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Abstract— The integrated circuits can be exposed to various
stresses during run-time due to unexpected environmental con-
ditions or attacks. Ensuring that a circuit is not working out-of-
specification via sensing its operating conditions, e.g., tempera-
ture and voltage, is highly useful in detecting anomalies. Analog
sensors have been used to monitor the operating conditions for
a long time, however, weaknesses including lack of portability
to thin technology nodes, costly & complex calibration process,
and low attack resistance make such sensors inefficient. Digital
sensors, via considering the temperature and voltage effects
altogether instead of treating each separately, have been demon-
strated as a qualified replacement. In this paper, we develop an
integrated framework for continuous monitoring of the operating
voltage and temperature of each chip. The framework includes an
embedded on-chip sensor circuitry along with a Neural Network
model that quantifies the temperature and voltage values via
processing the data collected by this sensor. The experimental
results confirm the high accuracy of the proposed framework in
tracking on-chip voltage and temperature variations, i.e., with
the average error of 0.014V in a range of 0.65V to 1.4V, and the
average error of 3.9°C in a range of -10°C to 150°C, respectively.

I. INTRODUCTION

With the aggressive scaling of the electronic device’s feature
size ensuring the reliability and security of these circuitries
has received a lot of attention. In practice, chips are designed
to work in well-defined Process-Voltage-Temperature (PVT)
conditions. However, they can be subject to various stresses,
e.g., very high temperature and/or under-supply violating the
intended PVT that characterized the chip at design time due to
a harsh environment or a malicious attack aiming at denial of
service, malfunction or even leak of sensitive data. Actually,
faults in cryptographic programs can seriously endanger the
security of applications, such as authentication skips in remote
login or firmware updates, or even as secret/private keys
exposition by fault analysis [1].

Equipping the chips with sensors raising alarms when a chip
is operated out-of-specification has received the lion’s share of
attention in recent years [2]. Such alarms may call for proper
actions to prevent catastrophic consequences such as safety
breakdown (e.g., in automotive industry, and in particular
autonomous cars), security breakage (e.g., leaking secret in-
formation from smartcards via launching fault attacks through
voltage glitches), or reliability wearout (e.g., malfunctions in
highly critical applications like medical and space).

Analog sensors have been broadly used in industrial appli-
cations to monitor the chip behaviors [3], especially in the field
of safety. However, they suffer from various weakness, e.g., the
need for post manufacturing calibration due to process vari-
ation, and difficulty of their adaptation to new technological
nodes. To overcome these obstacles, digital sensors have been

introduced in low-power (e.g., for finetuning the Dynamic-
Voltage-Frequency-Scaling [4]) and security literatures [5], and
were used thereafter in industry [6] and government sectors.

In this paper, we develop an integrated framework for con-
tinuous monitoring of chips’ operating voltage and temperature
via designing an embedded Digital Sensor (DS) that uses
machine learning schemes. Our DS architecture relies on two
delay sensors operating under different conditions, and reacts
in terms of propagation delay to PVT variations. We propose a
Neural Network (NN) assisted method to determine the voltage
and temperature by exploiting the deployed DS output.

II. ANALOG VERSUS DIGITAL SENSORS

In contrast to digital sensors that are fully made up of
digital standard cells, analog sensors are realized using full
custom layout and are hard to calibrate [7]. Analog sensors
are less portable, requiring revalidation by new simulations
when the technology Physical Design Kit (PDK) is updated
and a complete redesign when changing the technology or
the foundry. On the contrary, digital sensors simply require a
basic recalibration in any of those situations. Digital sensors
are more optimized regarding area and power compared to the
analog ones. Both sensors suffer from process variation and
dynamic noise. However, analog sensors counter ambiguities
in defining a threshold for nominal vs abnormal situations,
while digital sensors resolve this issue via electrical level
discretization [8]. Moreover, analog sensors are more prone to
attacks due to their noticeable implementation [9] using full
custom layout. In terms of failure or attack detection, analog
sensors generate more false alarms than digital sensors [2].

