
Reliable NoC Architecture Utilizing a Robust Rerouting Algorithm

1Armin Alaghi, 2,1Mahshid Sedghi, 1Naghmeh Karimi, 2Mahmood Fathy, 1Zainalabedin Navabi
1Electrical and Computer Engineering Department, University of Tehran

2Computer Engineering Department Iran University of Science and Technology
a.alaghi@ece.ut.ac.ir, ma_sedghi@comp.iust.ac.ir, naghmeh@cad.ece.ut.ac.ir,

mahfathy@iust.ac.ir, navabi@cad.ece.ut.ac.ir

Abstract

Moving towards reconfigurability is an approach to
increase fault tolerance on System-on-Chip design. In
this paper, we propose a self-reconfigurable NoC
architecture utilizing a robust rerouting method. At
first, an offline test strategy for locating system-level
faults in NoC switch ports is utilized. Using the
information achieved in the test phase, every switch
reconfigures itself to avoid routing packets through
faulty links by utilizing our local rerouting method. The
proposed rerouting method is evaluated using a
Transaction-Level platform. Experimental results show
that our proposed rerouting method delivers all the
packets in a faulty NoC successfully and has a less
communication overhead compared to a pure flooding
method.

1 Introduction
 Over the past few years, Network-on-Chip (NoC)
has become increasingly popular as a scalable
interconnect infrastructure for IP cores. A NoC
replaces the slow ad-hoc global on-chip wiring with a
high performance communication infrastructure which
facilitates structured modular system design and thus
helps reducing the system design complexity. NoCs are
characterized by different tradeoffs regarding
throughput, latency, silicon area, power consumption
and reliability [1][2].
 Moving towards nano-scale circuits poses new
challenges to design of digital circuits. Shrinking
dimensions result to a significant decrease in the
manufacturing yield. Though, the yield can be
maintained at an acceptable level by allowing some
amount of faults occur in the chip and utilize fault
tolerance techniques to provide reliable functionality.
Reconfigurability is one of the approaches to increase
fault tolerance in SoC design [9].
 Electronic System-Level Design (ESL) has gained
popularity in design of digital circuits recently.
Transaction-Level Modeling (TLM) is going to
become the starting point in ESL. TLM improves
simulation performance and modeling efficiency for
early design space exploration. SystemC has been

proved to be the key to the fairly fast deployment of
this methodology. In a general definition of TLM, the
system is divided into two parts: communication and
computation parts. TLM models communication parts
of a system at a high level of abstraction (e.g., by
functions) [11].
 In this paper, we introduce a reliable mesh-based
NoC architecture utilizing a robust rerouting method.
An offline test strategy is proposed which locates
system-level faults in switch ports. Using the
information achieved in the test phase, every switch
reconfigures itself to avoid routing packets through
faulty links by utilizing a local rerouting algorithm. A
Transaction-Level platform is used for simulation and
evaluation of our test strategy and rerouting technique.
Comparing to a VHDL platform, TLM provides us an
appropriate environment for fast simulation of the
proposed techniques.
 The rest of this paper is organized as follows.
Section 2 reviews related works briefly. The method
for locating faults in switch ports is explained in
Section 3. Section 4 deals with the rerouting method
and self-reconfigurable switch architecture following
by experimental results presented in Section 5. Finally,
Section 6 concludes the paper.

2 Related Works
 Kim et al. [8] classify errors disturbing the correct
operation of the NoCs as link and router errors. The
former occurs during the traverse of flits from one
router to another while the latter occurs within the
router architecture. Amory at al. propose a partial scan
method along with a test wrapper to test NoC routers
[6]. In this scheme all routers have the same number of
scan chains and are tested simultaneously with the
same test data. A testing method for NoC FIFO buffers
using a distributed BIST scheme is proposed in [7]. In
this method the read/write mechanism, control circuit
and test data are shared among the FIFO blocks while
the response analyzers for each FIFO are distributed.
 A BIST method for testing NoC links has been
proposed in [5] which uses a high level fault model to
deal with the crosstalk effects due to inter-wire
coupling. Raik et al. [4] use different test

