓i < σ↓j �=⇒ δ↓j < δ↓i ,∀1 ≤ i ≤ m

]]
, 1 ≤ j ≤ m (6)

ψi |�Cj ∈ Θ ∧ σi < σj �=⇒ δ j < δi , ∀1 ≤ i ≤ m, 1 ≤ j ≤ m (7)

Note that the challenge selection optimization is done only at the server side and the IoT device
is not engaged at all. The steps go as follows. First, the set Θ is formed; here the selection of Ci∈Θ
can be random within the unused combinations of challenge bit patterns. For each Ci∈Θ, δi is
calculated using the loss function when a neural network is applied to model the PUF. The entries
Ci
′s of set Θ are then sorted in a descending order according to δi . Second, CoLAC follows the

state diagram in Figure 4(a) for m consecutive times; for each the corresponding σ is calculated.
We note that no communication with the IoT device takes place and σ is estimated offline. To form
Ψ, we iterate sequentially on all entries of the sorted Θ, where the top entry is assigned to the
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iteration with the largest σ , and the second entry in Θ is assigned to the iteration with the largest
σ among the rest, and so on. This process is repeated for each of the m challenges in Θ, and in
effect defines allψi . The set Ψ specifies what challenges the server will use in the next m iterations.
In the experiment, m is set to 40,000.

6.4 Performance Metrics and Parameters

The following metrics are used to assess the performance:

• Accuracy of predicting the PUF response: It reflects the adversary’s ability in guessing the
correct response through PUF modeling either at an early stage or over time. To calculate
the accuracy, we use SVM, NN, and LR, as stated earlier. Nonetheless, we have observed that
there is not much difference among the accuracies achieved by these three LM techniques.
Therefore, most of the reported results in this section are based on NN in order to avoid
redundancy. The used neural network model has three hidden nonlinear layers and one
output linear layer. For three nonlinear layers, we employ the Rectified linear unit (ReLU)

as the activation function with 5, 10, and 15 neurons, respectively. The learning rate and
momentum are 0.01 and 0.99, respectively. The number of epochs is set to 3,000. With this
network network architecture, a 64 bits Arbiter PUF is modeled with the accuracy of 98%
using 2,000 CRPs for training.

• Accuracy of predicting the poisoning pattern: This assesses the probability of defeating Co-
LAC by guessing the poisoning pattern and consequently classifying correct and erroneous
CRPs. An LSTM is used for assessing the poisoning pattern prediction accuracy, as explained
earlier.

We also capture the effect of the following key parameters:

• Δ: This reflects the probability of injecting poisonous data using the random sequence.
• Bound (β): This refers to the upper and lower accuracy bound from the ideal accuracy. Where

LB =min(1 − β, β ) and UB = max (β, 1 − β ), which implies a symmetric bound for PAccN

and PAccP .
• The size of the intercepted CRP set: Given that the adversary applies data-driven attack strate-

gies, the size of training and test sets impacts the attack success.
• α : The setting of such a regulator affects the accuracy stability and convergence to safe

state. Here we try static and dynamic settings. In the former we experiment with α = 0, and
0.3. In the dynamic scenario, we adaptively reduce α by a factor of 30(PAccN −UB ) when
staying in the High state or 30(LB − PAccP ) when staying Low state. Such a factor is applied
after each CRP exchange in the respective state.

We are reporting the PUF modeling accuracy for the following scenarios that are also summa-
rized in Table 3:

• CoLAC-U: This reflects the case when the PRNG produces uniformly distributed random
numbers between 0 and 1. In such a case setting Δ to 0.5 (median) will target achieving
a 50% poisoning rate. We study a variant, which we refer to as “CoLAC-U-β-α”. Such a
variant simply becomes a mechanism that poisons when violating the desired bounds and
the generated random number exceeds Δ, regulated by α to control the poisoning rate.

• CoLAC-N: This is used as a prefix to indicate the non-uniformity of the random number
distribution. Under this setting, both the accuracy bounds, Δ, and α play significant roles.
Therefore, we show the results for fixing Δ at 0.5 to capture the effect of non-uniformity
(denoted as “CoLAC-N”); in this case no accuracy bounds are observed. We also study the
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Table 3. Summary of the Compared Configurations of CoLAC

Uniform PRNG β Δ α AML

CoLAC-U Yes No Yes No No
CoLAC-U-β-α Yes Yes Yes Yes No
CoLAC-N No No Yes No No
CoLAC-N-β-α No Yes Yes Yes No
CoLAC-N-β-α-AML No Yes Yes Yes Yes
Bound-only N/A Yes No No No

performance while varying the accuracy bounds with and without AML-based challenge
selection. We use “β-α”, and “β-α-AML”, as postfixes to denote these two cases, respectively.
The objective is to show that the accuracy bound is a means for mitigating the effect of non-
uniform random number distributions.

