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Abstract—Masking schemes have been introduced to thwart
side-channel attacks. In software applications, attackers can
measure leakage at several points in time and combine them to
defeat the masking. In hardware gate-level masking, all shares
of a masked variable are manipulated at the same time in
a nanoscale circuit. In this article, we focus on setups where
the attacker uses one mesoscopic probe, which measures an
aggregated leakage of all shares. We consider masking schemes
where each bit is randomly split (by XOR) into so-called shares
(two or more). We analyze two interesting case studies about the
interrelationship of attack order vs. the number of shares. First of
all, we show that when the unique probe is measuring the sum
of each share’s individual leakage (so-called Hamming weight
model), one measurement can reveal the sensitive unshared value,
provided the attacker is able to determine the leakage’s least
significant bit. Second, we analyze a hardware masking belonging
to threshold schemes. Such schemes require fulfilling a so-called
incompleteness property, whereby some input shares must be
absent from output shares. We analyze a first-order incomplete
scheme, i.e., where the number of missing input shares is equal to
one. In schemes such as threshold implementation, this requires
the number of shares to be strictly more than two. Hence the
natural question is whether such a scheme would resist high-
order attacks of order also strictly more than two? We answer
by the negative, and show that the lowest attack order is two:
the security of such a masking scheme is governed by the order
of incompleteness and not by the number of shares. We verify
our findings using four different sets of experiments including
theoretical analysis, digital simulation, HSpice simulation and
also real-silicon (FPGA emulation).

Index Terms—Gate-level masking, number of shares, threshold
schemes/threshold implementation (TI), incompleteness order,
high-order monovariate attacks, statistical moments of a distri-
bution, Hamming weight least significant bit leakage, 2nd-order
leakage of threshold implementation style.

I. INTRODUCTION

Hardware chips which manipulate sensitive data, say cryp-
tographic keys, can be attacked by differential power analy-
sis [19] and other such vertical analyses [21, §6]. This neces-
sitates protecting such chips against Side-Channel Analysis
(SCA) attacks. To protect against such attacks, hiding [21,
§7] and masking [21, §9] schemes have been proposed in the
literature.

Hiding schemes try to eliminate any source of leakage,
typically by balancing the observable side-channel dissipation
irrespective of the input of the circuit, i.e., via equalizing the
power consumption for all signal transitions. It is very complex
to implement properly in practice, as any slight unbalance,
including process-variation induced unbalance contributes to
an exploitable leakage. On the other hand, masking consists

of dynamically decorrelating the leakage from manipulated
values via randomizing intermediate computations through
secret sharing. To work properly, such technique requires the
randomization of all intermediate variables. Masking has the
decisive advantage that it works irrespective of the physical
implementation since the protection is ensured at the logical
level. For this reason, masking is often a preferred coun-
termeasure amongst the wide array of existing side-channel
protection technologies.

The proper implementation of masking at hardware level
represents a relative challenge since high-level description can
be abstract and succinct, whereby low-level representation
(called a netlist) is particularly verbose. Indeed, netlists can
consist of thousands to millions of logic gates. Thereby,
ensuring the required masking of each and every gate requires
a sound methodology.

A fundamental specificity of hardware logic gates is that
they evaluate as soon as any input changes. In other words,
hardware gates are non-synchronizing, or are simply combi-
national. The consequence is that hardware gates might well
be masked at some time but be demasked transiently at some
other time. Actually, some race conditions between signals can
result in values changing during one evaluation. Such event is
characterized as being a glitch.

Glitches are very hard to model exhaustively owing to
the large combinatorics of possible races (exponential in the
number of gates). Notice that in practice, little effort has been
made by the Electronic Design Automation (EDA) industry
to speed up the analysis of glitches. Indeed, as a matter of
fact, glitches are dependent on the so-called PVTA (Process,
Voltage, Temperature, and Aging) corners. Therefore, depend-
ing on the static design, on the aging condition of the chip,
and on the environmental conditions in which it is operated,
glitches do differ. For this reason, some masking schemes have
been proposed which can, by design, even withstand leakage
through glitches. For example, the Threshold Implementation
(TI) of gate-level masking countermeasure [27] requires extra
randomization to build glitch-resistant netlists constructively
from the bottom up. Implementations of TI on some challeng-
ing designs (e.g., equations of high algebraic degree) require
a sharing in large dimensions. For instance, the papers [5],
[15], and [30] respectively study the implementation of TI on
cryptographic algorithms AES, GIFT, and PRESENT.

TI netlists do feature glitches. Indeed, the TI netlists are
made up of combinational gates, where any input and even
any sequence of inputs are basically all permitted. However,
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the incompleteness property of the TI netlists (refer to [25,
Property 1 in §3.2]) ensures that any gate is driven by strictly
less than number of shares in the corresponding TI implemen-
tation, thereby no combination of combinational signals can
lead to a constructive demasking of the sensitive values, even
during a sporadic glitch. Therefore, it is said that (properly
designed) TI is resistant to leakage even in the presence of
glitches. Though seminal TI has first-order incompleteness
only, subsequent works, such as [6], have introduced high-
order incompleteness as well.

Contributions: Our contribution consists of the security eval-
uation of hardware masking schemes. We disclose a property
of hardware masking schemes that allows revealing unmasked
data, regardless of their being glitch-resistant or not. This
property is remarkable as it is applicable irrespective of the
number of shares. We illustrate our results on the PRESENT
4-bit S-box.