978-1-4244-3403-9/08/$25.00 ©2008 IEEE

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on September 30,2020 at 19:56:47 UTC from IEEE Xplore. Restrictions apply.

configurations to diagnose link faults. They assume
that link faults result in dropped or corrupt data passing
through a link.
 A wide variety of fault-tolerance techniques for the
NoCs have been proposed in the literature. Most of the
techniques consist of various forms of gossip
algorithms [12]. In [13], a random walk algorithm is
proposed which sends a finite, predetermined number
of copies of a message into the network. This algorithm
result in a significantly less communication overhead
compared to pure flooding. In [3], a number of
architectural techniques to prevent or recover from the
impact of transient errors on NoC links are presented
which use a new hop-by-hop retransmission scheme. A
dynamic routing mechanism for the NoCs is proposed
in [14] which is a simplified form of Link State routing.
This method promises successful communication in
case of both link and router faults.
 A number of groups utilize reconfigurability
techniques in order to make the NoC fault-tolerant.
Honarmand et al. propose a heuristic method for
reconfiguring NoC switches in the presence of
faults in links or switches [10]. They extract a
number of constraints that should be met to have a
live-lock free routing. In [9], a switch node
architecture with automatic rerouting property is
proposed. The rerouting algorithm can be used in
order to avoid faulty or congesting ports.
 From the hardware description point of view, TLM
(Transaction Level Modeling) has gained wide spread
acceptance in the system-level design community.
TLMs are applied on different abstraction levels and
for very different purposes [15]. In [16], an
asynchronous NoC protocol is proposed and
implemented using TLM. Some research groups
utilize TLM simulation platforms for
performance/power evaluation of different NoC
architectures [17][18]. In [19], a reliable NoC
architecture is proposed and evaluated using a TLM
platform. The architecture used in this work is an
application-specific mapped mesh-based NoC.
 In this paper, we use a TLM platform for
evaluating our proposed test strategy and
reconfiguration techniques. To the best of our
knowledge, using TLM for testing NoC architectures is
not yet addressed by the research community.

3 Port Fault Diagnosis Method
 In this paper, we use a high-level fault model which
is based on the functionality of ports. A fault-free port
transfers data correctly, while a faulty port drops the
packet.
 Our TLM NoC model is a 2-D mesh of switches
defined as SystemC modules communicating with each
other through channels of type tlm_fifo. Each switch

has five pairs of input/output ports; four of them
connect the switch to its neighboring switches in the
mesh and one connects the switch to its corresponding
processor. The inputs and outputs of our NoC are
placed at PI (the switch at bottom-left of the NoC) and
PO (the switch at bottom-right) nodes respectively.
 Each switch keeps the status of all of its ports. All
ports are suspected to be faulty at the beginning. At the
start of the test session, the NoC PI generates a test
packet and sends copies of the packet to all of its
neighbors. This is called flooding. Upon receiving a
test packet, each switch sends an acknowledgement
(ack) to the port from which the test packet arrives and
floods it. A copy of the packet is also sent to the
processing element connected to the switch. Only when
an ack is received from an input port, the switch will
know that the specific input port is fault-free.
The test session ends when there are no further test or
ack packets in travel throughout the network. At this
time, every switch has a thorough knowledge of the
status of its ports. The switch will use this information
later for reconfiguration and rerouting purposes.

4 Self-Reconfiguring the NoC
 After detecting and diagnosing the NoC link faults,
each switch receives the information about its
neighbors. This information is enough for the switches
to reconfigure their own routers with a local rerouting
algorithm. Our proposed routing algorithm is a
parameterized self-reconfigurable algorithm based on
simple local routing rules.
 The routing rules can be illustrated through Figure
1.a to Figure 1.d. In these scenarios, a packet whose
destination is located two switches above the illustrated
switch arrives.
 The first routing rule is that if a switch has only one
fault-free port, all packets should be routed through
that port. This rule can be seen Figure 1.a. The second
rule is that a switch never routes a received packet to
its incoming port, unless it has only one fault-free port
available. In other words, the port a packet comes from
in considered as a faulty port for the router like the
situation shown in Figure 1.b. Figure 1.c illustrates
another routing rule that says if a packet cannot be
routed normally (to north in this case), route it
randomly through an available port. The dotted arrows
shown in Figure 1.c show that the packet is routed to
east or west randomly. The final scenario shown in
Figure 1.d is a fault-free switch that routes the received
packet normally (like XY-routing algorithm).