III. MOTIVATION

The operating voltage V can be transduced from measuring
a timing within the chip through tabulation. However, as the
delay depends on the temperature T , a temperature sensor is
needed to find the V from the T . If temperature sensor is
NOT available, there is no unique solution due to the existence
of iso-delay curves (see our characterizations in Fig. 3). To
overcome this problem, we propose a differential approach
with two Digital Sensors: one with High-speed and Low-
leakage, V around 1.0V and another around 1.2V. In this case,
unique (V, T ) can be found from the intersection of those
two curves. As storing the combination of values for both
sensors would be large, we leverage Machine Learning (ML)
algorithms for interpolating the data.

In practice, temperature factor is less important than voltage
to be accurate, because the attacks require drastic changes in
temperature to be effective. Fault injection can be perpetrated
either via hot temperatures [10]–[12] or extremely low tem-
peratures as the “cold boot attack” [13].
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IV. TARGET SENSOR

A. Digital Sensor Rationale

Digital sensors consist of artificial critical paths inserted into
the chip logic such that if the chip is operated in abnormal
conditions, setup time violations occur in the first place. The
sensor is usually as simple as a delay chain [2]. An edge
(positive or negative) feeds such delay chain, and it is checked
if the edge manages to propagate to the end of the chain at
the considered clock period [5, Fig. 14]. Failing to do so is
the evidence of environmental disruptions or manipulations.
To better characterize the amplitude of the timing violation,
the delay chain is sampled in many places, via the D-Flip-
Flops (FFs) embedded in the chain. Such a snapshot digitizes
the amount of stress applied to the circuit [14].

Figure 1. The architecture of the target digital sensor.

Figure 1 depicts the schematic of the DS we deploy in
this research. This sensor includes n0 + n1 buffers among
which the last n1 buffers each feeds a FF. The output of
these FFs represent the sensor’s outcome. All FFs operate
at similar clock frequency F . The first buffer is fed with a
toggle FF generating a periodic signal a0 with the frequency
of F/2. The number of buffers and FFs are decided based on
the operational range of the underlying circuitry embedded in
the same chip. In this paper, we will use two sensors, the
sensor pair, operating at different conditions to derive two
independent physical values: “voltage” and “temperature”.

B. Characterization

We deploy two different methods to characterize the sensor
pair and in turn extract the voltage and temperature.

(a) V= 1.2V, T= 27◦C, P= 1 (b) Matrix S of Fig. 2(a)

(c) V= 1.0V, T= 120◦C, P= 1 (d) AFN

Figure 2. Waveforms of Fig. 1 in different operating conditions. Here, voltage,
temperature and process are shown with V, T, and P, respectively.

1) Matrix-Bases Method (MBM): The MBM scheme ex-
tracts the output of the individual FFs in i consecutive clock

cycles. Depending on voltage and temperature (V, T ) com-
binations, the propagation delay of the delay chain changes
resulting in a different set of values captured by the FFs.
As shown in Fig. 1, in each clock cycle of CCi, when this
sensor is fed with a0, the first FNi FFs are in phase A (say
0 → 1 → 0) and the next ones are in the complementary
phase A (say 1→ 0→ 1), where FNi (referring to the index
of FF in which phase A starts in clock cycle CCi) changes in
different (V, T ). When the circuit operates slower, the delay
of the buffer chain increases resulting in a phase change (from
A to A) in the FFs with lower indexes. However, with the
increase of V and decrease of T , the delay decreases, and the
FNi increases.