In particular, we explain that TI with first-order incom-
pleteness, irrespective of the number of shares, is no more
than 1st-order secure. We have verified our findings using 4
different sets of experiments including theoretical analysis,
digital simulation, HSpice simulation, and also real-silicon
(FPGA emulation).

Outline: The rest of the paper is structured as follows. State-
of-the-art side-channel attacks are recalled in Sec. II. Accord-
ingly, a review of hardware masking schemes is provided in
Sec. III. Sec. IV discusses the problems we are tackling in this
paper, followed by the rationale of our novel attacks in Sec. V.
Experimental results demonstrating the attacks’ success on
both synthetic traces as well as FPGA results are presented in
Sec. VI. This section shows that simulated attacks on synthetic
traces are not too idealistic, as they can be reproduced in
practice. Also, our results explain the observation made by
Moradi et al. in [24], that first-order incomplete TI cannot
be attacked by a monovariate first-order statistical analysis
but fails when facing a monovariate second-order statistical
analysis. Eventually, Sec. VII concludes the paper.

II. SIDE-CHANNEL ATTACKS

Side-channel attacks represent one of the most powerful
categories of attacks launched by adversaries to obtain secret
information of a device, e.g., a cryptographic key. These
attacks retrieve the secret key by analyzing the physical
leakage emitted during the operation of a device (e.g., power
consumption [4], [18], or electromagnetic radiation [12]), as
this leakage can be statistically dependent on the secret key.

A. Practice of side-channel attacks

In this paper, we consider attackers targeting hardware
implementations. Hardware masking schemes usually process
data (protected by masking, also called random sharing) in
one given clock period. Therefore, the attacker can only
capture one measurement (for a given plaintext) to try and
attempt to defeat the masking scheme. Such attacks are thus
termed monovariate. Notice that this situation differs from the
attack of software schemes where each share is handled at
a different time, hence can be captured individually (leading

to bivariate attack when two leakages are captured for a
given plaintext, etc.). So we consider single probe attacks, and
subsequent (potentially high-order) analyses will need to cope
with such specificity. This means that the attacker can collect
(monovariate) leakage from several plaintexts, and analyse the
leakage distribution: indeed, the masking countermeasure dis-
tributes the leakage as a “probability density function” (PDF).
This PDF features different statistical moments (the lowest
ones being mean, variance, skewness, and kurtosis), that can
show a dependency in the (unmasked) sensitive variable. An
analysis exploiting a high-order moment is called a high-order
analysis. We detail now in Sec. II-B and II-C two analyses
that are capable of exploiting high-order statistical moments
of monovariate leakage traces in the sensitive variable.

B. Background on Template Attacks

Profiled side-channel attacks are the most powerful type of
attacks in which an attacker is able to characterize the leakage
of a similar device and use the extracted information to break
the targeted device. Template attacks are one of the most
commonly used profiling attacks, and are the most powerful
attacks from an information-theoretic point of view [10]. These
attacks are launched in two phases: training and matching. In
the training phase, the attacker has a full control on another
copy of the protected device. He/She records a large number of
traces of the cloned device, corresponding to random values
of inputs (plaintexts and keys). These traces are utilized to
build a template yk from the device, using key k. Then,
in the matching phase, the recorded traces are classified
according to the value of the hypothetical key k̂, and the
most likely template pinpoints the key value of the device
under attack [10]. Let us represent the measured traces as a
matrix X of D × Q real numbers (Q traces of D = 300
samples as an example). The value of D is 1 for synthetic
traces, but can be larger for real traces, as oscilloscopes capture
entire waveforms. We then still term the attack as monovariate,
provided that a single operation (e.g., a single clock period)
is covered by the waveform. Assume we format the learned
model Yk as a D×Q matrix. Then the template attack guesses
a key by this computation [9, Theorem 1]:

k̂ = argmin
k∈{0,1}4

tr
(
(X − Yk)

T
Σ−1(X − Yk)

)
(1)

where Σ is the D×D noise covariance matrix, tr is the trace
operator, and argmin the operator that selects the value of k
(4-bit value) that results in the minimum value of its following
function. We use interchangeably F

4
2, {0, 1}4, and the integer

conversion belonging to {0, 1, . . . , 15}. Note that in general k
denotes to the key value (precisely: subkey entering a given
S-box); thus for the PRESENT cipher we target in this study
k is a 4-bit value and therefore lives with the range of [0, 15].

C. Moments-Correlating Differential Power Attack (MC-DPA)

Template attacks allow distinguishing key hypotheses pro-
vided the leakage distribution differs from key to key. Al-
though being optimal from the information-theoretic point of
view, template attacks have a shortcoming: their problem is
their lack of explainability.
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Recall that distributions can be characterized by their mo-
ments. In the presence of noise, low order moments are most
discriminating than high order moments. The rationale behind
MC-DPA [24] is to perform attacks through their smallest
moment, which depends on the sensitive variable.

An MC-DPA is applied at a given order: by definition, an
MC-DPA of order 1 (resp. 2, 3 and 4) analyses the dependency
of leakage mean (resp. variance, skewness, and kurtosis) in the
sensitive variable. One difference between a template attack
and an MC-DPA is that the template attack succeeds if any
moment of the leakage differs, whereas an MC-DPA succeeds
if the moment of the leakage differs for the targeted order. In
this paper, we leverage MC-DPA not specifically to perform
attacks per se (template attacks work in this respect), but to
to test the exploitability of leakage at orders 1, 2, 3 and 4.

