
A Novel GA-Based High-Level Synthesis Technique to Enhance RT-Level
Concurrent Testing

Naghmeh Karimi1, Soheil Aminzadeh2, Saeed Safari1 and Zainalabedin Navabi1
1Electrical and Computer Engineering Department, University of Tehran

2Computer Engineering Department, Sharif University of Technology
naghmeh@cad.ece.ut.ac.ir; aminzadeh@ce.sharif.edu; saeed@ut.ac.ir; navabi@ece.neu.edu

Abstract

This paper presents an efficient High-Level Synthesis
(HLS) approach to improve RT-Level concurrent testing.
The proposed method used for both fault detection and fault
location. At first the available resources are used in their
dead intervals to test active resources for fault detection,
and then some changes are applied to the RT-Level
controller to locate the faults. The fault detection step is
based on a genetic algorithm (GA) search technique. This
genetic algorithm is applied to the design after high level
synthesis process to explore the test map. The proposed
method has been evaluated based on dependability
enhancement and area/latency overhead imposed to
different benchmarks after applying our algorithm. The
dependability has been considered in terms of fault
coverage. The experimental result shows that applying our
algorithm, the associated area overhead and performance
penalty are negligible while the online fault coverage
improvement is considerable.

1. Genetic Based Efficient Self-Testing
Algorithm (GB-ESTA)

Here we describe the proposed method to improve the
self-testability of the resulted RTL circuit. The proposed
method produces a self-testable RTL circuit which is
tested during its normal operation. The main goal of this
method is to alter the original data-path and controller to
find an optimum self-testable circuit with a minimum
area/latency overhead.

1.1. Overview

At the first step, behavioral description of the input
circuit is converted to an internal data structure shows
the DFG of the circuit. After that the conventional HLS
algorithms, i.e. scheduling and binding, are used to find
an RTL implementation of the circuit that is not
necessarily self-testable. Then GB-ESTA uses a
deterministic modification algorithm to find a normal

distribution of the idle modules in each working clock
cycle of the circuit. This increases the possibility to find
an idle module in each clock cycle to test a busy module
of the same type. In the next step, GB-ESTA employs
two GAs to find the effect of using extra modules (and
extra clock cycles) on circuit parameters, e.g. area,
latency and self-testability. Finally, this information is
used to alter the data-path and controller of the circuit to
improve the self-testability of the circuit with minimum
area/latency overhead.

1.2. Conventional HLS

The input of high level synthesis tool is described as a
behavioral HDL code. This behavioral code will be
translated to a DFG intermediate format. Then, Force-
Directed Scheduling (FDS) is used to find the execution
time of each operation. Given an SDFG, binding assigns
modules to perform operations and registers to store
variables and generates the data-path of the circuit. To
find the RTL implementation of the circuit an extra step,
called controller synthesis, should be performed on
Bound DFG to specify the control signals value at each
clock cycle.

1.3. Algorithm Description

The proposed algorithm is implemented in two
different versions: On-line Fault Detection version and
On-line Fault Location/Correction version.

1.3.1. On-line Fault Detection: Here we will describe
the algorithm developed for on-line fault detection. At
first, a deterministic algorithm is run on SDFG to
maximize the idle modules of all types at each clock
cycle. We employed a deterministic algorithm to re-
schedule the operational modules such that the numbers
of idle modules at each clock cycles are maximized. In
the next step this algorithm adds extra modules in such a
way that there are two modules of the same type (one

14th IEEE International On-Line Testing Symposium 2008

978-0-7695-3264-6/08 $25.00 © 2008 IEEE

DOI 10.1109/IOLTS.2008.43

173

14th IEEE International On-Line Testing Symposium 2008

978-0-7695-3264-6/08 $25.00 © 2008 IEEE

DOI 10.1109/IOLTS.2008.43

173

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on June 14,2021 at 16:22:19 UTC from IEEE Xplore. Restrictions apply.

busy and one idle) at each clock cycle. Also in some
cases it is required to add clock cycle(s) in which
modules are idle and can be tested. To test them we may
add an extra clock cycle in which both adders are idle
and can be tested. Note that adding extra modules and
extra clock cycles results in area and latency overhead
respectively.

