
RT Level Reliability Enhancement
by Constructing Dynamic TMRs

Naghmeh Karimi
 ECE Department

University of Tehran

Shahrzad Mirkhani
ECE Department

University of Tehran

Zainalabedin Navabi
ECE Department
University of Tehran

Fabrizio Lombardi
 ECE Department
Northeastern University

 {naghmeh, shahrzad} @ cad.ece.ut.ac.ir

 {navabi, lombardi} @ ece.neu.edu

ABSTRACT
This paper presents a novel and efficient approach for reliability
enhancement at the RT level. The reliability enhancement is
performed by utilizing the available resources of a design in their
dead intervals. Such resources are used for constructing dynamic
TMR structures that can change per clock cycle. In this method all
resources participate in constructing TMR structures at least once
per a system input to output flow.
To evaluate the proposed fault tolerance technique we consider
dependability, and area/latency overhead imposed on a circuit by
applying our method. In order to evaluate dependability, faults are
injected into our test circuits before and after applying our algorithm
and fault coverage is measured. Experimental results show that after
applying our method, fault coverage is significantly reduced
indicating that the reliability of designs is improved.

Categories and Subject Descriptors: B.8.1
[Performance and Reliability]: Reliability, Testing, and Fault-
Tolerance

General Terms: Reliability

Keywords: Reliability, Fault Tolerant, RTL Design, TMR

1. INTRODUCTION
With the growth of VLSI technology and moving toward submicron
and nano technologies, reliability has become an important issue. In
comparison to the 10-9 to 10-7 failure rates in CMOS technology, the
failure rates in nanotechnologies are projected to be in the order of
10-2 to 10-1[15]. In addition, due to device size in nanotechnologies,
fabrication yield has dramatically been dropped. Thus the need for a
cost-effective reliability enhancement method is more important
now than before.
There are two major methods for increasing the reliability of a
circuit: fault avoidance and fault tolerance. However considering
fault avoidance as the sole provision for reliability enhancement is
not appropriate, since this method just deals with design and
manufacturing faults, i.e., the faults that occur during the normal
operation of the circuit are not considered using fault avoidance
method [5]. Hence considering fault tolerance, the ability of a
system to operate correctly in spite of the occurrence of faults,
becomes an important issue. The ultimate goal of fault tolerance is
to prevent system failures from ever occurring. Various fault
tolerance schemes are utilized to ensure the reliability of a system.

These schemes detect errors concurrently, and in case of a fault,
they utilize a recovery mechanism to recover from errors.
Online and concurrent testing [3] are used for testing a circuit during
its normal operation. Unlike offline testing methods, e.g., traditional
BIST structures, online testing methods detect a fault in faulty
circuits as soon as it occurs. This increases the reliability of the
systems, and at the same time, eliminates the need for the system to
be halted during the test process.
There are several groups of online test methods. The simplest of
these has stored vectors that when matched with normal data,
generating circuit responses that are compared with the expected
responses of the circuit [3]. In another method, LFSRs and MISRs
are used for test vectors and expected outputs [16]. A different
method duplicates independently defined components for TMR and
other replication methods [11-12]. However, due to the extensive
hardware overhead in the resource duplication methods, algorithmic
duplication methods have been proposed. In the algorithmic
duplication methods, the operations (as opposed to resources) are
duplicated. This results in less, but still considerable hardware
overhead [12, 4, 13, 14, 6, 2].
In invariant-based methods in addition to computing f(x) for input x
of a circuit, function g(x) witch has a well defined relation to f(x) is
generated. In these methods the correct operation of the circuit is
verified by checking the relation between f(x) and g(x) during the
normal operation of the circuit [1, 8].
While duplication methods are utilized in error detection schemes, N
replication (N ≥ 3) techniques are considered in error recovery
methods. Triple module redundancy (TMR) is widely used in error
recovery schemes. In a TMR system each module is replicated three
times. While the module and its replicates are feed with the same
inputs, their outputs are connected to a majority voter which
produces the system output [9]. System reliability in TMR
structures can be evaluated by Markov model.
This paper presents an efficient method to reduce the amount of
hardware overhead imposed by applying a traditional TMR
structure to a design while reliability of design is enhanced
simultaneously. In our proposed method, fault detection and
recovery is performed by utilizing the available resources in their
dead intervals (the clock cycles during which they are inactive). To
evaluate the proposed method we utilize fault coverage metric.
Unlike test methodologies in which high fault coverage shows high
testability, in fault tolerant methods low fault coverage represents
high reliability. This means that the goal of fault tolerant methods is
to decrease fault coverage of a design.
Besides area overhead reduction, another advantage of this method
is that the resulted circuit has 100% resource coverage, i.e., all
resources of the circuit participate in a TMR structure at least once
per an input to output flow. Since in this method each resource can
participate in different TMR structures in different clock cycles, we