III. MASKING SCHEMES SUITABLE FOR HARDWARE

A. Gate-level masking schemes, from the sequential side

Hardware masking has received the lion’s share of attention
by the embedded security research community with the notion
of perfect masking, coined by Blömer et al. in [7]. It gave
rise to Boolean Masking (BM), which is easy to generalize
from a first-order sharing to a multiple order sharing, say order
d. Basically, one bit x is randomly split into d bits xi, for
1 ≤ i ≤ d, such that

x =
⊕d

i=1 xi. (2)

One drawback of BM is that, when manipulating vectorial
words (say nibbles in PRESENT block cipher), each com-
ponent is masked on its own. That is, each output bit is
masked independently of the other bits pertaining to the same
nibble. Thus, there is unfortunately no synergy between the
masks of each bit index from the sensitive bit vector. To
alleviate such shortcoming, the security order amplification
concept has emerged. It consists in mixing different bits from
different components in order to achieve a higher protection
degree. Such a scheme is typically referred to as IPM, for
Inner Product Masking [17]. However, both BM and IPM are
vulnerable to glitches.

B. Gate-level masking schemes, from the combinational side

Some masking schemes have been specialized for hardware
implementation. What follows presents a few such state-of-
the-art masking schemes. Interestingly there can be some
leakage in the combinational logic even in the presence of
the following masking schemes.

Global Lookup Table (GLUT): GLUT masking is a function

F
4
2 × . . .× F

4
2 = F

4(2d−1)
2 → F

4
2 satisfying

y1 = GLUT (x1, . . . , xd, y2, . . . , yd)

such that:

y1 ⊕ . . .⊕ yd = S-box(x1 ⊕ . . .⊕ xd) .

The GLUT function can be tabulated in a Read-Only Memory
(ROM) or synthesized into a netlist of logic gates. However,

owing to the exponential combinational complexity in d of
GLUT , usual implementations limit the value of d to 2.

Clearly, GLUT can only work securely provided the ROM
or the netlist does not locally unmask or weaken the d-th order
scheme. This is the reason why ISW has been introduced.

Gate-Level Masking via Random Sharing (ISW): Proposed
by Ishai, Sahai, and Wagner (ISW) [16], this secure implemen-
tation starts from an unprotected netlist, and gradually replaces
the gates with their so-called gadgets, in order to deal with the
non-linear gates. In this architecture, the gadget for the AND
gate requires additional randomness. Let us give an example
for d = 2. Given a random sharing (a1, a2) of bit a (where
a = a1 ⊕ a2), and a similar sharing for bit b, the AND of a
and b denoted as y is computed as:{

y1 = ((a2 ∧ b2)⊕ r)⊕ (a1 ∧ b1) ,
y2 = ((a1 ∧ b2)⊕ r)⊕ (a2 ∧ b1) ,

where r is a random refresh. In the above equations, the
order of operations (indicated by the parentheses) should be
followed; thus the implementation must preserve the order of
gates in the final netlist [3].

Threshold Schemes: Those are algorithmic countermeasures
against side-channel analyses which benefit from multi-party
computation and secret sharing [2]. Threshold Implementa-
tion (TI [26]) and Domain-Oriented Masking (DOM [13])
are two well-studied examples. From now on, we focus on
TI, because it can be implemented fully in combinational
logic, whereas DOM incurs some “pipelining” with register
barriers. To preserve security, a TI implementation holds the
following properties: 1) Incompleteness: Each output share is
independent of at least one share in any of the input variables,
2) Correctness: The sum of the output shares gives the desired
output, 3) Uniformity: The output distribution preserves the
input distribution.

TI, alike GLUT or ISW, divides input bits into d shares.
Meanwhile, in TI, as opposed to ISW, the underlying logic
can be aggressively optimized as it does not need to preserve
gate order. Moreover, regarding its incompleteness property,
in TI any output share only depends on less than d shares of
each input. Thus, glitches cannot lead to secret information
disclosure in TI. The notion of incompleteness can be gener-
alized: by definition [27, §4.3], if N input shares are missing
from the expression of any output share, the TI scheme is N th-
order incomplete. In the PRESENT netlist, terms of algebraic
order 3 (3-input AND gates) are required, hence 4 shares
are needed; we managed to synthesize such a TI-compliant
fully combinational netlist of PRESENT S-box. Notice that
we are not aware of a similar netlist being published in the
literature (the only paper tackling this problem resorts to an
implementation with registers in the middle of the netlist [11]).

IV. PROBLEM STATEMENT

The two problems we tackle in this paper are as below:
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Fig. 1: Theoretical setup for multivariate side-channel analysis. Every probe introduces
independent measurement noise. This is not the scenario we explore in this paper.

A. Problem #1: Can a first-order attack be devised on a gate-
level masking scheme with d shares?

The classical leakage model considers a theoretical attacker
who needs to probe all the d shares (xi)1≤i≤d of a variable to

rebuild the sensitive value x =
⊕d

i=1 xi. This is illustrated in
Fig. 1. Note that such an attack is severely impeded as each
probe brings its own amount of noise.

