
Aging-Induced Failure Prognosis via Digital Sensors
Md Toufiq Hasan Anik

Univ. of Maryland Baltimore County
toufiqhanik@umbc.edu

Hasin Ishraq Reefat
Univ. of Maryland Baltimore County

hasinishraq@umbc.edu

Jean-Luc Danger
LTCI, Télécom Paris

jean-luc.danger@telecom-paris.fr

Sylvain Guilley
Secure-IC S.A.S.

sylvain.guilley@secure-ic.com

Naghmeh Karimi
Univ. of Maryland Baltimore County

nkarimi@umbc.edu

ABSTRACT
Aggressive scaling continues to push technology into smaller fea-
ture sizes and results in more complex systems in a single chip.
With such scaling, various robustness concerns have come into
account among which the change of circuits’ properties during
their lifetime, so-called device aging, has received a lot of attention.
Due to aging, the electrical behavior of transistors deviates from
its original intended one resulting in degrading the chip’s perfor-
mance, and ultimately the chip fails to provide correct outputs.
Thereby, prognosis of circuit performance degradation during the
runtime, before the chip actually fails is highly crucial in increasing
the reliability of chips. Accordingly in this paper, we develop a
machine-learning based framework that, leveraging the outcome of
embedded time-to-digital-convertors (so-called “digital sensors”),
predicts aging-induced degradation. This information can be used
to prevent chip failures via deploying Dynamic Voltage and Fre-
quency Scaling (DVFS).
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1 INTRODUCTION
Faster operations and low power usage have been made possible via
moving toward smaller feature nodes. However, along with such
advantages, the degradation of the integrated circuits’ performance
over time has received a lot of attention. Such degradation, the so-
called device aging, can jeopardize both the reliability and security

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GLSVLSI ’23, June 5–7, 2023, Knoxville, TN, USA.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0125-2/23/06. . . $15.00
https://doi.org/10.1145/3583781.3590204

of the integrated circuits [2, 14]. Device aging mainly increases the
paths’ delay and ultimately results in violating the timing guard-
band and corrupting device output. Thereby, it is highly important
to prognose the aging-induced failures before the circuit’s output
is affected (which may happen sooner, later, or even never).

In practice, devices are designed to work under well-defined
conditions; in particular, within PVT (acronym short for “Process,
Voltage, and Temperature”) corners. During their lifetime, devices
go through dynamic environmental conditions, i.e., they experi-
ence different voltages and temperatures. As the rate of Integrated
circuits (ICs) performance degradation is impacted by a variety of
the IC operating conditions, such as voltage bias, temperature, and
workload distribution, aging prognosis is not straightforward and
needs to take into account the history of these factors [12, 13].

The classic aging prognosis schemes mainly utilize lookup tables
to record the history of operating conditions and use this data to
predict aging degradation rate via machine learning models [8, 19].
However, as the operating conditions can change frequently during
the runtime, using suchmethod is challenging. Ring-oscillator based
sensors have been also proposed in literature for aging prognosis [3].
However, these sensors suffer from aging-induced delay change,
resulting in metastability and corrupting the sensor output [13].

In [18], electromagnetic signatures have been used to predict
aging effects in ICs. However, this approach requires costly external
equipments. Agrawal et al. [3] proposed predicting circuit’s failure
using aging sensors that capture the impact of IC aging based on
the observation of guardband timing violations. In [11], a dynamic
voltage scaling (DVS) approach, nicknamed “Razor”, has been pro-
posed which monitors the delay-based error rates during circuit
operation and uses such data to adjust the supply voltage.

Machine Learning (ML) based aging prediction algorithms have
received a lot of attention as they can efficiently predict aging-
induced failures with generalization capability [2, 15]. The authors
of [12] proposed an ML-based approach to predict aging degra-
dation during runtime based on equivalent aging time. Huang et
al. [13] proposed an ML-based approach that uses the historical
operating condition parameters from on-chip sensors to detect
aging-induced failures. The authors in [2, 15] train a model using
a set of operating condition parameter values (e.g., workload and
temperature) and aging indicator values (e.g., the delays of critical
paths), and use such model to predict the aging indicator values
for any given operating condition. However, these models fail to
consider that operating conditions (e.g., temperature) change over
time. This can result in an inaccurate aging failure prediction and
even unexpected failure (e.g., circuits may fail earlier with higher-
than-expected temperature) [12]. Please note that the rate of aging
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degradation is not linear over time. The impact is high initially (for
the first few months of operation) and then saturates over time.
This makes the aging prognosis and prediction of the device failure
time more challenging.