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
GLSVLSI’07, March 11–13, 2007, Stresa-Lago Maggiore, Italy.
Copyright 2007 ACM 978-1-59593-605-9/07/0003...$5.00.

172

call these TMR structures as dynamic TMR structures. This method
can be applied to sequential circuits as well as combinational
circuits or non-linear and linear circuits.
The remainder of the paper is organized as follows. Section 2
discusses our proposed reliability enhancement algorithm (called
RED3) and section 3 shows the results of applying this method to
different benchmarks. The performance of RED3 is evaluated by
performing fault simulation before and after applying this method
on each test case. Section 4 deals with conclusions.

2. RELIABILITY ENHANCEMENT by
DYNAMIC TMR (RED3)

This section presents our efficient online testing and reliability
enhancement algorithm. RED3 uses the DFG of a design as its input
and modifies the given DFG to construct a fault tolerant structure.
Since the modification is applied during the RTL synthesis process,
the hardware and latency overhead are much lower than the
methods which apply the reliability enhancement algorithms to a
post synthesis structure [17-18]. In addition, utilizing the available
resources of a design to construct dynamic TMR structures results in
lower hardware and latency overhead. Utilizing RED3, the faulty
unit of a design can also be diagnosed.

2.1 Algorithm Description
RED3 enhances the reliability of a design, linking itself with the
synthesis process. In this process, the behavioral description of a
circuit is converted to a DFG. The operations of this DFG are
scheduled and then bound to available resources. Applying RED3
on the resulted scheduled and bound DFG enhances the reliability of
the given circuit, i.e., a fault tolerant circuit is constructed.
Constructing a fault tolerant structure depends on the number of
busy and free resources of each resource type in different clock
cycles of a scheduled and bound DFG. Let’s assume that Fk (Bk)
represents the number of free (busy) resources of type k in a given
clock cycle of a design. Several cases can occur depending on the
amount of Fk and Bk in a given clock cycle of a DFG assuming that
we have Nk total resources of type k.
Scenario 1 (Fk > 1): In this scenario, there is at least two free k-type
resources. We can construct a dynamic TMR structure using each
two free k-type resources with a busy one of the same type. These
resources are with the same set of inputs while their outputs are
connected to a majority voter which produces the TMR structure
output. Thus if one of these resources is faulty, i.e., the results of
these resources are not equal, the fault is masked.
Scenario 2 (Nk< 3): In this scenario, there is only one (two) k-type
resource(s). In this case, we have to add 3- Nk resources to the data
path to construct a TMR structure.
Scenario 3 (

⎥⎥
⎤

⎢⎢
⎡<Σ KK NF
3
2): In this scenario, the sum of k-type free

resources in an input to output flow of the given DFG is fewer

than
⎥⎥
⎤

⎢⎢
⎡

KN
3
2 . In this case, we add at most ⎥⎥

⎤
⎢⎢
⎡

m
n2 resources to the

datapath. n is the number of k-type resources that have not
participated in constructing dynamic TMRs after processing the
DFG, and m is the latency of the DFG. Adding these resources to
the original DFG, results in a fault tolerant DFG using scenario 1.

2.2 Selection of Resources to Test
According to the above discussion, for selecting resources to
construct dynamic TMR structures, at each clock cycle we need to
know the number of free and busy resources of each type (Fk, Bk of
type k). Since a DFG represents only the busy operations and
resources during the circuit operation, we present another flow
graph, Resource Usage Graph (RUG), which can demonstrate the
number of free resources as well as busy ones. Using RUG and the
above scenarios, certain heuristics decide on timing and
mechanisms of constructing dynamic TMR structures.