In practice, all shares are combined in an aggregated leak-
age function, as probes used in laboratories are not at the
scale of registers holding the shares (xi)1≤i≤d. Typically, the
attacker collects the Hamming weight of the leakage, i.e.,
their arithmetic sum. Probes are called macroscopic if they
measure the leakage of the full circuit (e.g., a power probe),
and mesoscopic if they perform a local measurement, which is
nonetheless larger than the registers containing the xi values
(e.g., an electromagnetic probe). Shall the different shares not
be manipulated strictly at the same point in time, the capacitive
property of the probe makes sure that leakage from different
clock cycles to get mixed. See for instance the paper [23].
Thus, the attacker needs to measure only at one place to collect
an already aggregated leakage function of all the shares in one
go! This attack scenario is depicted in Fig. 2. It is the only
one we pursue in the rest of this paper. The attacker simply
needs to probe once (monovariate attack), and the noise is
as well only applied on this one measurement. Such side-
channel scenario can be considered from two angles. On the
one hand, the leakage function (say the Hamming weight, wH )
clearly brings less information to the attacker (owing to the
data processing inequality): from this point of view Hamming
weight model is detrimental to the attacker compared to the
multi-bit probing attack of Fig. 1. On the other hand, the
Hamming weight leakage model already combines all the
shares, which facilitates the subsequent statistical analysis of
the leakage.

Considering the above discussion, a natural question can
be whether a gate-level masking scheme with d shares can
be compromised by a first-order analysis? In the sequel, we
will answer this question by the positive. As we shall see
(in Sec. V-A), the analysis consists in extraction the least
significant bit of the leakage prior to performing a simple (1st-
order) correlation analysis. This analysis works on synthetic
traces, but we will illustrate that its application to real-world
traces is challenging. We’ll therefore resort to more general
template attacks.

x
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le
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ag
e
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n
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attacker’s
single probe

k̂

The leakage function
can be wH or any
weighted sum of bits

Problem #2

LSB

Problem #1

MC-DPA

Fig. 2: Actual setup for multivariate side-channel analysis where aggregation is carried
out by the leakage function. The measurement noise is only affecting the unique probe.

B. Problem #2: How to characterize the security order of a
gate-level masking scheme, such as threshold implementation?

Threshold implementation featuring first-order incomplete-
ness requires that each output share bit be shared in strictly
more than two shares, though. The natural question is therefore
to know whether such schemes are vulnerable to an analysis
of order equal to the number of shares, or merely to the
incompleteness order. We shall show (in Sec. V-B) that the
resistance is only equal to the incompleteness order.

V. PROPOSED METHODOLOGIES TO ADDRESS THE TWO

PROBLEMS

A. Attack methodology for Problem #1

Let us assume a Hamming weight (wH ) leakage model. It
can be written with the arithmetic summation:

wH(xd, . . . , x1) =

d∑
i=1

xi ∈ N.

(Namely,
∑

operates in the integers, whereas
⊕

operates in
the bits.) Let us denote by LSB the Least Significant Bit of an
integer �, that is LSB(�) = � mod 2. In particular, we have:

Proposition 1 (Leakage in LSB).

LSB
(
wH(xd, . . . , x1)

)
=

d⊕
i=1

xi ∈ F2.

This proposition clearly states that the LSB of the Ham-
ming weight leakage of d shares (xi)1≤i≤d is exactly the
(unmasked) sensitive data x. Indeed, the LSB leakage in
Prop. 1 directly inverses the masking scheme, as per Eqn. 2.
That is, if the attacker is able to measure the leakage LSB, then
he reads out the unmasked value, (incidentally) irrespective of
the masking order d > 1.

Thus, the first problem is actually easily solved in practice.
The aggregation of shares being already a completed step (by
the device itself), it suffices for the attacker to extract the LSB.
In a practical waveform, Fig. 3 shows a typical side-channel
leakage, for an 8 bit sharing. It is apparent in that figure that
the magnitude of leakage (voltage signal) is directly related
to the number of bit-values in the shared sensitive value [22].
Extracting the LSB of the model requires framing the leakage
from 0 to d bits in the Hamming weight model. Figure 3 shows
the minimum and maximum values; those can be used to
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Fig. 3: Number of bit transitions versus power consumption [22]. The Min and Max
values are represented. Here, for the sake of simplicity we show the case for d = 8.

σ

0 1 2 3 · · · d

: parity

Fig. 4: Illustration of the probability to guess the unmasked value (= LSB of the leakage)
as a function of the (normal) noise of variance σ2. The red and blue colors illustrate
the even and odd parities of the leakage x =

∑d
i=1 xi (thus x ∈ {0, 1, . . . , d}).

calculate bin width (voltage difference when one bit changes)
and offset (voltage when all xi = 0). Indeed, as depicted, the
maximum voltage (power consumption) occurs for the case
where all 8-bit are set. Thus:

• the offset value is exactly equal to Min;
• the bin width value is equal to (Max − Min)/d; the

attacker shall know the number of shares d.

The method to extract the LSB (see the LSB box in the
dataflow diagram of the analysis of Fig. 2) is thus simply to
take the leakage value, subtract offset, divide by bin width,
and apply mod 2 operation (= parity extraction). Subse-
quently, a simple first-order analysis (e.g., Pearson correlation
analysis [8]) can be carried out between this extracted LSB
and the predicted one under key hypothesis k̂.

In practice, traces are noisy. Namely, the qth (1 ≤ q ≤ Q)
side-channel measurement xq consists in the Hamming weight
leakage plus some noise, modeled as a normal distribution of
variance σ2. Hence the LSB extraction can be incorrect. This
is illustrated in Fig. 4, where d = 8 and σ = 3. Notice that
an error is seriously impeding the LSB attack as the attacker
does guess the opposite of the LSB.

Still, in practice, identifying the leakage LSB is a complex
operation, as the attacker shall infer two values (offset and
bin width) with great precision, which can be challenging
when the traces are very noisy.

