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Abstract

We investigate the correlation between register transfer-level
faults in the control logic of a modern microprocessor and their
instruction-level impact on the execution flow of typical pro-
grams. Such information can prove immensely useful in ac-
curately assessing and prioritizing faults with regards to their
criticality, as well as commensurately allocating resources to
enhance testability, diagnosability, manufacturability and reli-
ability. To this end, we developed an extensive infrastructure
which allows injection of stuck-at faults and transient errors of
arbitrary starting point and duration, as well as cost-effective
simulation and classification of their repercussions into vari-
ous instruction-level error types. As a test vehicle for our study,
we employ a superscalar, dynamically-scheduled, out-of-order,
Alpha-like microprocessor, on which we execute SPEC2000 in-
teger benchmarks. Extensive experimentation with faults in-
jected in control logic modules of this microprocessor reveals
interesting trends and results, corroborating the utility of this
simulation infrastructure and motivating its further development
and application to various tasks related to robust design.

1. Introduction

As aggressive scaling continues to push technology into
smaller feature sizes, various design robustness concerns con-
tinue to arise. Among them, the frequent occurrence of tran-
sient errors has resurfaced as a contemporary problem of inter-
est. Part of the problem is attributed to strikes by neutrons or al-
pha particles and the corresponding single event upsets (SEUs)
in memory bits, or single event transients (SETs) in combina-
tional logic, which may potentially result in a soft error. As we
move forward, however, errors occurring due to various other is-
sues related to design marginalities, process variations and cor-
ner operating conditions are starting to play an equally impor-
tant role. Interestingly, such errors may range in duration from
single events to permanent faults. As a result, interest in concur-
rent error detection (CED) and/or correction methods that may
ameliorate or resolve their effect has been revived.

CED is a topic that has been extensively studied in the past
[1, 2, 3, 4, 5]. However, while a plethora of solutions exist,
blindly applying them across the board is, most likely, both pro-
hibitive in terms of cost and unnecessary in terms of the attained
coverage. Indeed, not all transient errors incur the same level of
criticality and not all protection mechanisms actually contribute
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to the overall robustness of a design. Therefore, methods to ana-
lyze the relative importance of potential transient errors and the
relative effectiveness of candidate countermeasures are invalu-
able for developing cost-effective solutions.

Such analysis becomes even harder in modern microproces-
sors, wherein advanced architectural features complicate the
process. It comes, thus, as no surprise that existing transient er-
ror analysis methods focus either at the microscopic circuit level
[6, 7, 8, 9], or at the macroscopic architectural level [10, 11, 12],
but typically refrain from attempting a bridging between the
two. Inevitably, however, such bridging mechanisms that can
assess the criticality of circuit-level faults by correlating them to
their impact on application-level functionality are the only way
to justify the cost of any method added to suppress them. And
while a few efforts [13, 14, 15, 16] have been expended in the
past to establish such correlations, they concern earlier genera-
tions of microprocessors that do not comprise the latest architec-
tural features (e.g. out-of-order execution, dynamic scheduling,
mutiple issue, etc.). The latter, however, constitute the main
source of complexity in modern microprocessors, thus limiting
the applicability of these previous efforts.

The objective of the research described in this paper is to
develop the infrastructure necessary for exploring the correla-
tions between low-level control logic faults and their impact on
instruction-level execution of typical programs running on mod-
ern high-performance microprocessors. While the datapath of
such microprocessors is equally important, we mainly focus on
their control logic for the following two reasons. First, CED
for datapath is understood much better and various coding tech-
niques have been successfully applied. Second, advanced ar-
chitectural features complicate significantly the task of the con-
troller, making it much harder to analyze or predict its behavior
in the presence of low-level errors.

The starting point for developing the aforementioned infras-
tructure is a public-domain high-performance microprocessor,
which is briefly discussed in Section 2. Section 3 presents the
various components and capabilities of the developed infrastruc-
ture, along with the flow of its multi-level utilization for fault
injection, simulation and correlation. An instruction-level er-
ror model is introduced in Section 4; this model is then used
to demonstrate the correlation capabilities of the infrastructure
through extensive experimental results provided in Section 5.
Finally, our plans for extending the developed infrastructure and
investigating its applicability and effectiveness in guiding the
use of CED methods and other test and reliability related tasks
are discussed in Section 6.
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2. Test Vehicle: The IVM Processor

We start by briefly presenting the microprocessor that we will
use as the test vehicle in our investigation. We discuss the capa-
bilities of the simulation infrastructure that has been previously
developed by other researchers around this microprocessor, we
pinpoint its limitations and we identify its components that need
to be enhanced in order to support our study.

