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Abstract—Circuit aging is an important failure mechanism
in nanoscale designs and is a growing concern for the relia-
bility of future systems. Aging results in circuit performance
degradation over time and the ultimate circuit failure. Among
aging mechanisms, Negative-Bias Temperature Instability (NBTI)
is the main limiting factor of circuits lifetime. Estimating the
effect of aging-related degradation, before it actually occurs,
is crucial for developing aging prevention/mitigations actions to
avoid circuit failures. In this paper, we propose a general-purpose
IC aging prognosis approach by considering a comprehensive
set of IC operating conditions including workload, usage time
and operating temperature. In addition, our model considers
process variation by using a calibration technique applied at the
time of manufacturing. Experimental results confirms that our
model is able to accurately predict the NBTI-related path delay
degradation under various operating conditions. The proposed
model is robust to process variations.

I. INTRODUCTION

As aggressive scaling continues to push technology into
smaller feature sizes, various design robustness concerns con-
tinue to arise. Among them, degradation mechanisms such as
Negative-Bias Temperature-Instability (NBTI), Hot-Carrier In-
jection (HCI), and gate Oxide Breakdown (OB) have attracted
enormous attention [1]–[3]. In practice, in advanced technolo-
gies, electrical behavior of transistors eventually deviates from
its original intended behavior. This deviation may degrade
performance; and consequently, the chip suddenly fails to meet
some of the required specifications [4], [5].

Performance degradation of an IC due to aging is influ-
enced by the operating conditions of the circuit including
temperature, voltage bias, and current density [6]. In particular,
among aging mechanisms, NBTI has received the lion’s share
of attention [7]. NBTI occurs when traps are generated at
the Si-SiO2 interface when a negative voltage is applied to
a PMOS device [8]. It shifts the threshold voltage of the
device during its lifetime, degrades the device drive current,
and in turn degrades the circuit performance [9]. Although
tremendous efforts have been invested to mitigate the aging
effects, the effect of NBTI is still significant. In practice,
as VLSI technology scales, NBTI significantly contributes
in degrading circuit reliability [10], [11]. To mitigate NBTI-
related performance degradation and to increase the reliability
of circuits, several methods have been proposed in literature.
Guard-banding, gate-sizing, voltage tuning (changing Vdd and
Vth), and body biasing are among the methods used in industry
to reduce the rate of timing and functional errors induced by
NBTI effects [12].

The effect of aging mechanisms can be analyzed and
monitored at real time to project aging degradation in a

circuit in a foreseeable future [13]. This method, so called
aging prognosis, allows to proactively estimate the effect of
degradation before it actually occurs, such that preventive
actions can be put in place to avoid catastrophic consequences.
In predicting aging induced degradations, a number of envi-
ronmental factors should be considered, including workload,
temperature, voltage variations, process variation, etc [14].

In this paper, we propose a general-purpose IC aging
prognosis approach by taking into account a comprehensive
set of IC operating conditions including workload, usage time,
run-time temperature, etc. We show that the impact of IC
aging on critical path delays can be accurately predicted using
non-linear regression models. Moreover, we generalize our
prediction model for circuits under process variation using a
calibration technique applied at the time of manufacturing.
Thus, the effect of process variation on aging prediction can
be compensated.

The rest of this paper is organized as follows. Section II
presents a background on NBTI aging. Section III discusses
the proposed aging prognosis method. Experimental Results
and discussions are presented in Section IV. Conclusions and
future directions are drawn in Section V.

II. BACKGROUND ON NBTI AGING

NBTI is one of the leading factors in performance degra-
dation of digital circuits. In practice, a PMOS transistor expe-
riences two phases of NBTI depending on its bias condition.
The first phase, i.e., the stress phase, occurs when the transistor
is on, i.e., when a negative voltage is applied to its gate. In
the stress phase, positive interface traps are generated at the
Si-SiO2 interface. As a result, the magnitude of the threshold
voltage of the transistor is increased. In the second phase, i.e.,
recovery phase, a positive voltage is applied to the gate of the
transistor. In this phase, the threshold voltage drift induced by
NBTI during the stress phase can partially “recover”.

