
Design and Evaluation of a Timestamp-Based Concurrent Error
Detection Method (CED) in a Modern Microprocessor Controller

Michail Maniatakos1, Naghmeh Karimi2, Yiorgos Makris1,
Abhijit Jas3, Chandra Tirumurti4

1 EE Department - Yale University
2 ECE Department - University of Tehran

3Validation & Test Solutions - Intel Corporation
4 Strategic CAD Labs - Intel Corporation

{michail.maniatakos, naghmeh.karimi, yiorgos.makris}@yale.edu
{abhijit.jas, chandra.tirumurti}@intel.com

Abstract
This paper presents a concurrent error detection technique for the control logic of a modern

microprocessor. Our method is based on execution time prediction for each instruction
executing in the processor. To evaluate the proposed method, we use a superscalar,
dynamically-scheduled, out-of-order, Alpha-like microprocessor, on which we execute
SPEC2000 integer benchmarks and we consider the coverage and the detection latency for
faults in the scheduler module of the microprocessor controller. Experimental results show that
through this method, a large percentage of control logic faults can be detected with low latency
during normal operation of the processor.

1. Introduction

The rapidly shrinking feature sizes of semiconductor fabrication, along with the
corresponding physical challenges that they incur, continue to give rise to various design
robustness concerns. For example, the frequent occurrence of transient errors has, once
again, surfaced as a problem of contemporary interest. While soft errors, occurring due to
strikes by neutrons or alpha particles which potentially lead to corresponding single event
upsets (SEUs) in memory bits, or single event transients (SETs) in combinational logic
have received the lion’s share of attention, they only constitute part of the problem.
Indeed, various other issues related to design marginalities, process variations and corner
operating conditions are starting to cause errors and to play an increasingly important
role. Ranging in duration from single events to permanent faults, such errors have revived
interest in concurrent error detection (CED) and/or correction methods that may
ameliorate or resolve their effect.

CED [1, 2] has been extensively studied in the past and numerous ideas and solutions
have been investigated along various directions. The simplest approach is duplication,
wherein a replica of the circuit is added to the design, possibly diversely implemented to
avoid common mode failures [3]. The original and the replica serve as predictors of the
functionality of each other and a simple comparator indicates any discrepancy in their
outputs, thus detecting potential malfunctions. While simple, this technique is
prohibitively expensive. Partial duplication solutions focusing only on the most critical
parts of a circuit have, therefore, also been explored [4]. Another very popular CED
approach has been the use of various codes, especially within the context of finite state

IEEE International Symposium on Defect and Fault Tolerance of VLSI Systems

1550-5774/08 $25.00 © 2008 IEEE

DOI 10.1109/DFT.2008.59

454

IEEE International Symposium on Defect and Fault Tolerance of VLSI Systems

1550-5774/08 $25.00 © 2008 IEEE

DOI 10.1109/DFT.2008.59

454

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on September 30,2020 at 19:56:14 UTC from IEEE Xplore. Restrictions apply.

machine (FSM) controllers. Several redesign and resynthesis methods are described in [5,
6], wherein parity or various unordered codes are employed to encode the states of the
circuit. Utilization of multiple parity bits is also examined in [7] within the context of
FSMs. These methods guarantee latency-free error detection; on the down side, they are
intrusive and expensive. Non-intrusive CED methods have also been proposed.
Implementations based on Bose-Lin and Berger codes are presented in [8] and [9],
respectively, while parity-based CED methods are described in [1, 10, 11]. While the
aforementioned methods guarantee latency-free detection of all errors, their cost is often
prohibitive. Trading-off the incurred cost by allowing a non-zero, yet bounded latency
has also been investigated [12].