Then two GAs, named GA1 and GA2, are employed
to find the test map of the circuit shows how to test all
modules. GA1 tries to find a different test map for each
module at each clock cycle and GA2 finds the best
module test map resulted from GA1.

Now there is a test map for each module and this is
the time to modify data-path and controller of the circuit.
RTL modification part of GB-ESTA adds some
hardware redundancies to the data-path and controller to
apply the same inputs to modules A and B, if B is used
to test A.

1.3.2. On-line Fault Location/Correction: In this
scheme the fault detection is performed as before
(described in section 1.3.1) and the RTL modification
step is changed to provide fault location and correction.
Here we add hardware redundancies assuring to have at
least three instances of each module type. When an error
reported due to the output mismatch of two modules (a
busy and an idle one), the controller freezes the data-
path and enters to a location/correction state. In this state
controller applies the same inputs to the three modules of
the same type and finds the faulty module using a sift
unit. Sift unit also generates the correct output using a
Triple Modular Redundancy (TMR) scheme. Then the
controller goes back to a normal state and continues its
works.

When an error is reported, we wish to apply the input
that raises an error to all three modules at
location/correction state. If the input and output
variables of a module are mapped to the same register,
we lose the input and correction phase can not be used
correctly. So we should prevent that the input and output
variables of a module are mapped to the same register
and this results in more registers in RTL implementation
of the circuit.

1.4. Reliability Improvement

Here we will show that the self-testable
implementation provides more reliability in comparison
of conventional implementation. Note that the self-
testable implementation has only a 1-bit output, i.e.
Error. So it may seem that it is harder to test it in
comparison to the conventional implementation which
has 3 8-bit outputs. We claim that all faults except the
faults on register outputs are detectable in the self-

testable implementation. This is due to the fact that when
a fault occurred on a register output, it is applied to both
(the busy and the idle) modules inputs and consequently
they provide the same output and there is no way to
detect the fault. For all other faults there is a test vector
that activates the faults using operational modules.

2. Experimental Results

To evaluate our method, we have applied the
proposed algorithm to several benchmarks. The selected
benchmarks are cir1, DiffEq and a 6th order FIR filter
[1]. We first applied our method to the behavioral
description of each circuit for data-path and controller
synthesis, obtaining an output in Verilog format. The
output is then converted to a gate-level net-list called
ISCAS. HITEC-PROOFS [2] is then used to evaluate
fault coverage using 5000 test vectors. The area, latency
and fault coverage are reported in Table 1. As shown in
Table 1, due to the self-correcting mechanism the fault
coverage for self-correctable implementation is not
reported.

Note that the fault coverage reported in Table 1 for
conventional and self-testable method shows the off-line
and on-line testing fault coverage respectively. In other
words, the on-line fault coverage of the conventional
RTL is 0. So, our method results in a considerable
improvement in on-line fault coverage.

3. References

[1] M. T. Lee, High-Level Test Synthesis of Digital
VLSI Circuits, Artech House, 1997.
[2] T. Niermann, J. H. Patel, “HITEC: A Test
Generation Package for Sequential Circuits,”
Proceedings of the European Conference on Design
Automation, pp. 214-218, 1992.

Table 1. Experimental Results

 Implementation Area
(#Gates)

Clock
Freq

(MHz)

Fault
Coverage

Conventional 3007 90.4 %99.8
GB-ESTA (Detection) 3744 84.1 %90.2 Cir1
GB-ESTA (Correction) 6462 63.7 -
Conventional 3553 86.9 %99.8
GB-ESTA (Detection) 4694 83.4 %85.4 Diff

Eq
GB-ESTA (Correction) 7901 60.2 -
Conventional 3468 82.6 %99.7
GB-ESTA (Detection) 5360 80.8 %83.2 FIR
GB-ESTA (Correction) 7974 56.3 -

174174

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on June 14,2021 at 16:22:19 UTC from IEEE Xplore. Restrictions apply.