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on September 30,2020 at 19:56:47 UTC from IEEE Xplore. Restrictions apply.

Figure 1. Proposed rerouting algorithm rules

 Steps taken for a more complex routing than the
above examples are illustrated in Figure 2. At step 0, a
packet is generated at the switch marked as “Source”
and is to be routed to the switch marked by
“Destination”. The switches marked by “X” are faulty
switches. The first switch routes the packet to east
normally (i.e., using the XY-routing algorithm). Switch
2 receives the packet at the end of step 1, and since it
has only two healthy ports routes it to east at step 2.

Figure 2. A more complex routing scenario

 Switch 3 has only one available port and at step 3,
routes the packet through that port (i.e., back to west).
Switch 2 again receives the packet at step 4, but this
time routes it to west according to the routing rule
saying “a packet is never routed to its incoming port”.
At steps 5-8, the switches route the packet to its
destination following the same rule.

The proposed routing algorithm is comparable to the
XY-routing algorithm in terms of packet traffic since it
does not multicast the packets. Moreover, experiments
show that the proposed routing algorithm delivers
approximately 95% the packets to their destinations
successfully, which is far better than the XY-routing
algorithm. In rare cases the packets fall into a deadlock
or loop and our proposed algorithm fails to deliver the
packets to their destinations. To make our algorithm
robust, we added a flooding option to the switch
routers. Each switch keeps the history of the received
packets, and when it encounters a specific packet 5
times, it floods the packet instead of routing it
normally. Adding this option to the switches
successfully delivers all the packets of the NoC to their
destination, at the cost of increasing the total NoC
traffic. However, the traffic overhead can be ignored
since the flooding happens in less than 5% of the
situations.

5 Experimental Results
 To evaluate our rerouting algorithm, we applied
random multiple faults to our platform and generated
packets to examine every possible path in the network.
We also applied different routing algorithms, such as
pure random and XY-routing algorithms to the NoC to
compare them with our proposed algorithm. We
examined NoCs with 9 switches up to 100 switches and
for each NoC, we examined different fault probabilities
for ports and ran numerous random experiments.
Figure 3 shows the percent of the usable switches of
NoCs (z-axis) of different size (x-axis) with different
fault probabilities (y-axis).

Figure 3. Total usable NoC switches

Figure 4 shows the number of usable switches when
applying our proposed routing algorithms without the
flooding option and
Figure 5 shows the same results for a simple XY-
routing algorithm. As it can be observed, our proposed
method uses nearly all of the usable switches where the
XY-routing algorithm fails to use many available
resources.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on September 30,2020 at 19:56:47 UTC from IEEE Xplore. Restrictions apply.

Figure 4. Usable NoC switches via the
proposed routing algorithm

Figure 5. Usable NoC switches via the
XY routing algorithm

6 Conclusions
 This paper introduced a reliable mesh-based NoC
architecture utilizing a robust rerouting method. We
proposed an offline strategy for diagnosing multiple
faults in NoC switch ports. Using the information
achieved in the test phase, every switch reconfigures
itself to avoid routing packets through faulty links by
utilizing a local rerouting algorithm. Experiments show
that our proposed rerouting algorithm delivers almost
all of the packets to their destinations successfully. To
make our algorithm more reliable, we added a flooding
option to the switch routers in order to save those
packets that are trapped in deadlocks. This routing
algorithm can also be used to dynamically avoid
network congestions by temporally setting the
congested links as faulty.

References
[1] N. K. Kavaldjiev, “A run-time reconfigurable Network-

on-Chip for streaming DSP applications,” Ph.D. thesis,
University of Twente, 2006.

[2] P. P. Pande, G. De Micheli, C. Grecu, A. Ivanov, and R.
Saleh, “Design, Synthesis, and Test of Networks on
Chips,” IEEE Trans. on Design and Test of Computers,
Vol. 22, No. 5, 2005, pp. 404-413.