2.1. Microprocessor Model and Functional Simulator

Since the focus of this work is the cross-correlation between
control logic defects and instruction level errors in modern mi-
croprocessors, the underlying test vehicle should incorporate as
many of the state-of-the-art architectural features as possible.
Among the very limited number of such test-cases available in
the public domain, we chose to work with a Verilog implementa-
tion of an Alpha-like microprocessor, called IVM (Illinois Ver-
ilog Model) [17]. IVM implements a subset of the instruction
set of the Alpha 21264 microprocessor. Consisting of approx-
imately 40,000 state elements, the IVM is rich in architectural
features including: superscalar, out-of-order execution, dynam-
ically scheduled pipeline, hybrid branch prediction and specula-
tive instruction execution. IVM can have up to 132 instructions
in-flight through its 12-stage pipeline, supported by a dynamic
scheduler of 32 entries and 6 functional units. The complexity of
IVM reflects most of the features of modern, high-performance
microprocessors; thus, it enables a realistic investigation of the
instruction-level impact of control logic errors in such micropro-
cessors. Besides the Verilog implementation, a functional sim-
ulator that can be used in conjunction with the IVM processor
model also exists. This functional simulator simulates the full
set of the Alpha 21264 microprocessor and is part of the Sim-
pleScalar tool suite implemented for the Multiscalar Research
Project [18].

2.2. Capabilities and Limitations

The IVM microprocessor was developed and used to study
the impact of single-event transient errors IVM [17, 19, 20],
modeled as single register-level bit-flips. Unfortunately, gate-
level fault simulation cannot be performed; due to certain cod-
ing techniques used at the RT-level model, the current version
of IVM is not synthesizable. Instead, an approach of stopping
the simulation, altering the state of the microprocessor, and then
continuing the simulation is currently employed. This fault in-
jection approach is effective when studying the impact of single-
cycle transient errors, such as those by alpha particle strikes.
However, it is extremely inefficient for other fault models, such
as stuck-at faults or transient errors of longer duration caused
by operational marginalities. Indeed, the process of injecting a
fault for a clock cycle involves extensive file-system-based in-
teractions and becomes very time consuming if done for more
than a few clock cycles. To alleviate this limitation, we develop
an enhanced infrastructure which supports efficient fault injec-
tion and simulation for these longer-lasting errors, as described
in Section 3.

Another key aspect of the existing infrastructure is that both
IVM and the functional simulator can execute SPEC bench-
marks. This is important since it allows us to study the impact of
errors while the microprocessor is executing a typical workload,
thus making our findings more realistic. However, the IVM does
not support the full instruction set of Alpha; floating point in-
structions and various system-calls have not been implemented.
Therefore, the functional simulator must be used to surmount
this limitation, by invoking it whenever such instructions need
to be executed. This interaction is enabled through the ability
of the functional simulator to load/store the state of the Verilog
model and vice-versa at any given clock cycle.

3. Enhanced Simulation Infrastructure

We now proceed to describe the fault simulation enhance-
ments that we developed based on the aforementioned infras-
tructure, as well as the pertinent tool-flow that enables our error
correlation investigation. We first outline the main capabilities
of the enhanced infrastructure, followed by a detailed descrip-
tion of its basic components and a discussion of its utilization.

3.1. Capabilities

Starting with the Alpha-like IVM microprocessor model de-
scribed in Section 2, we augment it to provide the additional
capabilities necessary for the correlation study targeted by our
investigation. Overall, the enhanced infrastructure provides the
following key features:

• Simulation: We can simulate software written for the Al-
pha microprocessor. In our experiments, we use SPEC2000
Integer benchmarks.

• Fault injection & simulation: We can perform fault injec-
tion into any register or combinational logic entity instan-
tiated at the RT-level of the microprocessor by augment-
ing the model accordingly. Fault injection is controlled by
a fault controller module inside the microprocessor. The
fault simulation infrastructure supports both stuck-at faults
and transient error models of used-defined starting times
and durations.

• Trace dumping: The model can produce traces for all the
modules of the microprocessor for specified clock cycles.

• State dumping: At any given clock cycle, we can save all
information concerning microprocessor state, such as the
contents of SRAMs, flip-flops, register files etc.

3.2. Main Components

The enhanced fault simulation infrastructure consists of three
main parts, as shown in Figure 1: i) supporting tools to control
fault injection and the I/O of the procedure, ii) a functional sim-
ulator of the Alpha microprocessor, and iii) the augmented ver-
sion of the microprocessor model. The main functionality of the
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Figure 1. Infrastructure Components and Interactions

fault injection tools is to provide support to the functional simu-
lator by generating the appropriate files and passing parameters
for specific operations. Also, these tools accumulate the results
of the simulations and report them to the user.