The binary matrix S, representing the sensor status in each
(V, T ) combination includes N (# of FFs in the sensor)
rows, and CC (# of clock cycles the sensor is observed
for characterization) columns. As an example, consider the
waveforms shown in Fig. 2 with a sensor having n0 =9 leading
buffers and n1 = 43 buffers and FFs. This figure shows the
FF outputs in different operating conditions. In particular,
Fig. 2(a) shows the sensor outcome for V = 1.2V and T =
27°C. As shown, the first 30 FFs are in the same phase while
the rest are in the opposite phase. In both waveforms in Fig. 2,
we showed the FF values for 18 clock cycles. Fig. 2(b) depicts
the matrix S for the waveform in Fig. 2(a).

Figure 2(c) shows the outcome of the sensor for V dd= 1.0V
and T= 120°C. As shown, the sensor outcome is different from
Fig. 2(a), and in this case multiple phase changes occur (one
in FF 13 and one in FF 37). The takeaway point from these
observations is that firstly, operating conditions can change the
matrix S, thereby, we can use this matrix to infer the operating
conditions. Secondly, as the process variations affect the sensor
outcome, we should take it into account.

2) Average-Bases Method (ABM): As MBM uses the whole
matrix S, to reduce the NN training set size, we propose
ABM where in each clock cycle CCi (1 ≤ i ≤ CC), the
index of the first FF whose phase is different from its prior
FFs in the delay chain is extracted, what we called FNi

earlier. Here, the average of all FNis over all clock cycles, so-
called AFN, is used for characterization. As AFN changes in
different operating conditions, it can represent the operating
condition. Figure 2(d) shows the AFN values for different
PVT combinations. For example, when V dd = 1.2V and
T = 27◦C, the sensor is characterized by AFN = 31, while
AFN is 13 when operating under V dd = 1.0 and T = 120◦C.
Figure 2(d) shows that even in the same operating conditions
(V dd = 1.2V and T = 27◦C), AFN may slightly change
due to the process variations. Moreover, for V dd = 1V and
temperature = 120◦C, AFN is 13 referring to the first phase
change occurring in each clock cycle although multiple phase
changes are experienced in each clock cycle.

V. PROPOSED VOLTAGE AND TEMPERATURE PROGNOSIS

METHODOLOGY

Figure 3 depicts how AFN is affected by the operating
conditions. As expected, AFN is lower in high temperatures
and low voltages as the circuit operates slower In contrast,
in the conditions under which the circuit operates faster (high
voltage and low temperature) the AFN is high. The same AFN
value may represent different operating conditions as AFN
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relates to both voltage and temperature as a pair and not their
individual values. For example, in both cases when (V, T )=
(1.0V, 85◦C) and (V, T )= (1.2V, 105◦C), AFN is 17.

Figure 3. Variation of AFN in different voltage and temperature pairs.

Figure 4. An integrated circuit with two embedded digital sensors.

As the relation between S (as well as AFN) and (V, T ) is
not one-to-one, to predict the voltage and temperature values
accurately, we should be able to distinguish the cases that
have similar S or AFN from each other. We address this
issue by using a second sensor, as shown in Fig. 4, which
operates under different voltage: V dd -ΔV dd. In this paper,
we considered ΔV dd = 0.2V. 1.

To determine the operating conditions based on the outcome
of the sensor pair, we leverage Neural Networks. To train
the model, we only need the simulation data of K sensor
pairs. This approach has two advantages. Firstly, training the
model using multiple sensor pairs’ data results in mitigating
the effect of process variations in the sensor’s outcome as
the model learns the process variation effects gradually during
the training with multiple sensor pair data, and benefits from
such learning in inferring the (V, T ) conditions. Secondly,
conducting Monte Carlo (MC) simulations relieves us from
the need for multiple fabricated-chips data. The steps taken in
our approach are as follows:

• Step 1: Conduct K MC Simulations of the sensor pairs;
• Step 2: Train an NN model using the Step 1 data;
• Step 3: Feed the model during the manufacturing to each

chip that consists of the designed sensor pair;
• Step 4: Extract the operating condition values during the

circuit operation to detect attacks and malfunctions.