At a coarser level, an attempt to identify inherent invariance either at the gate-level
[13] or at the RTL [14] of a design has been made. Such invariance can be monitored
during the normal operation of a circuit to identify errors that cause it to be violated. In
[13] such invariance is mined from the gate-level of a controller implementation in the
form of assertions, which are evaluated through simulation in order to select a cost-
effective appropriate subset. The same principle governs the approach in [14]; therein,
however, invariance is identified through a path-construction algorithm, which exploits
inherent transparency channels that exist in the RTL description of a modular design.

At an even higher architectural level, several concurrent error detection and/or
correction methods have been proposed. The concept of watchdog processors, which
compute control-flow signatures and compare them to expected correct values, known at
compilation time, is proposed in [15]. Concepts akin to instruction-level duplication and
comparison to identify erroneous results are examined in [16, 17]. In [18], the authors
examine the vulnerability of different parts of a microprocessor to soft errors and
recommend various strategies (including register file protection with codes, parity coding
to protect instruction words, and a timeout counter to flush the pipeline when no activity
occurs for prolonged periods) to detect/correct such errors. Similar analysis is performed
in [19], based on the concept of Architectural Vulnerability Factor (AVF), which
prioritizes microprocessor modules based on their susceptibility. Such metrics can prove
very useful in guiding allocation of CED resources

This pluralism of options implies that no one solution fits the needs of every circuit or
even every part of a circuit. Furthermore, it stresses the fact that generic solutions
typically incur prohibitive cost, often times without providing commensurate coverage.
Therefore, while developing CED methods for a circuit, it is important to tailor the
solutions by leveraging the specifics of each module.

In this work, we combine several of the key ideas proposed in the above references and
we develop a CED method for the scheduler module of a modern microprocessor
controller. The proposed method utilizes architectural information (i.e. the functionality
of the scheduler) to construct an invariant (i.e. the relation between the dispatching and
starting execution time-stamps of an instruction). Consequently, monitoring of this
simple invariant during normal operation enables detection of any fault or error resulting
in a discrepancy between the expected and actual timestamps, with small detection
latency, often even before the error corrupts the architectural state. We note that, while
the microprocessor datapath is equally important, we mainly focus on control logic for
two reasons. First, CED for datapath is understood much better and various residue code-
based techniques have been successfully applied. Second, advanced architectural features
complicate significantly the task of the controller, making it much harder to analyze or
predict its behavior in the presence of errors.

455455

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on September 30,2020 at 19:56:14 UTC from IEEE Xplore. Restrictions apply.

The remaining of this paper is organized as follows. In Section 2, we briefly review a
fault simulation infrastructure that we have previously developed around a modern
microprocessor and which we use to evaluate the proposed CED method. In Section 3, we
discuss the details of the timestamp-based CED method as well as the Scheduler module
of the microprocessor controller, which is targeted by this method. In Section 4, we
experimentally assess the coverage and the detection latency of the proposed CED
method using the aforementioned infrastructure to perform extensive experiments while
the target microprocessor executes typical SPEC benchmark programs. Conclusions and
future directions are provided in Section 5.

2. Background

The research work described herein builds upon a previously developed infrastructure,
which is presented in detail in [20]. The employed model is the Illinois Verilog Model
(IVM) [18], an Alpha 21264-like microprocessor featuring superscalar, out-of-order
execution. The complexity of such a model reflects most of the features of modern, high-
performance microprocessors enabling accurate evaluation of CED techniques targeting
the same. The developed infrastructure supports simulation of actual programs (i.e. SPEC
benchmarks), injection and simulation of Register Transfer Level (RTL) faults (both
stuck-at and transients), as well as extensive I/O capabilities (i.e. Machine State Dumping
and Trace Dumping features).

Using the developed infrastructure, in [20] we investigated the correlation between
RTL faults in the control logic and their instruction-level impact on the execution flow of
typical programs. Specifically, we injected stuck-at faults at the Scheduler and the
Reorder Buffer (ROB) modules of the microprocessor and we studied their impact on the
execution of integer SPEC benchmarks. The arising Instruction Level Errors (ILEs) were
divided into five groups reflecting the key aspects of instruction execution in a
superscalar out-of-order microprocessor, namely (i) the operation that is executed, (ii) the
operands that are being used, (iii) the functional unit where execution takes place, (iv) the
starting and finishing time of execution, and (v) the order of commitment. These groups
were further divided in 13 Types, as detailed in Table 1.