3.2.1. Functional Simulator
The presence of a functional simulator in the flow is essential be-
cause it enhances the functionality of the microprocessor model.
Since the current version of IVM does not implement floating
point operations, system calls and miscellaneous other instruc-
tions of the Alpha 21264 processor, these instructions can be
executed via the the functional simulator which implements the
complete instruction set. The simulation can be switched from
the functional simulator to the Verilog model and vice versa at
any given time. In practice, for the SPEC2000 Integer Bench-
marks used in this study, the functional simulator is used to skip
the initial system calls, after which the execution continues at
the RT-level model of the IVM microprocessor.

Furthermore, the functional simulator enhances the I/O func-
tionality of the Verilog model. Thus, it can read values from
files and pass parameters to the Verilog model during transition
between states. It can also output the state or traces of the mi-
croprocessor model to the file system. These features enable
fault injection and analysis as well as trace dumping through the
developed simulation infrastructure.

3.2.2. Microprocessor Model
Since the existing version of the IVM microprocessor model
cannot be synthesized so that gate-level fault injection and sim-
ulation can be performed, an alternative efficient way for doing
this is required. To this end, we augment the IVM model so as
to support fault injection capabilities at the RT-Level. Specifi-
cally, a Fault Controller module is added to the microprocessor,
controlling the fault injection process. When this module is de-
activated, the microprocessor operates normally as a fault-free
circuit. When it is activated, it provides an extensive range of
options for injecting faults. Since the module is already built
in the microprocessor model, consecutive simulations injecting
different faults can be executed without recompiling the model,
something that would make any reasonably-sized fault simula-
tion experiment computationally prohibitive. Besides the inser-
tion of a new module, each existing module of the IVM micro-

Table 1. Input/Output Interface of Fault Controller
Type Name Bits
Input fault index 32
Input fault bit index 8
Input fault type 2
Input error cycle start 32
Input error cycle end 32
Output fault register 42
Output fault clock 1

processor is also augmented to provide support for the functions
of the Fault Controller, as explained in detail below.

3.2.3. Fault Controller

The main component of fault injection is the embedded Fault
Controller module. This module is only activated during fault
injection cycles, if any; otherwise it does not interfere with the
execution flow of the microprocessor. Similarly to any other
module, the Fault Controller has a specified list of inputs and
outputs, as presented in Table 1.

The registered inputs of the Fault Controller are not con-
nected to and do not interact with the microprocessor model;
instead, the functional simulator is responsible for setting these
registers to the appropriate values. The output of the Fault
Controller propagates to all modules of the microprocessor. In
addition, the Fault Controller outputs a clock, which specifies
whether a fault should be injected. Specifically, at the rising
edge of this clock each module receives a signal indicating that
a fault injection should occur, prompting the module to process
the outputs of the Fault Controller and behave accordingly.

During the simulation, the Fault Controller is responsible for
fault injection. In each clock cycle, we can access one bit of
one entity and set it to a specific value, where the entity can
be either a register or a wire. We call this procedure Fault Ad-
dressing; every entity of the microprocessor is assigned a unique
identification number (UID), which can be any arbitrarily cho-
sen number. When the Fault Controller activates the fault clock,
each module compares the broadcasted UID to the UIDs of its
internal entities. If a match is found, the module modifies the
corresponding bit, as specified by the outputs of the Fault Con-
troller that are sent to the module. This fault injection technique
is similar to the parallel saboteurs injection technique [21]. An
extensive comparison to existing fault injection approaches can
be found in [22].

For a module to be able to respond to the Fault Controller
functions, it must be augmented accordingly. For this purpose,
after assigning a UID to each entity, a piece of code that will
enable Fault Addressing within each module must be generated.
Moreover, a fault list containing all faults for every bit of each
entity must also be generated. Both fault code and fault list
generation are performed by internally developed fault injection
tools.

After describing the main mechanism underlying the fault in-
jection process, we now list the usage of the various registers in
the Fault Controller:
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• fault index: Specifies the UID of the entity to be
fault-injected. If the UID is invalid, no entity will be fault-
injected. Similarly, if more than one entity share the same
UID, they will all be fault-injected.

• fault bit index: Specifies the bit index of the UID
to be fault-injected.

• fault type: Specifies the type of the injected fault. Our
infrastructure supports stuck-at faults and transient errors
of specified duration.

• error cycle start: Specifies the clock cycle at
which the fault injection should commence.

• error cycle end: Specifies the clock cycle at which
the fault injection should terminate.

• fault register: Contains all the necessary informa-
tion that should be passed to the modules (i.e. the UID of
the entity, the bit index of the entity and the fault type to be
fault-injected).