2.2.1 Resource Usage Graph
RUG is a graph in which vertices represent the available resources
and the edges represent the data transfer between these resources.
Consider the scheduled and bound DFG shown in Figure 1. All
operations of this circuit are performed during four clock cycles.
Shown below are binding of operations of this DFG to adders (A1,
A2, and A3) and multipliers (M1, M2, and M3):

Figure 2 shows the corresponding RUG of the DFG in Figure 1.
This graph shows utilization of available resources versus time.
Applying the method in Section 2.1 on the RUG of Figure 2,
various scenarios discussed above will be done. In this RUG, in
clock cycle 3, M1 is busy while M2 and M3 are free. According to
Scenario 1, these three modules can construct a dynamic TMR
structure to enhance the reliability of the whole design.
There is at most one free adder in clock cycles 1 to 4. Thus to
increase the reliability of design, an extra adder must be added to
the available resources (with Scenario 3). In this case if A1, the
extra adder and A2, construct a dynamic TMR structure in clock
cycle i (2 ≤ i ≤ 4), A1, the extra adder and A3 can construct another
TMR structure in any clock cycle other than i (of course not clock
cycle 1 since in this clock cycle adder A1 is also busy).

2.2.2 RED3 Pseudo Code
Figure 3 shows a pseudo code for our proposed method. The
following definitions are used in this pseudo code.
• Ncc: Total clock cycles in the original RUG.
• Ntypes: Number of available resource types.
• Fk (Bk) : Number of k-type free (busy) resources in the current

clock cycle (1 ≤ k ≤ Ntypes)
• Nk: Number of k-type resource instances. Note that Nk is constant

during all clock cycles. (Nk=Fk+Bk at each clock cycle)

*8

*5 *

*6 *2

*3

*4 *7 + +

+

+7

+

+5 + Clock Cycle 1

Clock Cycle 2

Clock Cycle 3

Clock Cycle 4

a b c d e f g h i j

k l

m

n o

+
im0 im1

im2
im3 im4 Im5 Im6

+2

 +9 is bound to A1
 +1 to +4 are bound to A2
 +5 to +8 are bound to A3

 *1 to *4 are bound to M1
 *5 to *7 are bound to M2
 *8 is bound to M3

Figure 1. A simple DFG

173

• NTFk (NTBk): Number of k-type free (busy) resources that have
not participated in any TMR structure yet.

• Rk,j: The jth k-type resource instance (1≤ k ≤ Ntypes , 1≤ j ≤ Nk).
Note that parameters Fk, Bk, NTFk, and NTBk are re-calculated at the
beginning of each clock cycle.

In the simple RUG shown of Figure 2, k is 1 for the adder and 2 for
the multiplier. The above parameters are evaluated as follows.

• Ncc = 4 / Ntypes = 2 / Nk: (N1=3 / N2=3)
• Fk: in clock cycles 1 to 4 (F1: 0, 1, 1, 1 / F2: 1, 0, 2, 1)
• Bk:in clock cycles 1 to 4 (B1: 3, 2, 2, 2 / B2: 2, 3, 1, 2)
• NTFk (NTBk): Is determined during the algorithm.
• Rk,j: (Adder: R11, R12, R13 / Multiplier: R21, R22, R23)

2.2.3 Resource Selection Heuristics
RED3 uses a RUG as its input, processes the RUG starting from
clock cycle 1, and produces a modified RUG as its output. In RED3
all function units participate in constructing dynamic TMR
structures. Thus the reliability of the resulting RUG is much higher
than that of the original RUG. Obviously this algorithm treats each
operation independently, and for an operation all of its
corresponding resource instances are processed simultaneously.
For each resource type, clock cycles of the given RUG are analyzed
consecutively until all instances of that resource type participate at
least once in a dynamic TMR structure. Based on the number of free
and busy resources, different choices exist for constructing TMR
structures. We consider the following heuristics for making these
decisions.
Starting with the first clock cycle if any resource instance can
participate in a TMR structure (using other available instances), it
will become part of that TMR structure. I.e., the process of
reliability enhancement is done as soon as possible. The priority of
constructing a TMR structure using instances not participated in any
TMR structure is higher than constructing a TMR structure by use
of instances participated in other TMR structures.