Figure 1: Aging prognosis problem statement.
To fill the gap, in this paper we not only opt to quantify the

aging rate in the current time but also aim at predicting the aging
rate in the future given that the circuit continues working under
the same voltage and temperature from now on. To clarify, we take
into account that the temperature and voltage values may have
changed multiple times during the circuit operation in the past, and
consider the effect of those changes in quantifying the aging rate
at each point in time. Meanwhile, we move one step further and
quantify the aging rate in the future given that the circuit continues
operating at the same voltage and temperature from the time we
quantify the aging rate. Figure 1 shows the high-level view of this
discussion. The device degradation in the current time depends on
its historical environmental stress, yet future degradation depends
on the degradation that the device faced in history and the envi-
ronmental condition it will face during its lifetime in future. This
assumption infers that similar future environmental conditions may
have different aging degradation rates due to previous historical
environmental variations. The “AFN” values shown in Fig. 1 relate
to the metric we use for sensor characterization. This metric will
be discussed in Section 2.2.

In sum, in this research, we propose a ML-based scheme that
performs aging prognosis based on the data extracted from the time-
to-digital converters (so-called digital sensors hereafter) residing
in the circuit for this purpose. This information will assist efficient
DVFS management schemes to reduce circuit aging-induced fail-
ures. Indeed, removing the need for storing the history of operating
conditions in memory for aging prognosis makes our approach
lightweight and more appealing. Our contributions include:

• Removing the need for recording the history of operating
conditions to be used for aging prognosis;

• A low-cost approach that considers voltage and temperature
impacts in device aging altogether not as individual entities;

• A novel aging prognosis methodology using on-chip digital
sensors and machine-learning schemes;

• Extensive experimental results representing how the sensor
outcome changes in different operating conditions and how
it can be used for aging prognosis.

2 PRELIMINARY BACKGROUNDS
2.1 Device Aging
Device aging results in performance degradation and eventual fail-
ure of digital circuits over time [7, 17]. Among the aging mech-
anisms, Bias Temperature-Instability (BTI) (including both NBTI
and PBTI referred to as negative and positive BTI, respectively)
and Hot Carrier Injection (HCI) are two leading factors in perfor-
mance degradation of digital circuits [20]. Both mechanisms result

in increasing switching and path delays in the circuit under stress;
leading to timing violations and finally wearing out of the system.
BTI Aging: NBTI and PBTI affect PMOS and NMOS transistors,
respectively. In practice, a PMOS transistor experiences two phases
of NBTI depending on its operating condition. The first phase, so-
called stress phase, occurs when the transistor is on (𝑉𝑔𝑠 < 𝑉 𝑡 ).
In this case, the positive traps generated at the Si-SiO2 interface
lead to the threshold voltage increase of the transistor. The second
phase, the so-called recovery phase, occurs when the transistor is
off (𝑉𝑔𝑠 >𝑉 𝑡 ). Here the threshold voltage drift that occurred during
the stress phase is partially recovered. Figure 2 shows the threshold
voltage change of a transistor that is always under the stress versus
the transistor that is under stress and recovery every other month.
PBTI affects NMOS transistors in a similar way that NBTI affects
PMOS transistors. The physical parameters of the transistor, supply
voltage, temperature, and stress time all contribute to the amount
of aging-induced voltage drift caused by NBTI and PBTI [4, 16].
HCI Aging: NMOS transistors are affected by HCI mechanism
when hot carriers get injected into the gate dielectric during transis-
tor switching and remain there. HCI depends on switching activity
and deteriorates the circuit performance by shifting the threshold
voltage and the drain current of transistors under stress [17].