• fault clock: The clock that activates fault injection
within the modules.

In this way, by manipulating the data stored in the registers,
we can perform single-cycle transient error injection, duration-
controlled transient-error injection, or stuck-at fault injection.
Furthermore, we can perform periodic transient error injection
by continuously updating the registers that contain the fault in-
jection starting and stopping cycles.

3.2.4. State and Trace Files
The presence of the functional simulator presence in the infras-
tructure augments the I/O capabilities of the RTL model. De-
veloped infrastructure enables the generation of files that store
the state of the microprocessor and files that store the I/O of
modules at any given clock cycle. Similarly to [20], information
regarding the states of all flip-flops and SRAMs in the micro-
processor, including the register file and the main memory, as
well as information regarding the memory structures support-
ing the simulation model can be obtained. More specifically, at
any given clock cycle, we can stop the simulation and save the
current state. This is crucial for fault simulation since we can
first create these state traces for a golden run where no faults are
injected and then, during fault simulation, compare them to the
state trace of a fault-injected run in order to assess the impact of
the fault on the microprocessor.

Besides state files, we can also log the inputs and the out-
puts of any given module at specified clock cycles, producing a
trace file. This file can then be used to study the impact analysis
of errors at individual modules. Furthermore, the trace file pro-
vides useful statistics about the activation and usage of the I/O
of a module, such as identifying the most frequently used wires,
their switching frequency etc. Figure 2. Infrastructure Utilization Flow
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3.3. Simulation Flow

After presenting each component of the infrastructure, we
now describe how all components are combined to provide the
aforementioned capabilities. Figure 2 presents a flow chart of
the procedure, where each of the three distinct components of
Figure 1 and their interactions are now depicted in more detail.

Initially, for each entity that will be fault-injected, the corre-
sponding fault code and fault list should be present in the fault-
injection model. Fault injection tools initialize the procedure,
parse the given fault list and produce the necessary files to guide
the functional simulator.

Following the initialization phase, the functional simulator
starts execution and parses the fault injection parameters while
updating the Fault Controller registers. Once the values are cor-
rectly set-up, the functional simulator executes a user-specified
number of instructions. Given the fact that IVM lacks system
call support, initial system calls requested by applications must
be executed at the functional simulator. When the simulator
completes execution, the microprocessor state is transferred to
the Verilog model.

The Verilog implementation of the Alpha microprocessor
simulates the rest of the program code. After a user-specified
number of clock cycles, which is provided through a register in
the Fault Controller, the latter activates the fault clock through
which it instructs all modules to check whether they should al-
ter any included entity (i.e. perform fault injection during the
next clock cycle). At the end of the simulation the state is saved
and transferred back to the functional simulator. Note that the
functional simulator doesn’t simulate the effects of faults unless
they’ve propagated to memory or output.

The functional simulator simply outputs the data collected
by the Verilog model and stops execution. Subsequently, fault
injection tools collect the data and perform the operations re-
quested by the user. We should note that the whole process is
very flexible and parameterized; the user can choose function-
ality (e.g. trace dumping, fault analysis), which faults to inject,
when to inject each fault, and how long to inject it for. In this
way, various types of studies are facilitated.

The impact of mutation on simulation performance is negli-
gible in a huge design of a modern microprocessor and can be
further leveraged by selective mutation. The simulation speed is
limited by the size and complexity of the Verilog implementa-
tion.

4. Instruction-Level Errors (ILEs)

We continue by introducing various types of instruction-level
errors (ILEs), organized in several groups. While these ILE
types constitute neither a complete nor a mutually exclusively
set, they have been carefully selected to reflect incorrect behav-
ior occurring due to errors in the control logic of a modern mi-
croprocessor. Thereby, these ILE types enable us to study the
cross-correlation between defects in the low-level hardware im-
plementation of control logic and their high-level impact from
the point of view of instruction execution.

4.1. ILE Groups & Types

In this study, we consider thirteen types of ILEs, organized in
five distinct groups, as summarized in Table 2. Such grouping
reflects the five key aspects of instruction execution in a super-
scalar out-of-order microprocessor, namely (i) the operation that
is executed, (ii) the operands that are being used, (iii) the func-
tional unit where execution takes place, (iv) the starting and fin-
ishing time of execution, and (v) the order of commitment. The
various ILE groups and types are discussed in more detail below.

4.1.1. Group 1: Operation Errors

The first group covers errors in the sequence of instructions exe-
cuted by the microprocessor, as reflected through discrepancies
in their operation code (op code). Such discrepancies can cause
one of the following ILE types:

• Type 1: The op code of an instruction is mutated to another
op code that is valid but incorrect.

• Type 2: The op code of an instruction is changed to an
invalid op code.