B. Attack methodology for Problem #2

As mentioned in Sec. V-A, regarding TI, the LSB leakage
does apply. However, this vulnerability is hard to exploit in
practice. Therefore, we aim to analyze the security order

beyond 1st order. Namely, we would like to show that, in
terms of moments, the resistance order is driven:

• not by the number d of shares, but
• by the incompleteness order.

In this respect, we leverage moments-correlating DPA (MC-
DPA, recall Sec. II-C, because they target specifically a given
leakage order (whether it is 1st-, 2nd-, 3rd- or 4th-order). In
practice, MC-DPA is less efficient (in terms of number of
traces to extract the key) than template attacks, but is useful to
elucidate the existence of a vulnerability at a specific leakage
order.

C. Introduction to practical validations

In the next section VI, we deploy several dynamic analyses,
i.e., analyses based on leakage measurement during the S-
box evaluations. We show that the LSB analysis (solution of
Problem #1) does work on ideal (synthetic) and HSpice traces.
Then, we tackle Problem #2. Namely, we show the success of
second-order MC-DPA when TI uses incompleteness of order-
1 and d = 4 shares.

VI. THEORY ILLUSTRATION AND EXPERIMENTAL RESULTS

OF TARGETED PROBLEMS

Experimental Setup: In this research, we targeted the add-
round-key and S-box operations in the first round of the
PRESENT cipher protected with Threshold Implementation
(TI). The PRESENT algorithm uses 4-bit substitution boxes
(S-boxes), and when turned into a TI combinational netlist, it
requires 4 shares for each component1. Hence the TI version
of PRESENT S-box we study has 16 input bits and 16 output
bits.

We then applied three sets of analyses at the simulation
level; one based on the total number of toggling that the
signals in the targeted implementation experience in each time
stamp (1 ps intervals in our experiments), the second based
on the Hamming weight of the included signals in each time
stamp, and the third by using power traces extracted by HSpice
simulations. Moreover, to show the applicability of our attack
on real-silicon, we targeted the FPGA implementation of TI
and showed how TI can be compromised by such an attack.

We perform two kinds of analyses: template attack (as
per [28] – attack termed “Template-Based DPA Attack” in
§2.3, and illustrated in Fig. 3), and MC-DPA (as per [24]).

In our HSpice simulation setup, totally we applied 200K
input pairs to the circuit; each containing an initial value
followed by a final value after 2 ns with the sampling rate
of 50 GSamples/sec of the power traces when the final value
is fed. While launching the attack on the real silicon, on an
FPGA in our case, we applied 500K input pairs (we used
more input traces in this configuration due to the existing of
the measurement noise) where for every initial/final pair we
sample the power traces after the final value is fed 2496 points
in time (sampling rate of 5 GSamples/sec).

1Notice that it is possible to implement PRESENT S-box with d = 3
shares [29], but with a pipeline stage in its middle, which we want to avoid
in our research. Indeed, other gate-level masking schemes (GLUT and ISW)
manage to implement the PRESENT S-box with only combinational gates.
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• All initial values are generated randomly, however, be-
longing to the class 0;

• All final values are generated randomly.

In our FPGA experiments, we targeted the FPGA implemen-
tation of the TI circuitry. We deployed a SAKURA-G board
containing two Spartan-6 FPGAs. To reduce the noise impact,
one FPGA was used to realize the controller part, and the other
implemented the main logic, i.e., the measurement trigger
signal, and the top state-machine were implemented in the
controller FPGA, and also the input patterns were stored in the
BRAM cells available in the fabric. The PRESENT add-round-
key and the S-box were implemented on the main FPGA. The
circuits operate at 48 MHz. Figure 5a depicts our setup. As
mentioned, for each initial/final pair of input, we captured
power samples after the transition of input from its initial
to final values. To keep the FPGA implementation similar
to its HSpice counterpart and its gate-level netlist, the post-
synthesis netlist was used for FPGA implementation while
avoiding the optimization by the Xilinx ISE tool. Apart from
that, additional optimization attributes–(keep_hierarchy
= "yes")–shall be used to force the tool not to optimize out
the area, and as a consequence, masks being removed. Table I
depicts the resource utilization of our implementation.

TABLE I: Resource utilization of both main and controller FPGAs on SAKURA-G board.

Main FPGA Controller FPGA

LUTs 221 (0.5%) 340 (5%)

FFs 17 (4%) 77 (22%)

Slices 231 (2%) 266 (18%)

Block RAMs 0 32 (100%)

Freq. (MHz) 48 48

The aforementioned attribute was used next to all gate
instantiations, so, the number of LUTs was exactly the same
as the number of gates being utilized. This is not optimal in
terms of gate count, but it allows to perform a comparison
between HSpice and FPGA results. Also, because the design
included the 1 and 2-input gates, while the native gates in
FPGAs are 4-input LUTs (or even 5 or 6 input), FPGA traces
experience more glitches due to the routing. Finally, power
traces are amplified using Low Noise Amplifiers (LNAs) and
sent out to the oscilloscope.

A. Illustration of Problem #1

To demonstrate such an attack, we simulated power con-
sumption traces based on the Hamming weight of the S-box
output in our targeted TI circuitry.

Figure 6 shows, for all sixteen hypothetical keys (hence
a 4 × 4 layout), the leakage distribution as a function of
the unmasked sensitive variable. It clearly appears that a
dependency exists between the secret value (the key) and the
distribution profile of the leakage. Therefore, a template attack
is expected to work. In addition, the order of the leakage can
be quantified. From these graphs, we can see that (irrespective
of the 16 key values):

• means are the same = 8 (hence no leakage),

(a)

(b)

Fig. 5: FPGA measurement setup. (a): Hardware. (b) Schematic.