2.2.4 Resource Selection Example
Our algorithm implies the modification of the circuit’s controller to
produce extra control signals in order to enhance the reliability of
the design. Figures 4 shows the corresponding RTL datapath after
applying our proposed algorithm to the RUG of Figure 2. For the
sake of clarity, registers are not shown and only partial routings and
the necessary parts of the circuit are depicted here.
The original circuit (Corresponding to RUG of Figure 2) uses three
multipliers (M1-M3) and three adders (A1-A3). Using the RUG of
Figure 2 and scenarios discussed, we decide to construct a TMR
using M1, M2, and M3. However, because of utilization of the

adders as indicated in the RUG, an extra adder (EA) is needed to
construct two TMR structures for adder-based reliability
enhancement. While A2 and A3 participate in one TMR, A1
participate in two TMRs (Figure 4).

3. EXPERIMENTAL RESULTS
To evaluate RED3, we have applied the proposed algorithm to three
benchmark circuits: a 4th order IIR filter, a 6th order FIR filter, and
the Discrete Cosine Transform (DCT) circuit [7].
We have prepared three models from RT level of the above
testcases as follows:
• Normal Model: This model includes the post synthesis circuit

without any reliability enhancement.
• Dynamic TMR Model: This model represents the post synthesis

circuit after applying RED3 method.
• Traditional TMR Model: This model represents the post

synthesis circuit of the traditional TMR of the whole circuit,
i.e. this model includes three copies of the RTL testcase
feeding with the same input. The outputs of these copies are
connected to a majority voter.

To evaluate RED3 we consider dependability, and area/latency
overhead imposed on a circuit by applying our method. To evaluate
dependability, the discussed models have been fault simulated using
DSM-FS (a VHDL fault simulator) [10] with 10000 random test
vectors, and fault coverage metric has been used for reliability
measurement (Table 1). Note that although this method considers
transient and intermittent faults, the fault model we have considered
in our test cases is single stuck-at fault model. Table 1 shows that in
our testcases the fault coverage in normal models is much higher
than the fault coverage in dynamic TMR models (44% reduction on
average). This indicates that the RED3 structure of each design is
more reliable than the original design.

 for k=1 to Ntypes loop
 Lable1: cc := 1;
 while (true) loop
 Calculate Fk and Bk in clock cycle=cc; Calculate NTFk from Fk and NTBk from Bk;
 if (Nk>2) { --Nk=Bk+Fk
 if (NTBk /= 0) { if (Fk ≥2)
 {Construct TMR structures using each 2 free instances and a busy one;
 Recalculate Fk, Bk, NTFk, and NTBk; }}
 if (NTFk ≥2) { if (Bk /= 0) {
 Construct TMR structures using each 2 free instances with a busy one;
 Recalculate Fk, Bk, NTFk, and NTBk;}}
 if (Fk ≥2){ if (Bk /= 0) {
 Construct TMR structures using each 2 free instances with a busy one;
 Recalculate Fk, Bk, NTFk, and NTBk;}}}
 else --Nk ≤2
 {Nk <= 3; Goto Lable1;}
 cc++; --go to the next clock cycle
 if (cc > Ncc) break;
 end loop;
 if (not(all Rk,j.TMR are true)) – all Rk,j do not participate in TMR structures
 Add ⎡ ⎤) N)NTF((NTB 2 ccKK ÷+ resources of type k to Nk; Goto Lable1;}

 end loop;
Figure 3. The proposed pseudo code for RED3

Figure 2. RUG constructed from the DFG of Fig. 1

174

Comparing dynamic TMR method with traditional TMR method,
Table 1 shows that the area overhead of the dynamic TMR model is
considerably lower than the area overhead imposed by the
traditional TMR model (lass than 50%). On the other hand, the
latency overhead is insignificant (1% on average). Comparing the
dynamic TMR model with the normal model, Table 1 shows an
increase of 67% average area overhead. This increase is more than
150% if we use traditional TMR models as our reliable models.

4. CONCLUSIONS
This paper presents a reliability enhancement method. The proposed
method uses free resources in their dead intervals to enhance the
reliability of the whole design. The main advantage of the proposed
method is its low fault coverage and area overhead as compared
with methods using resource replication, e.g., TMR.
 This method improves manufacturing yield by dynamically
masking manufacturing faults with an acceptable hardware
overhead. Furthermore, our method causes a circuit to recover from
faults occur during the operation of the circuit.