4.1.2. Group 2: Operand Errors

The second group covers errors in the operands that are being
used by an instruction. In certain instructions, such errors may
also affect the instruction execution flow of a program and can,
therefore, be considered as control errors. Our error model cov-
ers both register and immediate operands through the following
ILE types:

• Type 3: A register address used by an instruction points to
a valid but incorrect location in the register file.

• Type 4: A register address used by an instruction points to
an invalid location in the register file.

• Type 5: An instruction uses the contents of a register pre-
maturely, essentially violating a Read-After-Write (RAW)
constraint.

• Type 6: An instruction uses an incorrect immediate value
as one of its operands.

4.1.3. Group 3: Execution Errors

Super-scalar microprocessors employ several functional units of
various types (e.g. integer ALUs, floating point ALUs, branch
unit, memory operation unit, etc.), in order to execute multiple
instructions simultaneously. Accordingly, the third group covers
errors in the utilization of these functional units by the executed
instruction through the following ILE types:

• Type 7: An instruction is assigned to and executed by a
functional unit of incorrect type.

• Type 8: An instruction is assigned to more than one func-
tional unit.
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Table 2. Instruction-Level Errors
Type 1: Incorrect (yet valid) op code usedGroup 1: Operation Errors
Type 2: Invalid op code used
Type 3: Incorrect (yet valid) register addressed
Type 4: Invalid register addressed
Type 5: Premature use of register contentsGroup 2: Operand Errors

Type 6: Incorrect immediate operand used
Type 7: Incorrect functional unit type utilizedGroup 3: Execution Errors
Type 8: Multiple functional units utilized
Type 9: Early commencement
Type 10: Late or no commencement
Type 11: Longer durationGroup 4: Timing Errors

Type 12: Shorter duration
Group 5: Order Errors Type 13: Commitment order violation

Table 3. Information Collected to Support ILE Classification
Fields Logged for Each Instruction Executing in Each Functional Unit at Each Clock Cycle

Instruction Instruction Register Availability of Immediate ID of Executing Starting Time Ending Time
Robid Op code Operands Register Operands Operand Functional Unit of Execution of Execution

4.1.4. Group 4: Timing Errors
The fourth group covers discrepancies in the timing of instruc-
tion execution. Such discrepancies manifest themselves via in-
correct starting and/or finishing instruction time-stamps and are
captured through the following ILE types:

• Type 9: An instruction commences execution at an earlier
clock-cycle than it is supposed to.
• Type 10: An instruction commences execution at a later

clock-cycle than it is supposed to, or does not commence
execution at all.
• Type 11: An instruction completes execution in a longer

period of time than it is supposed to.
• Type 12: An instruction completes execution in a shorter

period of time that it is supposed to.

4.1.5. Group 5: Order Errors
The fifth group covers errors in the order in which instructions
are executed and committed. In a processor with out-of-order
execution capabilities, instructions can be scheduled and exe-
cuted out of order. Therefore, a reorder buffer is typically used
to keep track of the instructions that are in flight and ensure that
they are committed in order. Errors causing discrepancies in this
order are captured by the following ILE type:

• Type 13: The correct order of instruction commitment is
violated.

4.2. ILE Classification Process

In order to be able to appropriately categorize the impact of
a low-level control logic discrepancy into one of the ILE types
introduced in the previous section, we use our fault simulation
infrastructure to collect the necessary information. More specif-
ically, for each clock cycle, we log various fields related to the

execution of instructions in the processor. This is first done for a
golden run, wherein no fault is injected, and subsequently for the
fault-injected processor. The two traces of information are com-
pared and, at the first point of failure, the corresponding fields
are used to classify the injected fault into an ILE type. The infor-
mation that is collected during each clock cycle is summarized
in Table 3:

1. the op code of the instruction being executed; this is simply
the type of the instruction. Based on this, ILEs of Types 1-2
can be identified.

2. the physical addresses of the source and destination regis-
ters that are used by the instruction; this shows where the
operands reside and where the result will be written. Based
on this, ILEs of Types 3-4 can be identified.

3. the ready bits of these registers; this indicates whether the
source operands are ready to be read. Based on this, ILEs
of Type 5 can be identified.

4. the values of any immediate operands than the instruction
may be utilizing. Based on this, ILEs of Type 6 can be
identified.

5. the identification number of the functional unit where the
instruction is executed. Based on this, ILEs of Types 7-8
can be identified.

6. the clock-cycle at which the instruction starts execution.
Based on this, ILEs of Types 9-10 can be identified.

7. the clock cycle at which the instruction is expected to fin-
ish execution. Based on this, ILEs of Types 11-12 can be
identified.