• Bound-only: For this case, the poisoning pattern is not randomized. When the accuracy of
the attacker’s model exceeds the bound, poisoning takes place. The bound is set to 0.5, which
is the ideal accuracy for a binary classifier, implying that the adversary will have no fidelity
in predicting the PUF response.

6.5 Experimental Results

The first experiment opts to assess the effectiveness of CoLAC as a countermeasure by tracking
the accuracy of the attacker’s PUF model. Such an accuracy is measured by applying the machine
learning attack of [32].

Effect of Δ: Figure 6 shows the attack accuracy for different values of Δ, which influences the
poisoning rate. Here we are assuming α = 1, and just using Δ to control the poisoning rate. For
CoLAC-U, the value of Δ constitutes the poisoning rate, and the accuracy simply equals max [Δ,
and (1-Δ)]. Therefore, the accuracy takes the shape of a parabola with vertex at Δ = 0.5, and the
corresponding accuracy also is 0.5. Thus, for a uniform PRNG, matching the vertex reflects the ideal
scenario in terms of safeguarding the PUF against modeling attacks. The results in Figure 6 also
capture the effect of non-uniformity on the performance where a Gaussian-based PRNG is used;
three configururations are tried to gauge the effect of skewness and kurtosis. The variation of the
accuracy profiles among the three non-uniform distributions clearly point out the importance of
regulating the poisoning process and not relying on the uniformity of the PRNG. In particular,
the case of σ = 0.1 demonstrates the potential rise of the model accuracy if one relies only on
Δ. To elaborate, setting Δ = 0.5, which is optimal for uniform PRNG, could instead lead to model
accuracy of 98% when σ = 0.1. Similar conclusion can be made when SVM and LR are used. Figure 6
confirms the importance of not relying on the PRNG uniformity and the incorporation of α as a
mitigation measure. We factor in α and use Δ = 0.5 for the other experiments discussed in the
balance of this section, unless mentioned otherwise.

Effect ofα : Figure 7 highlights the role of α as a regulator while setting Δ = 0.5. The results are
based on NN, and split among two plots to improve readability. Figure 7(a) compares three settings
for α when a non-uniform PRNG is employed. The results are for a Gaussian PRNG with σ = 0.3
under varied accuracy bounds (ß). As noted earlier in the section, the desired accuracy bound is
max [ß, (1-ß)]; thus for a bound of 0.2, the accuracy should not exceed 0.8. As indicated by the
plots, the accuracy indeed stays below the bound, with some exception for large α . Compared
to the plot for CoLAC-N (σ = 0.3) in Figure 6, incorporating α regulates the shape of the curve
and makes it close to the case of uniform PRNG, i.e., a parable shape; this applies for all three
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Fig. 6. Capturing the effect of Δ on the poisoning rate, and consequently, on the accuracy when using NN

to the model PUF. Here, poisoning takes place when RND exceeds Δ. We are showing the results for both

uniform and non-uniform PRNGs. The latter in essence follows a Gaussian distribution with μ = 1; we are

considering three different configurations of such a non-uniform PRNG.

Fig. 7. Evaluating the role of α in regulating the poisoning process relative to the accuracy bounds, while

(a) α is fixed, and (b) α dynamically adjusted over time to accelerate bringing down the accuracy to within

the desired bounds. The effect of PRNG skewness and kurtosis is also captured.

considered values of α . Having a relatively large α , i.e., 0.7, affects the achievable accuracy; this
is clear when focusing on ß in the range [0.4, 0.6], where the accuracy does not go down to 0.5
when ß = 0.5. Such an observation is consistent with the motive of introducing small α , to deal
with non-uniformity and allow the accuracy to be controlled in the Low and High states. Later in
this section we will show the effect of α on detectability of the poisoning pattern, and point out
that too small values of α are not recommended. Hence, setting α = 0.3 will be preferred over α =
0, although both yield the same results in Figure 7(a).

Figure 7(a) also shows the results when incorporating α while employing a uniform PRNG. We
are showing only the case for α = 0 since the curves for α = 0.3 and 0.7 are similar. Basically,
having Δ = 0.5 suffices for keeping the accuracy within bounds and α does not play much a role.
This is consistent with the results in Figure 6. Figures 6(a) and 6(b) study the effect of kurtosis
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Fig. 8. The SVM and LR results for evaluating the

role of α in regulating the poisoning process rela-

tive ß.