Using RTL fault injection, 16,904 stuck-at faults were injected at the Scheduler
module for each of the SPEC benchmarks executed. For every injected fault, an

Table 1. Instruction level error types
Type 1: Incorrect (yet valid) operation code used

Group 1: Operation Errors
Type 2: Invalid operation code used
Type 3: Incorrect (yet valid) register addressed
Type 4: Invalid register addressed
Type 5: Premature use of register contents

Group 2: Operand Errors

Type 6: Incorrect immediate operand used
Type 7: Incorrect functional unit type utilized Group 3: Execution Errors Type 8: Multiple functional units utilized
Type 9: Early commencement
Type 10: Late or no commencement
Type 11: Longer duration

Group 4: Timing Errors

Type 12: Shorter duration
Group 5: Order Errors Type 13: Commitment order violation

456456

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on September 30,2020 at 19:56:14 UTC from IEEE Xplore. Restrictions apply.

Figure 1. Classification of stuck-at faults
of Scheduler module into ILE Types

automated cycle-by-cycle analysis of
the Scheduler traces was used to
classify the fault to one of the ILE types
defined in Table 1. The classification
results are presented in Figure 1,
averaged among the executed SPEC
benchmarks.

The results of the study show that
Timing Errors were the most dominant
group of errors, particularly Type 10
(Late or no instruction commencement)
and Type 11 (Longer instruction
duration). Based on this observation, in
this work we develop a timestamp-
based CED technique which
specifically targets these erroneous
behaviors.

3. Developed CED method

In this section, we propose a cost-effective strategy for Concurrent Error Detection
(CED) of the control logic of the above processor. Using this strategy, transient faults, as
well as permanent faults occurring due to gradual degradation during the lifetime of the
microprocessor can be detected during its normal operation. The following subsections
present the structure of the targeted Scheduler module and the CED technique.

3.1. Scheduler module

The targeted Scheduler is a dynamic module which can issue up to 6 instructions in
each clock cycle. Instructions are issued out of order depending on the following factors:

� Availability of the instructions in the Scheduler module
� Avoidance of data hazards
� Avoidance of structural hazards

The Scheduler module contains an array of up to 32 instructions waiting to be issued.
Each instruction coming to the Scheduler, resides in this buffer until an acknowledgement
is received from the execution unit that it can start execution. At this time, the
corresponding location in the scheduler list can be used for another newly arriving
instruction to the scheduler module.

Structural hazards are considered by the Scheduler before issuing an instruction. The
microprocessor model has 2 simple, 1 complex, 1 branch and 2 memory instruction
functional units. Thus there is a limitation on the number of instructions of each type that
can be issued in each clock cycle.

The microprocessor model also includes a Rename module. The renaming process
removes the possibility of Write-After-Read (WAR) and Write-After-Write (WAW)
hazards. However, due to the dependency of the instruction operands there can still be a
Read-After-Write (RAW) hazard. To deal with such RAW hazards, the Scheduler module
uses a Scoreboard technique [21].

457457

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on September 30,2020 at 19:56:14 UTC from IEEE Xplore. Restrictions apply.

Figure 2. Block diagram of proposed CED technique

Furthermore, for each instruction coming to the Scheduler, the Reorder Buffer module
assigns an identification number, called ROBid. This ROBid follows the instruction until
it commits and serves as a mechanism for ensuring in-order instruction commitment in
the out-of-order execution of the microprocessor.