8. the robid of the instruction being executed; this is an iden-
tification number assigned by the Reorder Buffer which
follows the instruction until it commits and serves as the
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mechanism for ensuring in-order instruction commitment
in the out-of-order execution IVM microprocessor. Based
on this, ILEs of Type 13 can be identified.

4.3. Example

As an example of ILE classification, let us consider Timing
ILEs of Types 11-12. We should clarify that, given the scope
of the paper, the term Timing Error refers to errors that affect
the duration or the commencement/retirement of an instruction,
and are different from timing errors at lower levels of the design.
Assume that in the fault-free case, an instruction starts executing
at time t1 and finishes at time t2. However, in the presence of a
fault, this instruction starts at t1 but finishes at t3, t3 6= t2. The
occurred fault is either a long duration ILE (Type 11) or a short
duration ILE (Type 12). To classify this ILE, we use of the fields
in the last two columns of Table 3, namely the starting time and
finishing times of execution of the golden and the faulty model.
Certain timing errors can be benign, but in the scope of our study
we still consider them as ILEs.

5. Experiments

In this section, we demonstrate the error cross-correlation
capabilities and the corresponding insight that can be gained
through the developed infrastructure. To this end, we perform
a series of simulations wherein RT-level faults are injected in
the control logic of the IVM microprocessor while the latter ex-
ecutes SPEC benchmarks and we analyze their instruction-level
impact. We first discuss the details of the fault simulation setup;
then, we present the obtained results and we reflect on the infor-
mation that they provide and its potential significance in various
aspects of microprocessor design and test.

5.1. Fault Simulation Setup

While, ultimately, we envision the use of our infrastructure
for studying error correlations across multiple abstraction lev-
els, for the purpose of this experiment we examine the cross-
correlation between the RT-level and the instruction level. In
addition, since the focus of this work is on control logic errors,
we concentrate on two of the key control modules of the IVM
microprocessor, namely the Scheduler and the Reorder Buffer
(ROB). Within these two modules, we choose a fault model that
includes all stuck-at faults in registers. Performance errors (like
branch prediction errors) are not considered in this study, as we
focus on errors that corrupt the program output, even though
some errors within the out of order logic may result as perfor-
mance errors.

The total number of faults injected is 27,234, covering both
stuck-at-0 and stuck-at-1 faults. No fault collapsing or fault
dropping techniques were used.

With regards to the applications executed on the IVM mi-
croprocessor during fault simulation, seven standard SPEC2000
Integer benchmark programs are used. In each fault simulation
run, the functional simulator is used to execute the first 50,000
clock cycles, thus bypassing the initial system calls and other

operations not implemented in IVM. Subsequently, the micro-
processor state is passed to the Verilog implementation of the
model, which executes another 2,000 clock cycles, during which
the injected fault is active. This process mimics the occurrence
of a transient error of long duration at some random point dur-
ing program execution. The use of 7 different benchmarks en-
sures variability of the instruction flow executed in the 2,000
clock cycle window. Because of the continuous nature of the
injected stuck-at faults, errors at the instruction level either ap-
pear very early in the execution or are not activated at all. The
latter happens either due to fault masking or (mostly) because
certain register bits are rarely used in a typical execution flow
(e.g. the most significant bits of address registers, or scheduler
slots that are used only when a fairly large number of instruc-
tions are in flight). Correlation between controller faults and
Instruction-Level Errors (ILEs) is independent of the fault model
used; results showed that a fault at a bit results in the same ILE
in all different benchmarks. Thus, the use of stuck-at fault model
maximizes the probability of an ILE appearing in the simulation
window.

When a fault-simulation using a benchmark completes the
2,000 cycle window, its trace is compared line-by-line to the
trace of the golden run; the comparison is performed by auto-
mated tools. In the event of a discrepancy, comparison tools
utilize certain checks and algorithms to classify the fault to the
appropriate Instruction-Level Error (ILE) type, as described in
Section 4.2. Even though we compare line-by-line for differ-
ences between the golden trace and the faulty trace, when a dis-
crepancy is found, information from multiple cycles is used to
correctly classify the error. However, only the first discrepancy
is reported and classified as an ILE, because the execution after
that point is corrupted and will result in many different ILEs. If
more than one ILE are identified in the clock cycle of first ILE
appearance, all of them are reported.

As a first set of results, we present cumulative data regarding
the fault simulations performed. Specifically, Table 4 reports
the percentage of the 27,236 injected faults that resulted in an
ILE, as well as the average number of ILE types that are simul-
taneously activated for each of the seven SPEC2000 benchmark
programs that were executed. Based on this table, the following
observations can be made:

• The number of faults resulting in an ILE ranges between
24%-40%. Intuitively, faults injected during the execution
of benchmark programs using a limited variety and algo-
rithmic combination of instructions will excite fewer ILEs
due to a larger portion of unused processor functionality.