Fig. 6: Empirical leakage probability distribution function (PDF) for all key hypotheses
extracted from synthetic simulations. Each graph manifests a different leakage profile.
The x-axis shows the S-box outputs. A low Gaussian noise is also added to the S-box
output class. In theory, the maximum value is 16, but owing to the S-box equations, the
all-1 output never appears in our design.
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Fig. 7: First moments of the PDF (see Fig. 6) of our 1st-order incomplete TI.

• variance differs according to sensitive variable (= abscissa
axis value ∈ F16),

• skewness is the same (= 0) because distribution is sym-
metrical around mean = 8, and

• kurtosis differs according to sensitive variable (= abscissa
axis value ∈ F16).

The moments are drawn in Fig. 7. We therefore expect that
1st- and 3r- order (resp. 2nd- and 4th-order) MC-DPA analyses
work (resp. fail)2. To launch such an attack, we first profiled
the 2D-leakage distribution with a known key. Then as a
second step, using an unknown key dataset, we compared the
reference distribution with the ones obtained for different key
hypotheses using the likelihood metric. We note that equivalent
results can be obtained using Euclidean distance metric.

Considering the distinguishability of the profiles for the
theoretical model shown in Fig. 6, we can model the leakage
L, as a Gaussian mixture [20]. Thereby, for each sensitive
value y =

⊕d
i=1 yi = S-box(x) ∈ F

4
2 and an observed (noisy)

leakage t(y), the PDF of the global leakage L(y) can be
modeled by:

L(y) =
m∑
i=1

wi(y) exp

(
−1

2

(
t(y)− μi(y)

σi(y)

)2
)
.

where wi(y) is the weight of the Gaussian component
(
∑

i,y wi(y) = 1) and m is the number of leakage classes
(m = 4 × 4 + 1 in the theoretical model – Hamming weight
of 16 bits, using TI with 4 shares). Let us assume a leakage
model such as the traces T are governed by the following law:

T = wH(Y1, . . . , Yd) +N,

where (Y1, . . . , Yd) = TI-S-box(X1, . . . , Xd) and N ∼
N (0, σ2) is the noise. Therefore, one has that:

wj(y) = P(wH(Y1, . . . , Yd) = μj)

= P(wH(Y1, . . . , Yd) = μj |
⊕d

i=1 Yi = y)

= P(wH(Y1, . . . ,
⊕d−1

i=1 Yi ⊕ y) = μj)

= P(wH(TI-S-box(X1, . . . , Xd)) = μj |
⊕d

i=1 Xi = x)

which depends only on the design of the
masked S-box implementation. We have also

2Notice that our goal is to use MC-DPA as an oracle to provide an evidence
that 2nd- and 4th-order leakages result from the shape of the PDF distributions.

(a) (b)

Fig. 8: Attack results on the synthetic traces. (a) Normalized likelihood over the 16 key
hypotheses. (b) likelihood-based success rate (L-SR). The right key is shown in red. The
best score is achieved by the right key (0xb) and can be distinguished with Q = 500
traces.

(T (Y ) − wH(Y1, . . . , Yd)|wH(Y1, . . . , Yd) = μ) ∼ N (0, σ2),
thus P(T (Y )− wH(Y )) is as equal to:∑

j P(T (Y )− μj |wH(Y1, . . . , Yd) = μj)P(wH(Y ) = μj) =∑
j wj(Y )P(T (Y )− μj),

which yields: T (Y ) ∼ ∑
j wj(Y )N (μj , σ

2
j ), where μj =

μi(y) and σ2
i = σ2

i (y) are respectively the mean and the
variance (noise) of the class i.

Thus, for a key hypothesis k̂ ∈ {0, . . . , 15}, we can evaluate
its likelihood L(k̂) based on the learned model by:

L(k̂) =
∏15

x=0 L
(

S-box(x⊕ k̂)
)

or the log-likelihood LL(k̂) by:

LL(k̂) =
∑15

x=0 log
(
L(S-box(x⊕ k̂))

)
.

As the likelihood converges very fast to 0, we compute
the log-likelihood instead. To normalize the convergence of
the different key hypotheses scores, we adopt a normalized
version, which therefore consists in dividing each score on the
sum of the total scores (we refer to this metric as NLL, coined
in Eqn. (2) of [28, §2.3]). And finally, to have a success-
rate-like metric (we refer to it as L-SR), we calculate the
normalized version of the real probability score by computing
and normalizing the exponential of the final results of the
log-likelihood. Formally, we have for each key hypothesis
k̂ ∈ {0, . . . , 15}:

NLL(k̂) =
LL(k̂)∑
h LL(h)

and L-SR(k̂) =
L(k̂)∑
h L(h)

.

At the next step, using the above leakage value, we launched
a template attack. The result of the attack is shown in Fig. 8.
As shown, the right key is distinguishable after processing
Q = 500 traces. The curves of the likelihood success-rate get
stable after 1200 traces. We also note that in this experiment,
we added Gaussian noise to have an SNR equal to 4 as in the
HSpice simulation and to slow down the attack. Otherwise,
the key will be recovered with less than Q = 10 traces (hence
success rate is hard to evaluate precisely).

As the S-box in TI scheme is protected at incompleteness
order 1 with a sharing of 4, it would also be interesting to
look at the leakages related to higher order moments, notably
2, 3, and 4.
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(a) (b)

(c) (d)

Fig. 9: Higher-order correlation results on the synthetic traces when launching MC-DPA
attack. (a) First order. (b) Second order. (c) Third order. (d) Fourth order.