Threshold voltage drifts of a PMOS transistor under stress
depend on the physical parameters of the transistor, supply
voltage, temperature, and stress time. Figure 1 shows the
threshold voltage drift of a PMOS transistor that is contin-
uously under stress for 6 months as well as a transistor that
is under stress and recovery every other month. As shown,
the NBTI effect is high in the first couple of months but the
threshold voltage tends to saturate for long stress times.

In this paper, to evaluate the impact of NBTI on the per-
formance of a circuit under stress, Synopsys HSpice MOSRA
(MOS Reliability Analysis) [15] is deployed.
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Fig. 1: Percentage change in threshold voltage of a PMOS
transistor over time.
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Fig. 2: Flowchart of the proposed aging prognosis approach

III. PROPOSED APPROACH

In our aging prognosis model we consider a set of paths
which if degraded by 20% due to aging would possibly cause
failure. In this paper, we recall these paths as critical paths.
The other paths do not mainly have the possibility of aging-
related timing failures due to their short delay compared to this
set of critical paths. Our proposed aging prognosis approach
is based on training of non-linear regression models that map
various circuit operating conditions to delays of critical paths.
Moreover, we propose a calibration technique to compensate
the effect of process variations on our path delay prediction.
An overview of the proposed approach is summarized in
Figure 2. What follows discusses the proposed approach in
details.

A. Aging prognosis of nominal circuits under constant oper-
ating condition

To formulate the considered problem, let O = [o1, . . . , on]
denote the set of operating conditions under which the circuit
operates, where n is the total number of considered operating
conditions. We first consider the case for a nominal circuit
without process variation under constant operating conditions,
i.e., O is constant over time. Here, the delay of the j-th
path of the nominal circuit (dj) can be modeled by training
a non-linear regression function mapping operating condition
vector O to dj . In particular, we train m regression functions:
fj : O 7→ dj , j = 1, . . . ,m, where m is the total number
of considered critical paths in the circuit. The main goal is
to construct regression models with generalization capabilities
that can accurately predict aging for any given operating
condition. In this work, we use multivariate adaptive regression
splines (MARS) regression models for building fj .

B. Aging prognosis of circuits under process variations and
constant operating condition

The regression functions shown in the previous section
aim at predicting aging of a nominal circuit under constant
operating condition. However, circuits’ path delays are subject
to random variations during manufacturing. In this paper, we
propose a simple calibration technique to compensate the
effect of process variations at time t = t0, such that the
deviation of a circuit under process variations from a nominal
circuit is compensated in aging prognosis.

Our calibration technique consists of 3 steps as below:
1) Performing the corner simulation to obtain the best/worst

delay of all critical paths;
2) Computation of compensation factor of a new device

under nominal operating condition at time t = t0;
3) Process variation calibration using compensation factor

computed in step 2.
Specifically, we propose to learn the model fj , j = 1, . . . ,m

described in Section III-A for the best/worst corner cases. The
best/worst models are denoted by fj,min and fj,max, which
are learned from best/worst corner circuit sampled at various
operating condition O.

The second step of our aging prognosis for circuits under
process variations is to compute the compensation factor for
a manufactured circuit at time t = t0. For any new fabricated
circuits, we first need to measure its path delays at nominal
operating condition denoted by Onom. The delay of the j-
th critical path at t0 is denoted by dj,n, where n denotes
the nominal delay. Then using the corner models fj,min

and fj,max learned from step 1, we can predict the j-th
best/worst path delay values at t0 and operating condition
Onom: dj,min = fj,min(Onom), dj,max = fj,max(Onom),
j = 1, . . . ,m. Based on the above definitions, we define the
process variation compensation scaling factor sf as follows:

sf = (dj,n − dj,min)/(dj,max − dj,min) (1)