• Since the ILE types are not mutually exclusive, more than
one ILE types may be activated simultaneously, even when
checking in a cycle-by-cycle fashion. However, as can be
observed in the last column of Table 4, the average number
of simultaneously activated ILE types is only 1.27; this im-
plies that, most of the time, only one of the 13 ILE types
is activated at the first point of failure. The implication of
this information is that corruption will typically occur only
at one aspect of instruction execution, with the rest remain-
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Table 4. Results on SPEC2000 Integer Benchmarks
SPEC Simulations Average # of ILEs

Benchmark Resulting % Activated
Name in ILEs Simultaneously
bzip2 10935 40% 1.33

cc 10511 39% 1.34
gap 6548 24% 1.20
gzip 7263 27% 1.10
mcf 6929 25% 1.26

parser 10927 40% 1.37
vortex 10743 39% 1.31

Average 9122 33% 1.27

ing unaffected. Thus, early detection and identification of
such ILEs can guide simple operations towards restoring
the correct state of the microprocessor.

Our second set of results examines the consistency of the in-
formation provided through our experiments. Specifically, since
each benchmark utilizes different functional capabilities of the
processor, the ILE type resulting from a stuck-at fault may vary,
depending on the actual instructions being executed. In this
sense, the robustness of the extracted cross-correlation informa-
tion may be questioned. Therefore, in Figure 3, we present the
percentage of stuck-at faults that results in ILEs of each of the
five groups described in Section 4.1, for each of the seven bench-
mark programs. Based on this bar-chart, the following observa-
tions can be made:

• The distribution of stuck-at faults to the five groups of ILEs
is consistent across the seven benchmarks. Furthermore,
the variance of stuck-at faults within each group across the
seven benchmarks is small1. These observations corrobo-
rate that the obtained cross-correlation information is not
biased by the actual instructions executed by each bench-
mark program and is, therefore, robust.

• A large percentage of stuck-at faults (60%-80%) result in
timing errors, implying that most stuck-at faults in the con-
trol logic may not affect the instruction itself but, rather,
when this instruction is executed. This is expected since
faults injected in the Scheduler and the ROB modules di-
rectly impact instruction issuing and commitment. Such
information is very useful in guiding allocation of error
detection and recovery resources. In this case, for exam-
ple, one would focus on methods that predict and monitor
the correctness of instruction starting and stopping times,
since, thereby, the majority of the faults would be detected.

5.2. Results & Discussion
The third set of presented results relates to the occurrence

frequency of each of the 13 ILE types described in Section 4.1.
1We note that these observations hold even when the groups are further bro-

ken down to the constituent ILE types. For the sake of clarity, the corresponding
figure is omitted.

Figure 3. Percentage of Stuck-at Faults Causing each
ILE Group for each of the Seven Benchmarks

The average number of stuck-at faults resulting in each ILE type
over the seven benchmarks is presented in Figure 4. The subset
of these faults that eventually result in stalling of the pipeline is
also provided. The following observations can be made based
on the results:

• The most frequently occurring ILEs concern instruction
execution timing issues. Specifically, late instruction
commencement (Type 10) and longer instruction duration
(Type 11) are the dominant types. In other words, faults
injected in the Scheduler and the ROB module will often
result in failure to issue an instruction or failure to commit
an instruction at the appropriate clock-cycle. Another in-
teresting observation is the frequent appearance of operand
mutations (Type 3). Indeed, the complex structures em-
ployed by the scheduler to keep track of the 1 to 3 registers
used by each instruction, appear to be vulnerable to various
stuck-at faults in the control logic.

• On the other hand, stuck-at faults in the Scheduler and
the ROB seem to rarely cause mutation of operation codes
(Type 2) or invalid operand address (Type 4), since the
logic involved is relatively limited. Similarly, very few
faults cause premature use of operands (Type 5), incorrect
functional unit assignment (Types 7-8), or out-of-order in-
struction commitment (Type 13). In these cases, the in-
volved logic can be large, but its complexity is such that it
prevents single stuck-at faults in a register from activating
these ILE types, hence their low occurrence probability.