MC-DPA attack results are shown in Fig. 9. As expected,
the 2nd-order attack is successful. The takeaway point is that
the order of incompleteness is the relevant security parameter,
while the number of shares is not. Moreover, since the leakage
is complex (recall Fig. 6), there is some still higher-order (>2)
leakage. The success of the 4-order attack is related to the
shape of the leakage model distribution and not the inclusion
of 4 shares.

B. Illustration of Problem #2 and experimental results

The previous results demonstrated a tiny leakage related
to the Least Significant Bit (LSB). From the theoretical per-
spective, this manifests a weakness in all gate-level masking
schemes including TI. Now we want to investigate practically
whether this tiny leakage is exploitable for a secret key
recovery. Thus, we carried out an extensive analysis at various
abstraction levels all the way from digital netlists (with delay)
to analog netlists (by HSpice simulations), and finally, real-
silicon traces sampled by oscilloscopes from FPGA fabrics.

For the MC-DPA, we show the attack only on the static
leakage, where the leakage can be exploited much faster
compared to the dynamic part. Namely, for digital and HSpice
simulations, we need 3 times more traces to distinguish the
right key when considering dynamic power compared to its
static counterpart.

1) Digital simulation: For the digital simulation, we have
associated an identical propagation delay for the same gates,
(but differently when the gates are not the same) to have a
behavior relatively close enough to the real circuit (but without
process variation). The traces are sampled each 100 ps. The
power consumption is a combination of toggle count (dynamic
leakage) and static state with 90% and 10% proportions
respectively. We used artificial delays to model glitches, while
at the same time ignoring the specificity of actual gates delays
that do depend on the corners (process, voltage, temperature).

The outcome of this attack is shown in Fig. 10. The
right key is distinguishable after processing around 700 traces
(resp. 2000) in the case of static leakage (resp. dynamic
leakage), where the likelihood success-rate reaches 100% after

(a) (b)

(c) (d)

Fig. 10: Results of the template-based attack on the digital simulated traces (i.e.,
likelihood). The right key can be distinguished with 2000 traces when using dynamic
power. (a,c): Attack targeting the dynamic leakage. (b,d): Attack targeting the static
leakage. The attack works more easily in the case of static leakage.

(a) (b)

(c) (d)

Fig. 11: Higher-order correlation results on digital traces (static power). (a) First order.
(b) Second order. (c) Third order. (d) Fourth order.

processing 500 traces (resp. 800) for static leakage (resp.
dynamic leakage).

The results of conducting the MC-DPA are shown in Fig 11.
The takeaway point from this figure is that for the synthetic
traces (similar to the theoretical results) the higher order
leakage is exploitable. It additionally informs us that the
number of traces to succeed both 2nd- and 4th-order attacks
are less than 1000 when exploiting static power.

2) Transistor level analysis (HSpice simulation): In the
next step, we targeted the TI implementation using HSpice
power traces. Similar to the toggle count traces, the HSpice
simulated traces contain two parts: the results of key addition
and S-box outputs for each initial n-bit value as well as its fol-
lowing n-bit final value. For the analysis, we considered only
the power samples of the second part, i.e., when the crypto-
graphic circuit transitions from the initial to the final value.

Every input initial and final segments stay on the bus for
2 ns while being sampled 100 times with a sampling rate equal
to 20 ps. The simulations were conducted for the temperature
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of 85◦C, Vdd = 1.2 V, and a operating frequency of 500
MHz using 45-nm technology extracted from the open-source
NANGATE library [1] with the Synopsys HSpice analog
simulation tool. The outcome of this attack is shown in Fig. 12.

(a) (b)

(c) (d)

Fig. 12: Results of the template-based attack on the HSpice simulated traces. The right
key can be distinguished with 8000 traces when exploiting dynamic power leakage.
(a,c): Attack targeting the dynamic leakage. (b,d): Attack targeting the static leakage.
The attack works more easily in the case of static leakage.

The results of conducting the MC-DPA are shown in Fig 13.
As the analysis results show, all the theoretical, synthetic,
and HSpice simulations agree; at every simulation level, the
1st- and 3rd-order attacks fail whereas the 2nd- and 4th-
order attacks succeed. Based on the study of synthetic leakage
(recall Fig. 6), we see that PDF distributions are all almost
symmetrical with respect to mean = 8. This explains in our
case why there is no (or at least little) leakage at order 3.

Note that those results are specific to the netlist. Indeed
Moradi et al. showed that attacks were successful in both 2nd-
and 3rd-order (Fig. 5 in [24]) but they did not investigate it
further. Specifically, the original MC-DPA article [24] does not
answer the question of the origin of the leakage. The natural
question regarding the success of 2nd-order MC-DPA is:

(a) (b)

(c) (d)

Fig. 13: Higher-order correlation results on HSpice traces (static power). (a) First order.
(b) Second order. (c) Third order. (d) Fourth order.

• Is it due to an implementation bias (e.g., some strange
ground coupling operated within the FPGA? Or some
unexpected interaction through the powerlines? etc.), or

• Is it innate to the countermeasure?

We answer to this question: the problem is indeed innate to
order-one incomplete TI, where the PDF features variances (=
2nd-order moments) that do depend on the sensitive variable.