Fig. 9. Capturing the effect of the size of the train-

ing dataset on the effectiveness of CoLAC for Δ =
0.5.

of the non-uniform PRNG. Figure 7(a) compares the results when σ changes from 0.3 to 0.1; the
latter boosts the kurtosis of the distribution. The results when α = 0.3, indicate that the kurtosis
makes it more challenging to keep the accuracy within bound; yet CoLAC is succeeding in doing
so for this configuration. That is not the case when α = 0.7, as indicated by the CoLAC-N-ß-α (α =
0.7, σ = 0.1) curve in Figure 7(b). Basically, with high kurtosis (small σ ), the accuracy sometimes
exceeds the bound and thus small α should be used.

In addition, Figure 7(b) opts to capture the impact of dynamic setting of α . Since α is influential
only under non-uniformity conditions, we consider three Gaussian PRNGs with σ = 0.1, 0.3, and
0.7. In this experiment, α starts at 0.7 and is reduced gradually by a factor proportional to the de-
viation from the bound, every time the condition relating RND and Δ is not met. As demonstrated
by the results, adapting the setting of α is quite effective in dealing with skewness and low kurto-
sis, where the results for higher σ almost matches the ideal case for a uniform PRNG. With high
kurtosis (small σ ), the accuracy sometimes slightly exceeds the bound. However, compared with
the case of fixed α for the same Gaussian PRNG, i.e., CoLAC-N-ß-α (α = 0.7, σ = 0.1), dynamic
adjustment of α is indeed effective in observing the desired accuracy bound and is deemed a must
for PRNG with very high kurtosis. Considering the results of Figure 7 collectively, one can con-
clude that picking a small α is crucial for controlling the accuracy while using non-uniform PRNG.
Dynamic adjustment of α helps in dealing skewness and high kurtosis. In Figure 8, we show the
results when applying SVM and LR. Comparing the curves in Figure 8 to the corresponding ones
for NN in Figure 7 demonstrates the very high similarity of the accuracy achieved by the three ML
techniques. Therefore, we show only the results of NN in the balance of this section.

Effect of Training Dataset: Figure 9 depicts how the attacker’s modeling accuracy is affected
by the size of the training dataset. We show the results for ColAC-U and CoLAC-N with Δ = 0.5 and
ß = 0.5. The results for non-uniform PRNG are based on Gaussian distribution with μ = 0.2 and
σ = 0.3. Overall, CoLAC consistently achieves excellent results by keeping the adversary’s accu-
racy to around 0.5 when the generated random numbers are uniformly distributed and by em-
ploying the regulator α to cope with non-uniformity. CoLAC sustains its superior performance
even when the attacker uses more data to train the PUF model. The results show that relying only
on Δ is not sufficient defense as the non-uniformity of PRNG could allow accuracy to get out of
hand; with increased training the PUF model accuracy improves, as indicated by the CoLAC-N
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Fig. 10. Capturing the effect of bounds and the various CoLAC parameters on the PUF modeling accuracy

with (a) non-uniform and (b) uniform PRNGs.

curve. The regulator α helps in controlling the accuracy as demonstrated by the CoLAC-N-ß-α
curves.

Collective Effect of Parameters: Figure 10 compares the various configurations for CoLAC,
while fixing Δ to 0.5. Figure 10(a) considers non-uniform Gaussian PRNG with μ = 0.2 and α = 0.3.
For CoLAC-N, no bounds are specified, while the other configurations factor in ß in the process.
The plot for CoLAC-N is similar to that in Figure 6 and is included here for ease of comparison.
When employing α = 0, CoLAC-N-ß-α observes the desired accuracy bound. In such configuration,
the challenge bit stream is randomly selected. When dynamically varying α , the performance stays
mostly good, except around ß = 0.5, i.e., when the bounds are very tight on the accuracy. While
setting α = 0 in the Low and High states appears to be more effective in such a case, it could expose
the defense strategy to potential poisoning pattern detection as later discussed.

The CoLAC-N-ß-α-AML curve in Figure 10(a) reports the results when picking the challenge
based on AML optimization; here α is set to 0 as well. As in the figure, the results almost match
those of without the challenge selection optimization, i.e., CoLAC-N-ß-α (α = 0); only slight im-
provement is observed when ß ≥ 0.8 or ß ≤ 0.2. We conclude that CoLAC-N-ß-α is a better choice
since it imposes very negligible overhead. Thus, leaving out challenge selection through AML
optimization is indeed justified.

Figure 10(b) reports the results when a uniform PRNG is used. As noted earlier, α is not a player
in this case where the performance of CoLAC-U-ß-α for α = 0 and 0.3 stays the same, where the
accuracy depends mostly on Δ. The figure shows the results for Bound-only, as well. For CoLAC-

U the value of Δ is equal to ß in this plot, and hence the performance is similar to Bound-only

since they both are dependent on the poisoning rate. We note that the Bound-only configuration
involves deterministic poisoning based on the bound, and hence it is susceptible to poisoning
pattern detection attack as we show when discussing the third experiment. In summary, the results
confirm that CoLAC is capable of controlling the accuracy of the adversary classifiers, regardless
of the uniformity of the random number generator.