Figure 2: Threshold-voltage shift of a PMOS transistor under
NBTI effect [10].1

2.2 Digital Sensors
A digital sensor can be realized via inserting artificial critical paths
(as simple as delay chains) into the chip logic such that if the chip
is operated in abnormal conditions, setup time violations occur in
the first place on the sensor’s intentionally long path [5]. Figure 3
exhibits the sensor deployed in this paper which consists of 𝑛0
leading inverters followed by 𝑛1 inverters each feeds a D flip-flop to
characterize the sensor outcome. The first inverter is fed by a Toggle
flip-flop and all flip-flops operate under the same clock which is
the clock signal under which the main circuit also operates. The
digital sensor design methodology, i.e., determining the number of
flip-flops and inverters, has been discussed in detail in [5]. However,
we replaced buffers of [5] with inverters in this paper to increase
the resolution of our characterization. Moreover, as depicted in
Fig. 3, the flip-flop outputs are collected from the 𝑄 and 𝑄 pins in
every other flip-flop. This helps to characterize the digital sensors
that have been constructed using inverter similar to the digital
sensors realized via buffers. Note that this sensor is resided in the
chip along with the main circuit to monitor the circuit behavior; in
our case it is used for aging prognosis as will be discussed in the
following sections.

1Values on Y axis are not shown to make the graph generic across different silicon
foundries and technological nodes.
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Figure 3: Targeted digital sensor architecture.

Digital Sensor Characterization: To characterize our sensor and
in turn to monitor the operating conditions, we deploy a metric, so-
called Average Flip-flop Number (AFN), that is extracted based on
the flip-flop outputs in each voltage and temperature combination
at each clock frequency. As the propagation delay of the inverters
included in the delay chain of our sensor (shown in Fig. 3) is changed
in different voltage, temperature, and clock frequency, the AFN
metric can be a good representative for each operating condition.

In each clock cycle CC𝑖 , when 𝑎0 signal is fed to the sensor, the
first 𝐹𝑁𝑖−1 flip-flops’ outputs would be in phase A (say for example
0 → 1 → 0) and the remaining flip-flops’ outputs would be in the
complementary phase A (say 1 → 0 → 1), where 𝐹𝑁𝑖 corresponds
to the flip-flop index at which step A begins in the clock cycle
𝐶𝐶𝑖 . Recall that we extract the values of 𝑄 and 𝑄 in every other
flip-flip resided in the chain alternatively. This nullifies the impact
of inverters. Note that in different (V,T) configurations this 𝐹𝑁𝑖

index changes. For characterization, 𝐹𝑁𝑖 values are collected in a
few consecutive clock cycles and their average is extracted. This
average value is called AFN and used for characterization. Figure 4
exhibits the outputs of the flip-flops resided in the sensor shown in
Fig. 3 in specific temperature and voltage for 𝑛0=4 leading inverters
following by 𝑛1=112 inverters and flip-flops. Here, AFN=83 as the
first flip-flop that does not experience a phase change compared to
its previous ones is the 83rd flip-flop.

Figure 4: Waveforms of Fig. 3 in V=1.2V and T=30◦C.

Figure 5 depicts how different operating conditions affect AFN.
For slower conditions, i.e., high temperatures and low voltages,
AFN is lower. On the other hand, AFN is higher in high voltages
and low temperatures where circuit operates faster. As AFN value is
related to both voltage and temperature as a pair, same AFN values
may represent different operating conditions [6].

3 AGING IMPACTSONTHESENSOROUTCOME
3.1 Aging-Induced AFN Changes
The sensor becomes slower over time due to the aging-induced
changes. Accordingly, the AFN characteristic of the sensor de-
creases over time in different rate when working under the different

Figure 5: AFN values extracted from the new sensor in dif-
ferent environmental conditions.
operating conditions. To demonstrate the AFN changes over time,
we show two examples in Fig. 6(a) and Fig. 6(b). The former shows
the AFN values for the sensor of Fig. 3 in different (V,T) conditions
after 7 years of usage given that the circuit was operating under
V=1.2V and T= 100◦C for the whole 7 years. As shown, AFN de-
creased compared to its nominal condition (new device; Fig. 5). For
example: For new device, at Vdd 1.0V and Temperature 85◦C, AFN
was 53 (Fig. 5). However, it decreased to 38 after 7 years of aging.

Our second example, shown in Fig. 6(b), represents the AFN
value after 7 years of aging in different (V,T) conditions given that
the circuit was operating in the very same (V,T) conditions during
the 7 years of usage. In this case, as shown, AFN decreased less
in areas where voltage and temperature are low, while decreased
more in cases of high voltage or high temperature.

(a) AFN at 7 years, stress: Vdd=1.2V and Temp.= 100◦C.

(b) AFN at 7 years, stressed with same voltage and temperature as measurement.

Figure 6: Change of AFN under different stress conditions
during aging.
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The takeaway point from this observation is that the AFN value
changes depending on the stress the sensor experienced. Thereby,
we can utilize AFN degradation as a representation of aging-induced
device degradation. This relaxes the requirement of storing the
circuit operating condition history for aging prognosis.