3) Real analysis on FPGA: To investigate our findings on
real silicon, we extracted power traces form the TI circuitry
implemented on the Spartan 6 Xilinx FPGA. As mentioned
earlier, we deployed SAKURA-G board [14] that includes
two FPGAs on a single PCB. As the controlling modules and
the main TI have been implemented on separate FPGAs, the
extracted power traces are almost related to the TI module
itself and are not affected by the controlling modules. In these
experiments, every initial and final values are stable on the bus
for around 500 ns while the power traces are sampled every
200 ps after feeding the circuit with the final values.

(a) (b)

(c) (d)

Fig. 14: Attack results on the FPGA simulated traces. The right key can be distinguished
with 8000 traces. (a,c) Attack targeting the dynamic leakage. (b,d) Attack targeting the
static leakage. The attack is easier in the case of static leakage.

The outcome of this attack on the FPGA traces is shown in
Fig. 14. As shown, the number of traces required to recover
the key in this case is much higher compared to the attacks
launched on digital and HSpice traces due to the measurement
noise in real-silicon (FPGA). Here, more than 30,000 traces
are needed to get the result of the likelihood stable, and for
the right key to become distinguishable.

The results for the FPGA traces are also consistent with all
the other results extracted from the theoretical, synthetic, and
HSpice simulations discussed previously. The takeaway point
from these observations is that FPGA emulation completely
follows the digital and analog (i.e., HSpice) simulations.

Fig .15 and Fig .16 depict the outcome of MC-DPA attacks
using static and dynamic leakages, respectively. As shown, the
2nd- and 4th-order attacks using static leakage are successful.
We also note that exploiting the higher-order moment is more
difficult when the noise is higher. This is why the MC-DPA is
not successful using more than 250,000 traces for the dynamic
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(a) (b)

(c) (d)

Fig. 15: Higher-order correlation results on FPGA traces – Static leakage. (a) First order.
(b) Second order. (c) Third order. (d) Fourth order.

(a) (b)

(c) (d)

Fig. 16: Higher-order correlation results on FPGA traces – Dynamic leakage. (a) First
order. (b) Second order. (c) Third order. (d) Fourth order.

leakage as shown in Fig .16. However, in this case the number
of key hypotheses is just 3 when using 250,000 traces for the
2nd- and 4th-order attacks. Thus by increasing the number of
traces these two attacks will be also successful and follow the
same trend as our other experiments discussed earlier.

The reason for such undertaking is the validation of the
practicality of the proposed attack in real silicon, where
(unknown and uncontrollable) measurement noise is likely to
hide the leakage in LSB (recall Prop. 1).

As the outcome of the attacks showed, the 3rd-order attacks
failed in both HSpice and FPGA simulations while the 4th-
order attacks were successful. This can be accounted for by
computing leakage detection metrics. Let us recall the per-
class definition of skewness γx and kurtosis κx moments:

γx = E((X − μ)/σ)3 and κx = E((X − μ)/σ)4.

In these equations, E is the expectation, μ (resp. σ2) is the
per-class leakage mean (resp. variance), and X is the trace
leakage (seen as a random variable). Namely: μ = E(X|x)
and σ2 = E(X2|x)−μ2. The skewness measures the distortion
of the distribution towards left or right compared to its mean.
The kurtosis measures how concentrated the distribution is
around its mean. A variation of skewness (resp. kurtosis)
across classes indicates an exploitable bias in the leakage third-

order (resp. fourth-order) moment. Therefore, we measure
the variability of those statistics as their variance. They are
represented in Fig. 17 and 18. As shown, the variability of the
leakage skewness (which is the statistical leakage detection
tool for the 3rd-order attack) is much less than the variability
of kurtosis (which relates to the leakage detection of the 4th-
order attacks). Note that the Y-axis range is different in these
two figures for better visibility. This explains the reason why
the 3rd-order attack failed on both HSpice and FPGA traces
while the 4th-order attack succeeded in those cases.

(a) (b)

Fig. 17: Variance of (a) skewness γx and (b) kurtosis κx of HSpice traces.

(a) (b)

Fig. 18: Variance of (a) skewness γx and (b) kurtosis κx of FPGA traces.

VII. CONCLUSIONS

This paper analyzes the security level of gate-level masking
schemes. It identifies an innate vulnerability of such schemes:
the Hamming weight of the (random) sharing is disclosing
(deterministically) the sensitive bit value. This is based on
our Proposition 1: namely, any gate-level masking scheme
reveals its (unmasked) sensitive variable if the attacker is able
to measure the Least Significant Bit of the leakage. We show
the feasibility of the attack on synthetic traces, and explain
how it is captured by template attacks.

Subsequently, we analyze a particular gate-level masking
scheme, namely Threshold Implementation (TI). We show
that the first-order leakage is hardly exploitable in practice,
but further study the structure of the leakage. TI thwarts
leakage arising from combinational logic (so-called glitches),
by leveraging incompleteness property, which comes at the
expense of extra sharing. Nonetheless, we show a second-
order attack, which applies irrespective of the number of
shares. This attack is validated both on simulated traces (ideal,
without noise) and on real traces (noisy, captured from an
FPGA). Our finding is modeled mathematically: we provide a
theoretical explanation for the noting that correlated moments
of first-order cannot break first-order TI, whereas second-
order correlated moments do. As the future direction, we will
analyze other masked implementations, including DOM which
is similar to TI in terms of the unexploitability of glitches, to
generalize our analysis.
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Implementation of Non-linear Functions in the Presence of Glitches.
In ICISC, volume 5461 of Lecture Notes in Computer Science, pages
218–234. Springer, 2008.

[27] Svetla Nikova, Vincent Rijmen, and Martin Schläffer. Secure Hardware
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