[3] D. Park, C. Nicopoulos, J. Kim, N. Vijaykrishnan, and
C. R. Das, “Exploring Fault-Tolerant Network-on-Chip
Architectures,” Proc. Int. Conf. on Dependable Systems
and Networks (DSN), 2006, pp. 93-104.

[4] J. Raik, R. Ubar, and V. Govind, “Test Configurations
for Diagnosing Faulty Links in NoC Switches,” Proc.
ETS, 2007, pp. 29 – 34.

[5] C. Grecu, P. Pande, A. Ivanov, and R. Saleh, “BIST for
Network-on-Chip Interconnect Infrastructures,” Proc.
VTS, 2006, pp. 30-35.

[6] A. M. Amory, E. Briao, E. Cota1, M. Lubaszewski, and
F. G. Moraes, “A Scalable Test Strategy for Network-
on-Chip Routers,” Proc. ITC, 2005.

[7] C. Grecu, P. Pande, B. Wang, A. Ivanov, and R. Saleh,
“Methodologies and Algorithm for Testing Switch-
Based NoC Interconnects,” Proc. DFT, 2005, pp. 238-
246.

[8] J. Kim, D. Park, C. Nicopoulos, N. Vijaykrishnan, and
C. R. Das, “Design and Analysis of an NoC
Architecture from Performance, Reliability and Energy
Perspective,” Proc. Symp. on Architecture for
Networking and Communications Systems (ANCS),
2005, pp. 173-182.

[9] P. Rantala, T. Lehtonen, J. Isoaho, and J. Plosila,
“Fault-tolerant Routing Approach for Reconfigurable
Networks-on-Chip,” Proc. Int. Symp. on System-on-
Chip, 2006, pp. 1-4.

[10] N. Honarmand, A. Shahabi, and Z. Navabi, “A Heuristic
Search Algorithm for Re-routing of On-Chip Networks
in The Presence of Faulty Links and Switches,” Proc.
IEEE EWDTS, 2007, pp. 411-416.

[11] F. Ghenassia (Ed.), Transaction-Level Modeling with
SystemC: TLM Concepts and Applications for
Embedded Systems, Springer, 2005.

[12] T. Dumitras, S. Kerner, and R. Marculescu,” Towards
onchip fault-tolerant communication,” Proc. ASP-DAC,
2003, pp. 225-232.

[13] M. Pirretti, G.M. Link, R.R. Brooks, N. Vijaykrishnan,
M. Kandemir, and M.J. Irwin, “Fault Tolerant
Algorithms for Network-On-Chip Interconnect,” Proc.
ISVLSI, 2004, pp. 46-51.

[14] M. Ali, M. Welzl, and S. Hellebrand, “A Dynamic
Routing Mechanism for Network on chip,” Proc.
NORCHIP Conf., 2005, pp. 70-73.

[15] T. Wild, A. Herkersdorf, and R. Ohlendorf,
“Performance Evaluation for System-on-Chip
Architectures using Trace-based Transaction Level
Simulation,” Proc. DATE, 2006, pp. 1-6.

[16] E. Beigne, F. Clermidy, P. Vivet, A. Clouard, and M.
Renaudin, “An Asynchronous NOC Architecture
Providing Low Latency Service and its Multi-level
Design Framework,” Proc. IEEE Int. Symp. on
Asynchronous Circuits and Systems (ASYNC), 2005,
pp. 54-63.

[17] J. Xi, and P. Zhong, “A System-level Network-on-Chip
Simulation Framework Integrated with Low-level
Analytical Models,” Proc. Int. Conf. on Computer
Design (ICCD), 2006, pp. 383-388.

[18] H. Lebreton, and P. Vivet, “Power Modeling in
SystemC at Transaction Level, Application to a DVFS
Architecture,” Proc. IEEE Computer Society Annual
Symp. on VLSI, 2008, pp. 463-466.

[19] F. Refan, H. Alemzadeh, S. Safari, P. Prinetto, and Z.
Navabi, “Reliability in Application Specific Mesh-
Based NoC Architectures,” Proc. IOLTS, 2008, pp. 207-
212.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on September 30,2020 at 19:56:47 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 /RUS ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