In practice, the factor sf defined above allows us to calibrate
the circuit and compensate the impact of process variations
on aging prediction at time t = t0. Once sf is computed, we
can use it to calibrate new aging degradation predictions. Let
d̂j denote the predicted j-th path delay of a nominal circuit
under consideration, as shown in Section III-A, we can then
calibrate the aging prediction for any new circuit with sf as
compensation factor under operating condition O:

d̂j,n = djo,min + (djo,max − djo,min)× sf (2)

where djo,min/djo,max denote the best/worst predicted path
delays under the operating condition O. Note that the same
scaling factor sf is used to compute the predicted path delay
for any given operating condition O.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Setup

To evaluate the effectiveness of the proposed aging prog-
nosis schemes, we used five ISCAS’89 benchmark circuits.
Synopsys Design Compiler tool was used for logic synthesis
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at 45-nm technology using the open-source Nangate library
[16]. Synopsys PrimeTime was used for extracting the timing-
critical paths. They are obtained by selecting paths whose
delay if degraded by 20% during the course of aging would
possibly cause failure. HSpice MOSRA was used to conduct
simulations and evaluate the effect of NBTI aging.

For each benchmark circuit, the HSpice simulations were
performed for different workload and temperature scenarios. In
particular, the operating temperature of 25◦C, 50◦C, and 75◦C
were considered. For each benchmark circuit, 5 workloads
were generated such that in each workload, X% of the primary
inputs got the value of ’1’ in each clock cycle, where X was
1%, 25%, 50%, 75%, or 99%. Using HSpice MOSRA, the
effect of aging was evaluated for 8 years of circuit operation
in time steps of 2 months.

To determine the effect of process variation in the proposed
prognosis algorithm, we ran HSpice Monte Carlo (MC) simu-
lations for each benchmark circuit using the following process-
variation parameters for a Gaussian distribution: transistor gate
length L: 3σ = 10%; threshold voltage VTH : 3σ = 30%, and
gate-oxide thickness tOX : 3σ = 3%.

B. Experimental Results

1) Aging prognosis of nominal circuit under constant op-
erating condition: We first evaluated aging prognosis model
for nominal devices under constant operating conditions, as
discussed in Section III-A. We have considered 3 operation
conditions in our study, namely temperature T and duty cycle
parameters α1 and α2 applied to the inputs of the first gate in
a critical path. By combining with the usage time parameter t,
our operating vector can be denoted by O = [T, α1, α2, t]. We
have employed a Latin Hypercube Sampling (LHS) method
to generate a total number of 2,000 samples in the space of
operating condition vector O for model training and validation.
The sampling ranges for the variables in O during LHS
generation are: T = [25, 75], α1, α2 = [0, 1], t = [0, 8yrs].
We have performed aging simulation for each of the generated
sample. Thus, the data set used for training and validation of
the j-th critical path can be denoted by S = [O(i), d(i)], i =
1, · · · , 2000, where i denotes the sample index in the data set.

We then randomly split our data set into two equal subsets
Str = [O(i), d(i)], i = 1, · · · , 1000 and Sval = [O(i), d(i)], i =
1001, · · · , 2000 for training and validation of our model.
As discussed before, we used MARS regression models to
learn the non-linear regression functions using Str that map
operating condition vector O to j-th critical path delay :
fj : O 7→ dj , j = 1, . . . ,m, where m is the total number
of considered critical paths, as shown in the second column
of Table I. Once the model fj is trained for each critical path,
we use it to predict the delay of critical paths in the validation
set Sval using O(i), i = 1001, · · · , 2000 as inputs. The 3rd
column in Table I shows the mean prediction error averaged
over all 1000 samples in the validation set and all considered
critical paths for each benchmark. As shown, our models are
able to accurately predict delay values of all critical paths
under arbitrary operating conditions.