3.2 Effect of Dynamic Environmental Variation
on Aging-Induced AFN Change

The amount of aging-induced degradation a circuit experiences
depends on environmental conditions such as operating voltage
and temperature, as well as its workload during the course of usage.
However, these parameters are not fixed during the lifetime, i.e.,
the device can experience dynamic environmental conditions and
workloads. Indeed, most of the existing aging prognosis methods
fail to consider dynamic operational conditions.

Figure 7: Dynamic change in environmental conditions.

Figure 7 represents the dynamic environmental conditions a
device can go through during different points in time. Time 𝑇0
refers to time=0 when the device is new. The figure simply shows
that in time 0 (shown as 𝑇0) as well as any subsequent timing
duration the circuit may experience a different (V,T) combination.
Such history affects the aging rate. However, storing the history of
operating conditions is not cost-effective. Fortunately, our digital
sensor can sense these dynamic operations accumulatively during
the circuit’s lifetime.

Figure 8 shows the status of the sensor in three different sce-
narios of aging condition (each is shown in one row). In all cases,
the new sensor was operating at V=1.2V and T=25◦C resulting in
AFN=84.5. For example: In Condition A, the sensor is under more
stress considering its high voltage and temperature, thus it expe-
riences higher degradation compared to the other 2 cases where
the circuit was under less stress. In practice, it is not possible to
determine the stress the circuit experienced, yet we can extract the
acculturative impact using the AFN value.

Figure 8: Change of AFN due to dynamic environmental con-
ditions during stress period.

4 PROPOSED AGING PROGNOSIS
METHODOLOGY

As mentioned earlier, in this paper we are to perform aging prog-
nosis. In particular, we opt to predict the AFN that the sensor will

represent in time 𝑇𝑓 (future time) given that we know the AFN in
time 𝑇𝑐 (current time). However, as shown in Fig. 5 and Fig. 6, the
AFN value changes in different voltages and temperatures. In addi-
tion, we do not have access to the history of operating conditions.
Moreover, aging degradation rate is not constant over time, i.e., the
rate is higher in the first few months of device usage. Considering
all of these circumstances, we use a differential method to predict
AFN value in time𝑇𝑓 assuming that the device operates in the same
voltage and temperature between time [𝑇𝑐 , 𝑇𝑓 ].

Our differential scheme relies on embedding three digital sensors
in the circuit to sense the aging-induced changes and in turn to
perform aging prognosis. To do so, we deploy a digital sensor and its
two replicas where the main sensor is always ON (so-called Always-
on Sensor or A-Sensor hereafter) while the replicated sensors, i.e.,
R-Sensor and RD-Sensor, turn on rarely (only when aging prognosis
is performed), thus are affected much less by aging. Figure 9 shows
the proposed structure; R-Sensor and RD-Sensor are powered ON
only when Prognosis command “CMD” signal is asserted. Note that
in our method, all three sensors are resided close to one another,
so they sense the same temperature. However, the A-sensor and
R-Sensor are fed with 𝑉𝑑𝑑 while the RD-Sensor operates under a
different voltage: 𝑉𝑑𝑑 − Δ𝑉𝑑𝑑 . We considered Δ𝑉𝑑𝑑 = 0.2V.

The idea behind having R-Sensor along with A-Sensor is being
able to extract the impact of aging during the runtime based on the
difference between the AFN values of these 2 sensors. This relaxes
the need to store the operating conditions during the time. The
RD-Sensor associated with the R-Sensor allows to know the (V,T)
conditions as explained in [6]. Indeed having the pair (R-Sensor,
RD-Sensor) as input of the proposed ML-based scheme implicitly
considers the impact of (V,T) in the current AFN, at 𝑇𝑐 .

Note that the R-Sensor and RD-Sensor may get ON in a periodic
manner or ad hoc (yet rarely). Also, there is a possibility that all
three sensors are OFF simultaneously for some time, e.g., when the
system is unplugged from power supply. This does not affect the
efficiency of the proposed methodology.

Figure 9: Our proposed sensor setup for aging prognosis.