We consider two different scenarios and tailor an NN for
each (Step 2 discussed above). Scenario 1 occurs when the
system is equipped with an accurate temperature sensor. In
this case, we can use the temperature along with either AFN
or Matrix S to infer the voltage value. Leveraging AFN
reduces the amount of data needed for training compared to
the S matrix. As the results presented in Section VI shows,

1It is mandatory in safety applications (e.g., [15, Chapter 2]) to leverage
correlated sensors to improve the reliability of their measurement. Our use-
case is different in that the two sensors are of similar kind yet operating in
different conditions to allow for uniquely rending their (V, T ) measurement.

inferring the voltage based on AFN is as accurate as using
the S matrix. On the other hand, in Scenario 2 both voltage
and temperature are quantified based on the outcome of the
embedded sensor pair. We use S matrix to train the model
in this scenario to enhance the accuracy of the outcome. The
scenario based on existing voltage sensor to infer temperature
has not been considered, as the voltage variations are faster
than temperature changes and are directly impacted by fault
injection attacks the sensor has to detect.

VI. EXPERIMENTAL SETUP AND RESULTS
We implemented a sensor including n0=9 leading buffers

followed by n1=43 buffers and flip-flops (Fig. 1) using 45-
nm NANGATE technology [16] in the transistor level and
deployed Synopsys HSpice for the simulations. This sizing
leads to at least one phase change for all PVT corners for the
considered range of (V, T ), i.e., −10◦C ≤ T ≤ 150◦C (step
=1◦C) and 0.65V ≤ V ≤ 1.4V (step = 0.05V ). We realized
16 different sensor pairs using MC simulations (to mitigate
the impact of PV on the model’s accuracy) and deployed their
S matrix or AFN in each (V, T ) combination to train our NN
models. The MC simulations follow a Gaussian distribution:
transistor gate length L: 3σ = 10%, threshold voltage VTH :
3σ = 30%, and gate-oxide thickness tOX : 3σ = 3%. We
implemented three fully connect 4-layers NN architecture,
namely NN1 infers the voltage when the temperature and
matrix S are given (MBM model), NN2 predicts the voltage
based on the temperature and AFN value (ABM model), and
NN3 predicts both voltage and temperature based on matrix
S (MBM model) as using AFN solely imposes higher error
rates. NN1 includes 774 input neurons (related to one sensor
pair where each sensor characterized by a 43 flip-flop outputs
in 9 clock cycles) and an extra input neuron for temperature.
For NN2, the input layer consists of 2 neurons for AFNs and
1 for temperature. NN1 and NN2 each includes one output
neuron to infer the voltage. NN3 includes 774 input neurons,
and two output neurons (to infer voltage and temperature).

Rectified Linear Unit and Stochastic Gradient Descent are
the activation function and optimizer used in our modeling,
respectively. The loss function is the Mean Square Error. We
conducted MC simulations for 16 sensor pairs and trained each
of our three models with the dataset related to M sensor pairs
(M ∈{3,6,12,15}), while the other 16-M pairs are used in
the inference phase.
A. Experimental Results and Discussion

1) Stand alone Voltage Sensor: This experiment investi-
gates the accuracy of assessing voltage given that an on-chip
temperature sensor is available (Scenario1 in Section V).
We used two models to predict voltage; NN1 (via matrix
S) and NN2 (via AFN). In both cases, multiple sensor pairs
are used for training the Neural Network. Figure 5 depicts
(in blue) the average absolute error of assessing voltage via
NN1 when M ∈{3,6,12,15} sensor pairs in different voltage
and temperature combinations were used for training, and the
other 16-M sensors were used for test in each case. As shown,
the average error in assessing the voltage is 0.07V when the
training dataset was gathered from 3 sensor pairs. Involving
more sensor pairs in the training process reduces this error
significantly, e.g. 0.005V for 15 sensor pairs. Fig. 5 also
depicts (in red) the amount of voltage prediction error when
AFN is used in modeling. When modeling based on 3 sensor
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pairs’ data, NN2 outperforms NN1, however, with involving
more sensor pairs in training, firstly the accuracy of both
models enhances considerably, and secondly both methods
converge, i.e., perform very similarly.