To gain some insights on the path delay prediction, Figure
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Fig. 3: Error plot for s5378 benchmark
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Fig. 4: Scatter plot for path delay prediction of s5378: (a)(b)
the two best delay predictions of path 181 and 242 (c)(d) the
two worst delay predictions of path 245 and 246

3 shows the sorted error plot of all the 392 critical paths for
s5378 benchmark. As can be observed, the mean errors of most
critical paths are under 4%, which shows excellent prediction
results. Figure 4 shows prediction scatter plots for the two
path delays with smallest prediction errors, as well as the two
with highest prediction errors in s5378. As can be observed,
even in the worst case, the prediction scatter plots follow the
45-degree line with the mean prediction error still below 5%.

2) Aging prognosis of circuits under process variations and
constant operating condition: To evaluate the effectiveness
of our approach in predicting path delays for circuits under
process variation, we have i) manually selected K samples
in [T, α1, α2] and ii) for each of the K samples, generated

TABLE I: Aging prediction results for nominal devices under
constant operating conditions

Benchmark # of considered critical paths Mean prediction error
s510 21 2.5%

s1494 57 2.43%
s5378 392 2.51%
s9234 179 2.67%
s15850 180 2.65%
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TABLE II: Aging prediction results for devices under process
variations and constant operating conditions

Benchmark # of considered critical paths Mean prediction error
s510 21 2.62%
s1494 57 2.57%
s5378 392 2.62%
s9234 179 2.83%

s15850 180 3.15%

Time (years)
840

Delay (ps)

110

140

170

200 Highest delay
Lowest delay
Actual delay

Predicted delay

Fig. 5: Example of prediction of path delay under process
variations for s5378

aging profile of 5 path delay samples from MC simulation, as
well as the aging profile of nominal circuits. The aging profile
consists of 49 path delay values equally sampled between 0
and 8 years in an aging simulation. We have considered 3
temperature values: 25, 50, 75 and 5 pairs of equal α1 and
α2 values: 0.1, 0.25, 0.5, 0.75, 0.99. The combinations of
these 2 sets gives us K = 3 × 5 = 15 samples. For each
of these samples, we first perform 5 MC simulations to obtain
the process parameters, which will then be used to generate
aging profiles as described. In addition to the 5 MC aging
profiles, we generated corner aging profiles as described in
Section III-B. The green/red curve in Figure 5 show the aging
profile of the highest/lowest delay for a critical path in s5378,
obtained using one of the previously mentioned K samples.

We used the calibration method described in Section III-B to
make our prognosis prediction for the 5 generated aging pro-
files for each of the considered critical path. The 3rd column
of Table II summarizes the averaged prediction errors for all
benchmarks computed over all time points in the K = 15
aging profiles, each of which contains 5 MC samples. As
shown, the averaged prediction errors are still maintained very
low. As an example, the purple curve in Figure 5 shows the
aging profile of a randomly selected critical path in benchmark
s5378, sampled using one of the K = 15 operating samples
in [T, α1, α2], and generated from MC simulation. The blue
curve shows the predicted aging profile using our approach.
As shown, these two curves almost overlap with each other,
confirming an excellent capability of the proposed approach
to predict path delays of devices under process variations.

V. CONCLUSION

This paper presented an IC aging prognosis scheme that can
be used to predict aging effects and take preventing actions
before a circuit experiences aging-related malfunctions. The
proposed machine-learning based scheme uses a compre-
hensive set of IC operating conditions including workload,

usage time, and run-time temperature to train the model.
We improved our prediction model and considered the effect
of process variations in the aging prognosis process. The
experimental results showed that the impact of IC aging on
critical path delays can be accurately predicted using our non-
linear regression models. Our future plans include stress test-
ing of a complex circuit with realistic time-varying operating
conditions by considering dynamic modeling of temperature
and workload variations.
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