We then use the AFN values from A-Sensor, R-Sensor, and RD-
Sensor (denoted as A-AFN, R-AFN, and RD-AFN) in time 𝑇𝑐 to
predict the AFN in time𝑇𝑓 >𝑇𝑐 given that the circuit operates in the
same (V,T) condition in time ∈ [𝑇𝑐 ,𝑇𝑓 ]. To do so, we use an ML-
model relying on a Neural Network (NN). To train the model, we
only need the HSpice simulation data of K triple sensors considering
different voltage, temperature, and stress time. This approach has
two advantages. Firstly, training the model using multiple triple
sensors’ data results in mitigating the effect of process variations in
predicting the AFN value as the model learns the process variation
effects gradually with this training; thus it would be more accurate
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in inferring the A-AFN value in future time𝑇𝑓 . Secondly, conducting
Monte Carlo (MC) simulations relieves us from the need formultiple
fabricated-chips data.

Figure 10: Different sample operating scenarios where red
boxes relate to condition at current time 𝑇𝑐 , yellow boxes
relate to the previous time, and the green boxes relate to the
time in future 𝑇𝑓 for which aging prognosis is performed.

As mentioned, to build the training data, we use Spice-level
simulation for new as well as aged devices. We consider scenarios
where the circuit goes under different stress phases (referring to
the dynamic change of (V,T) during the course of usage).

Figure 10 depicts some sample scenarios where in each case the
red rectangle relates to the (V,T) in the current time of 𝑇𝑐 and the
yellow rectangles relates to the operating conditions the circuit
experienced previously (i.e., the (V,T) history). Note that the circuit
may experience each (V,T) for different time duration. Finally, the
green rectangle relates to the future point of time 𝑇𝑓 . Note that as
mentioned earlier, we assume that the current and future operating
conditions are similar. In other words, we assume that the circuit
continues operating in the same condition from the current time.

To build the data needed for the training and testing of the
proposed ML-Based aging prognosis schemes, we generate multiple
random scenarios and simulate them using HSpice. More details
on generating the train and test data is given in Section 5.

In our NN model, the input features include the AFN values of
the three sensors at current time (𝑇𝑐 ) along with the time difference
from the current time (i.e.,𝑇𝑑 = 𝑇𝑓 −𝑇𝑐 ) and the label is the A-AFN
in time 𝑇𝑓 . For example, if we want to know the value of AFN in 4
months from now, we put 𝑇𝑑=4 months. Here, A-AFN is expected
to be smaller than R-AFN, as the A-Sensor is always ON so it is
aged more than R-Sensor which is rarely ON. Recall that the circuit
becomes slower when aged; thus, exhibits lower AFN. However, in
some cases R-AFN may be higher than A-AFN (specially when the
device is new or was used only for a short time) due to the process
mismatch between these two sensors.

By predicting the A-AFN that the A-Sensor will generate at time
𝑇𝑓 , the user can understand if the circuit is going to be failed at
𝑇𝑓 or not. This is done by comparing the extracted A-AFN with
the threshold value below which the circuit does not work prop-
erly [5]. If the predicted A-AFN is smaller than 𝐴𝐹𝑁𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , then
obviously the circuit is going to be failed at time 𝑇𝑓 ; thus graceful
degradation is performed automatically via DVFS mechanism to
prevent such failure before it really fails at time 𝑇𝑓 . Note that the
𝐴𝐹𝑁𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is decided based on the worst-case condition that
the circuit should work on. More information on deciding about
finding such threshold value can be found in [5].

5 EXPERIMENTAL SETUP AND RESULT
Our sensor consists of 𝑛0 = 4 leading inverters followed by 𝑛1 = 112
inverters and flip-flops. The numbers of 𝑛0 and 𝑛1 were decided
using Algorithm 2 in [9]. However, in this paper we use inverters
(instead of buffers used in [9]) to achieve higher accuracy. We
implemented this configuration at the transistor level using 45
nm NANGATE technology [1]. Simulations were conducted using
Synopsys HSpice. The built-in HSpice MOSRA Level 3 model was
used for assessing the impact of BTI and HCI aging.