5. REFERENCES
[1] Bayraktaroglu. I, and Orailoglu. A. Concurrent test for digital

linear systems. IEEE Trans. Computer-Aided Design of
Integrated Circuits and Systems, Vol. 20, 2001, 1775-791.

[2] Bolchini, C. et al. Concurrent error detection at architectural
level. In Proceedings of the 11th international symposium on
System synthesis, 1998, 72-75.

[3] Bushnell, M. L., and Agrawal, V. D. Essentials of electronic
Testing for Digital Memory and Mixed Signal VLSI Circuits.
Kluwer Academic Publishers, 2000.

[4] Hamilton, S. N., and Orailoglu, A. On-Line test for fault-
secure fault identification. IEEE Trans. VLSI Systems, Vol. 8,
No. 4, August 2000.

[5] Johnson, B. W. Design and Analysis of Fault-Tolerant Digital
Systems. Addison-Wesley, 1989.

[6] Karri, R., and Iyer, B. Introspection: A register transfer level
technique for concurrent error detection and diagnosis in data
dominated designs. ACM Trans. Design Automation of
Electronic Systems, Vol. 6, No. 4, 2001, 501-515.

[7] Lee, M. T. High-Level Test Synthesis of Digital VLSI Circuits.
Artech House, 1997.

[8] Makris, Y., Bayraktaroglu, I., and Orailoglu, A. Enhancing
reliability of RTL controller-datapath circuits via invariant-
based concurrent test. IEEE Trans. Reliability, Vol. 53, No. 2,
2004.

[9] Mitra, S.“Diversity Techniques for Concurrent Error
Detection. Ph.D. Thesis, Stanford University, 2000.

[10] Navabi, Z., Mirkhani, S., Lavasani, M., and Lombardi, F.
Using RT level component descriptions for single stuck-at
hierarchical fault simulation. Journal of electronic testing-
Theory and Applications, Vol. 20, December 2004, 575-589.

[11] Nicolaidis, M., and Zorian, Y. On-line testing for VLSI- A
compendium of approaches. Journal of electronic testing-
Theory and Applications, Vol. 12, No. 1-2, 1988, 7-20.

[12] Oikonomakos, P., and Zwolinski, M. Using high-level
synthesis to implement on-line testability. IEEE Real-Time
Embedded System Workshop, Dec. 2001.

[13] Oikonomakos, P., Zwolinski, M., and Al-hashimi, B. M.
Versatile high-level synthesis of self-checking datapaths using
an on-line testability metric. In Proceedings of. Design
Automation and Test in Europe, March 2003.

[14] Orailoglu, A., and Karri, R. Automatic synthesis of self-
recovering VLSI systems. IEEE Trans. Computers, Vol. 45,
No. 2, Feb. 1996.

[15] Rao, W., Orailoglu, A., and Karri, R. Fault tolerant arithmetic
with applications in nanotechnology based systems. In
Proceedings of International Test Conference, 2004, 472-47.

[16] Voyiatzis, I.and Paschalis, A. R-CBIST: An effective RAM-
based input vector monitoring concurrent BIST technique. In
Proceedings of International Test Conference, 1998.

[17] Voyiatzis, I., et al. An efficient comparative concurrent built-in
self test technique. In Proceedings of Asian Test Symposium,
1995.

[18] Voyiatzis, I., et al. A concurrent built-in self test architecture
based on a self-testing RAM. IEEE Trans. Reliability, Vol. 54,
No. 1, March 2005.

Table 1. Applying RED3 on different benchmarks.

Circuit
Name

Area

(Normal model)

Area

(Dynamic
TMR model)

Area

(Traditional
TMR model)

Delay

(Normal model)

Delay

(Dynamic
TMR model)

Delay

(Traditional
TMR model)

Normal

Fault

Coverage

RED3

Fault

Coverage

6th order
FIR filter 1079 1432 3259 46.53 48.65 46.63 87% 28%

4rd order
IIR filter 1275 1505 3816 52.81 53.14 52.91 48% 40%

DCT 936 1841 2894 51.3 54.93 53.08 69% 36%

Figure 4. RED3 RTL structure of the RUG in Fig. 2

175

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