The insight provided by the aforementioned observations re-
garding the most frequently occurring and, thus, the most critical
ILE types can be leveraged to facilitate cost-effective use of er-
ror detection and correction resources. by implementing small,
efficient CED techniques targeting a specific ILE type

Another very interesting set of results pertains to the time
that elapses between injection of a fault and its appearance as
one of the defined ILE types, as well as the latency between
appearance of an ILE and a potential subsequent stalling of the
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Figure 4. Average Number of Stuck-at Faults Causing
each ILE Type and Subsets Causing Stalled Execution

microprocessor. This information is provided in Figure 5 for
the fault simulations performed in our experiments. While the
activation time of an ILE may depend on the actual sequence
of executed instructions, averaging the results over the various
SPEC benchmarks provides an unbiased estimate. The obtained
results motivate the following observations:

• The average time until an injected fault results in an ILE is
406 clock cycles. However, the standard deviation across
the 13 ILE types is rather high (198 clock cycles), with
some ILE types occurring very quickly and others much
later. For example, invalid operation code (Type 2), uti-
lization of multiple functional units (Type 8) and incorrect
commitment order (Type 13) are examples of ILEs appear-
ing very quickly after fault injection. Indeed, despite the
fact that the set of faults causing these ILEs is relatively
small (as presented in Figure 4), such faults are directly as-
sociated with these specific types of ILEs. Thus, upon the
appearance of such a fault, the corresponding ILE is imme-
diately activated. On the other hand, ILEs related to tim-
ing issues (e.g. Types 9-11) appear much later. Such ILEs
seem to be often the result of faults propagating to parts of
the microprocessor that do not interfere directly with the
main pipeline flow, yet eventually work their way into it
and, hence, the longer latency.
• On average, a microprocessor stall occurs 280 clock cycles

after occurrence of an ILE. However, one may observe that
some ILEs concerning timing issues (i.e. Types 9-11) re-
sult in microprocessor stalling much faster than the rest of
the ILEs; given the fact that these ILEs are caused when
the Scheduler or the ROB fail to timely issue or commit an
instruction, subsequent instructions fail to issue or commit
successfully, inevitably causing the pipeline to stall very
quickly. On the other hand, for ILEs such as the Type 7 dis-
cussed above, stalling appears much later, after the Sched-
uler and/or the ROB fill up with instructions waiting for the

Figure 5. Average Time-stamp of ILE Identification and
Subsequent Pipeline Stalling (in clock cycles)

incorrectly executed instruction to retire.

The insight provided by the aforementioned observations
is two-fold. First, they reveal the relative temporal criti-
cality of each ILE type in terms of Mean Time To Failure
(MTTF). Thus, they can be used to fine-tune error toler-
ance methods that employ checkpoints to examine and re-
store the microprocessor state [19]. Second, they indicate
the window of opportunity for correcting an error before it
drastically corrupts the processor state and results in a stall.
Thus, they can be leveraged to prioritize the allocation of
error detection and correction resources.

• Finally, Figure 5 shows that the activated ILEs appear no
later than 800 cycles after fault injection; this ensures that
the window of 2,000 clock cycles that we observe is suf-
ficiently long for the performed analysis. Still, there are
ILEs activated later in the simulation which are masked in
the results shown in Table 4. Given that their percentage is
relatively small, the simulation window is limited to 2,000
to increase performance.

6. Future Directions

The introduced infrastructure provides the foundation for in-
vestigating various robust design issues in modern microproces-
sors. As a natural next step, we are currently developing a syn-
thesizable version of the IVM microprocessor model in order
to extend our correlation capabilities across the gate-level, the
RT-level and the instruction-level. At the same time, we are
leveraging the existing infrastructure in order to assess the ef-
fectiveness of existing concurrent error detection and correction
methods, as well as to develop new ones. Furthermore, we plan
to expand the scope of our analysis to all control modules of
the microprocessor, thus obtaining a global picture of its most
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vulnerable parts. Finally, we anticipate that extensive correla-
tion information between gate-level faults and instruction-level
errors can also enhance complex design diagnosis and support
debugging efforts, which we intend to explore further.

7. Conclusion

The analysis described in this paper is neccessary to suc-
cessfully develop optimal designs conerning CED techniques.
In order to perform this analysis, an infrastructure with exten-
sive capabilities has to be build. Such capabilities are provided
by the infrastructure described herein, which enables injection
and simulation of RT-level faults in an Alpha-like micropro-
cessor and correlation of their impact to instruction-level er-
rors in SPEC2000 integer benchmarks. The insight obtained
through this multi-level cause and effect analysis proves instru-
mental to the efficient utilization of resources. Indeed, as we
demonstrated, crucial observations can be made regarding the
activation frequency and latency of various instruction-level er-
rors, thus guiding the selection of appropriate concurrent error
detection and correction methods. For example, extensive ex-
periments demonstrated that most low-level faults cause timing
issues in the instruction execution flow. Furthermore, latency
fluctuates throughout the different error types, providing valu-
able information on error type prioritization. Similar insight and
guidance for various other design robustness endeavors can be
achieved through the application of the existing infrastructure
and the described extensions.
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