Poisoning Pattern Detectability: Figure 11 illustrates the adversary’s inability to detect the
poisoning pattern and consequently negating the effect of CoLAC. Again in this experiment,
the adversary is assumed to have known some legitimate and poisonous CRPs and builds on
such knowledge to predict the poisoning pattern. In the figure, we show the results for various
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Fig. 11. Capturing the effect of α and the accuracy bound (ß) on the detectability of the poisoning pattern

by the attacker.

Table 4. Comparing the Baseline PUF with the Protected Counterpart (post COLAC Application)

using PUFmeter Tool [43]

Metrics and Techniques Unprotected PUF (Baseline) Protected PUF (CoLAC)

Average Sensitivity 0.489 0.3614
Noise Sensitivity 0.211 0.183
K(Parameter in K-junta testing) 0 0
LMN algorithm N/A N/A

configurations and compare the cases when poisoning is controlled by only Δ (CoLAC-U), only
the bound (Bound-only), and both of them (CoLAC-U-ß-α ), while employing a uniform random
number generator. We also report the case when a non-uniform random number generator is used
(CoLAC-N). The results demonstrate that relying on the poisoning rate alone, i.e., the case of Bound-

only, can make the poisoning pattern 100% predictable. The results also confirm the importance of
the randomization pursued by CoLAC for obscuring the pattern, where detectability stays around
50%.

As pointed out earlier, α is not a player when the PRNG is uniform; yet it is very influential for
the variants of CoLAC-N. Indeed for α equal zero the poisoning pattern is deterministic and the
detectability is significantly high for CoLAC-N-ß-α ; a larger α will be better in that context (see the
bars for α = 0.3, and α = 0.7). Recall that a small α is better for sustaining low accuracy; therefore,
there is a tradeoff. However, when the accuracy bounds are flexible, i.e., not narrowed around 0.5,
the detectability of the pattern is not high except for Bound-only due to lack of randomization;
such a performance is expected since α does not play a role except when exceeding the bound.
Again, this experiment assumes that the adversary could intercept and distinguish legitimate from
poisoned CRPs, which is in itself unrealistic. Nonetheless, CoLAC performs quite robustly and
prevents the adversary from predicting the poisoning pattern over time.

Resiliency against K-junta and Fourier based attacks: We used the PUFmeter tool to assess
the resiliency of the PUF against K-junta and Fourier based attacks discussed in [43]. Table 4 shows
the results, reporting four metrics that gauge the robustness of a PUF, where the results for the
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64-bit baseline Arbiter-PUF we used in the validation are shown with and without applying Co-
LAC. These results have been extracted for the accuracy level (ɛ) = 0.05 and confidence level (delta)
= 0.01, and desired reliability = 0.01. The PUFmeter tool output indicates that with CoLAC the PUF
is resilient to K-junta testing, and Fourier based attacks.

7 CONCLUSIONS

This paper has presented an adversarial machine learning based methodology to safeguard Physi-
cally Unclonable Functions (PUFs) against modeling attacks. By intercepting exchanged challenge-
response pairs (CRPs), an eavesdropper can employ machine learning to model the PUF and predict
its output. This constitutes a serious threat as PUFs are used for providing critical security services
for IoT frameworks such as authentication. We have presented a novel and effective countermea-
sure, namely, CoLAC, which applies an adaptive data poisoning strategy that factors in potentially
leaked information, and injects randomness in the poisoning pattern. The approach is lightweight
and allows implicit coordination and prediction of poisoned CRP exchanges. Specifically, the same
pseudo random number generator is employed at the two communicating parties in order to en-
sure synchronization and consensus between them.

CoLAC has been validated using datasets generated by a PUF implementation on an FPGA. The
validation results have demonstrated CoLAC’s effectiveness in degrading the attacker’s modeling
accuracy, and its robustness against variations in the random number distributions. In summary,
if the designer can guarantee the uniformity of the employed PRNG setting Δ to 0.5 would suffice
for countering PUF modeling attacks. However, such a setting is heavily reliant on the PRNG;
instead it is recommended to factor in both Δ and α . Setting α to between 0.3 and 0.5 would strike
a balance between robustness against modeling attacks and potential poisoning pattern detection.
The results also pointed out the advantage of adaptively adjusting the value of α to cope with
skewness and kurtosis of random number distribution. Finally, random selection of challenge bit
streams would yield high protection and an elaborate label flipping optimization is unwarranted. In
the validation, we have confirmed the resilience of CoLAC against three prominent ML techniques;
As a future extension we plan to explore theoretical frameworks, e.g., [17], to analytically verify
the resilience of our scheme.
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