We simulated 5814 different cases where each of them included
between 1 to 5 stages of stress (selected randomly) each in a ran-
domly selected voltage, temperature, and aging duration. The aging
duration was 7 years maximum with the step of 2 months. The
circuit continues its operation under the (V,T) it experienced in its
last stage of aging up to 7 years of total usage. The voltage Vdd
was considered in the range of [0.8V, 1.2V] with the steps of 0.05V,
and the temperatures were considered between [-10◦C, 150◦C]
with 5◦C steps. We realized different sensor configurations using
Monte Carlo (MC) simulations to mitigate the impact of process
variation on the model’s accuracy. We considered MC simulations
for 4 chips using a Gaussian distribution: transistor gate length L:
3𝜎 = 10%; threshold voltage V𝑇𝐻 : 3𝜎 = 30%, and gate-oxide thick-
ness t𝑂𝑋 : 3𝜎 = 3%. We generated ≈3,000,000 data points out of the
5814 simulations conducted using HSpice MOSRA. This is realized
by considering different values of 𝑇𝑐 and 𝑇𝑑 for each of the 5814
scenarios we randomly generated in this study (discussed earlier)
where 80% of this data was used for training and the rest for testing.

We used a Neural Network (NN), with 3 hidden layers and one
output node, to predict the future AFN. Its input features include R-
AFN, RD-AFN, A-AFN, and𝑇𝑑 (the time difference from the current
time we predict the A-AFN for). The Label would be A-AFN at time
𝑇𝑓 =𝑇𝑐+𝑇𝑑 . Each hidden layer includes 128 nodes. Activation func-
tion is Rectified Linear Unit, loss function is Mean Squared Error,
and the Optimizer is Root Mean Squared Propagation (RMSProp).
We considered 50 Epocs with validation split equal to 0.2.

5.1 Experimental Results
Figure 11 represents different test cases where A-AFN is predicted
for different values of 𝑇𝑑 . On top of each figure, the values of A-
AFN, R-AFN, and RD-AFN for the time 𝑇𝑐 have been shown. Using
these values our NN model predicts the A-AFN at different times
in future. As expected, R-AFN has the highest AFN among the
three reported, as R-Sensor is rarely ON so less aged. Although
RD-Sensor is also rarely ON but as it is fed with a lower voltage
(i.e., Vdd-0.2V) compared to R-Sensor it has a lower AFN. In Fig. 11
the actual and predicted A-AFN in each point of time are shown in
blue and orange, respectively. As depicted, the predicted results are
very close to the actual AFN values in all cases. In most cases, the
prediction error is in the range of ±0.5 AFN.

Moreover, we can observe that the rate of degradation in the
future months is not the same always. As explained in Section 3.2,
this is due to the dynamic nature of the environmental condition
change. For example, in test case 1 and 2 both degradation rate is
high but for test case 3 such rate is low. In practice, test case 4 has
no visible degradation. In this case, the circuit has been already
aged for a long time (i.e., 𝑇𝑐 is higher compared to other cases) and
that’s why the aging rate is not dominant. These results infer that
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(a) Test Case 1

(b) Test Case 2

(c) Test Case 3

(d) Test Case 4
Figure 11: A-AFN prognosis in 4 different test cases.

(a) True vs. predicted AFN value (b) AFN prediction error

Figure 12: Results from prediction model.

although predicting aging rate is not straightforward, our proposed
method can predict the aging induced delay change through AFN
with high accuracy. Indeed, in our NN, the Mean Absolute Error
(MAE) during training and validation both were ≈0.40.

Figure 12(a) shows the real A-AFN versus the predicted one. As
depicted almost all points reside on the diagonal curve of the figure.
Meaning that almost all predicted values match the real AFN values.
These results confirm the accuracy of our prediction scheme.

The next set of results, shown in Fig. 12(b), demonstrates the
error in predictingA-AFN. As depicted, inmost of the cases, the AFN
prediction error stays at 0. Also as demonstrated in this figure, the
non-zero prediction errors are less than ±2 in most cases. Indeed, on
average, the absolute error in predicting A-AFN value is ≈ 0.40 AFN.
These results again confirm the efficacy of our proposed scheme in
aging prognosis through AFN.

The takeaway point from the above observations is that aging-
induced degradations can be predicted before it really occurs using
our proposed scheme. This information can be used for the graceful
degradation of the circuit using DVFS scheme.

6 CONCLUSION & FUTURE DIRECTION
Due to device aging the performance of electronic devices decreases
over time, and ultimately the chip fails to provide correct output. Ac-
cordingly aging prognosis and graceful degradation of the circuits
before they fail are highly important. However, as the aging rate
depends on operational conditions, aging prognosis is not straight
forward without recording the operating conditions during the
runtime. This paper relaxes such requirement, and via deploying
time-to-digital converters predicts the aging-induced failures for fu-
ture time. Our method uses a Neural Network model to perform the
prediction. This prognosis can be followed by graceful degradation.
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