Figure 5. Average Voltage Error (AVE) using NN1 (prediction based on
status matrix and temperature) and NN2 (prediction based on AFN and
temperature) models. Each model was trained with the dataset of M sensor
pairs, M ∈{3,6,12,15}, and tested against the rest of 16-M sensor pairs.

In practice, to assess voltage accurately via NN2 very few
(as low as 3) sensor pair data is required. NN1 is highly
accurate when using an appropriate dataset (as low as 9 sensor
pairs in our experiments). Recall that the required training
dataset is always provided via simulation; hence can be easily
extended to get higher accuracy if needed. Then the NN
weights are embedded in each chip during fabrication.

To ensure that we get approximately the same level of
errors regardless of the target circuitry, we performed K-Fold
Cross-Validation, and considered one of the K=16 sensor pairs
for inference, and the other 15 circuits for training in each
experiment. As shown in Fig 6, the voltage prediction error
fluctuates between 0.005V and 0.018V for NN1 (blue) while
the error range is [0.006V,0.010V] for NN2 (red), with the
average error of 0.010V for NN1 and 0.007V for NN2.

Figure 6. Average Voltage Error (AVE) using NN1 (prediction based on
status matrix and temperature) and NN2 (prediction based on AFN and
temperature) models. Each model was assessed against Ith sensor pair, where
I ∈{1,...,16}, and is trained with the other 15 sensor pairs.

These observations show that both NN1 and NN2 models
can assess the voltage accurately while NN2 is preferred over
NN1 because of its simplicity. Moreover, the results show
how training with multiple datasets related to different sensor
pairs mitigates/removes the effect of process variation.

2) Combined Voltage-Temperature Sensor: This experiment
shows the accuracy of NN3 to assess both voltage and
temperature quantities based on S matrix (Scenario 2 where a
separate temperature sensor is not available). Fig. 7 depicts the
average error of assessing temperature and voltage via NN3

model (in blue) when trained with 3, 6, 12, and 15 sensor pair
datasets, and tested against the rest of 16 sensor pairs. The
average error in assessing the voltage diminishes significantly
from 0.12V to 0.014V by increasing the number of sensor pairs
used in training from 3 to 15. Temperature assessment follows
a similar trend, i.e., as shown (in red), the average temperature
prediction error in NN3 is ≈16.1°C if 3 sensor pairs are used
for training. Such error is diminished significantly to 2.5°C by
increasing the training size set to 16 sensor pairs.

Based on cross validation results in Fig 8, the voltage
prediction error is reported between 0.01V (for the 16th

circuitry) and 0.04V (the circuitry with ID=3), while the

average error over all 16 circuitries is 0.02V. Similarly, the
temperature assessment error is in range of 2.3°C and 7.1°C,
with the average as low as 3.9°C.

Figure 7. Average voltage & temperature errors using NN3 model. The
model was trained with the dataset related to M sensor pairs, where
M ∈{3,6,12,15}, and tested against the rest of 16-M sensor pairs.

Figure 8. Average voltage & temperature errors using NN3 model. The
model was assessed against Ith sensor pair, where I ∈{1,...,16}, and is trained
with the other 15 sensor pairs.

VII. CONCLUSION

Anomalies can be detected via sensing circuits’ operating
conditions such as voltage and temperature. Digital sensors
have received a lot of attention to replace their costly analog
counterparts. We presented a Neural Network assisted digital
sensor framework that can assess the operating temperature
and voltage with high accuracy. The assess methodology is
not affected by process variations as the training dataset
is gathered from multiple sensors simulated under different
voltage and temperature conditions. The results confirm the
high accuracy of our framework in predicting voltage and tem-
perature with mean error of 0.014 V and 3.9 °C, respectively.
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