3.2. CED strategy

Based on the functionality of the Scheduler module discussed above, we implemented
a CED mechanism to detect a portion of permanent as well as transient errors of this
module, during the normal operation of the microprocessor. Our method is based on
execution time prediction for each instruction resides in Scheduler module. The
prediction is based on the fact that each coming instruction to the Scheduler starts
execution after a certain number of clock cycles assuming that there is no structural or
data hazard. A high-level block diagram of the proposed method is shown in Figure 2.

The CED mechanism keeps track of the incoming instructions to the Scheduler and
predicts the execution time of these instructions based on the information gathered from
the Scoreboard and Scheduler units. If an instruction encounters no data or structural
hazards due, its execution time is predicted considering the structure of the
microprocessor model. Then the ROBid of that instruction, which uniquely identifies it, is
stored along with the predicted execution time.

The CED module checks if instructions stored in its internal buffer are correctly
executed at the appropriate functional unit at the correct timestamp. An instruction may
be replayed if the operands are not ready; this happens in the analyzed microprocessor
model because forwarding mechanisms may provide the necessary operands directly to
the execution unit, so the scheduler tries to issue instructions even if their operands are
not ready yet. The developed CED technique checks the Scoreboard module, which is
part of the Scheduler, for the availability of the operands and predicts the starting
timestamps.

The CED algorithm can be summarized as follows:

1. Extract ROBid, Instruction Type and Operands information from instruction array
entering the Scheduler.

2. Based on bookkeeping information of functional units utilized and operands in
use, predict when an instruction should start execution.

Rename Scheduler

ROB CED

Execution
Unit

Instructions
(up to 4)

Request ROBids
ROBids

Issued
Instructions

(up to 6)
Extract

Instruction
Properties

To Memory

From
Fetch
Unit

Instructions requiring re-issue

To Memory,
Register File

 etc

Alarm

Finished Instructions

458458

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on September 30,2020 at 19:56:14 UTC from IEEE Xplore. Restrictions apply.

3. Track instruction execution at the functional units. Raise alarm if any discrepancy
identified.

The proposed CED method is not duplication, since it reuses parts of the Scheduler
such as the Scoreboard, which can be protected easily by using techniques such as parity.

4. Experimental Results

In this section, we discuss the fault model used to evaluate the developed CED method
and we present an extensive analysis of the results. Specifically, we report statistics about
the fault coverage and the latency of the proposed CED method.

4.1. Experimental setup

To asses the fault coverage of the developed CED, the stuck-at fault model is used.
Because our target is control logic, and more specifically the scheduler, faults are
injected only in this module. A total of 16,904 s@0 and s@1 faults are injected using the
RTL model fault injection technique of [20], which was briefly described in section 2.

In order to evaluate the developed CED method, six different SPEC benchmarks are
utilized. Each benchmark is executed at the fault-injected RTL model for 20,000 cycles.
After the end of the simulation, the architectural state of the microprocessor is compared
to a fault-free (golden) run. If any discrepancies are identified, then the error is classified
into one of two different sets: i) if the error propagates to the architecture register file,
then the execution is marked as Erroneous, and ii) otherwise, if a discrepancy exists in
the machine state but not in the architecture register file, the fault is likely masked and
propagates to a part of the microprocessor that does not affect the execution – thus we
classify the execution as Masked.

Besides architectural state discrepancies, an injected fault may lead to a different
simulation outcome: stall of the pipeline, if the executed program uses unimplemented
instructions. As explained in [20], the microprocessor model lacks certain instructions,
such as system calls or floating-point operations. Even though the golden run is carefully
chosen so that no such instructions are fetched, a fault may still drive the microprocessor
to incorrectly call one of these instructions in the same time window. In this case, due to
the described microprocessor model limitations, the execution stalls and the
corresponding run is marked as Stalled. This is indeed an erroneous behavior, yet we
cannot tell whether the proposed CED method will detect the fault after the
unimplemented instruction. Thus, the number reported is very pessimistic and covers
faults detected before the microprocessor stalls; in a full instruction set implementation
the fault coverage would be higher. The complete classification process is presented in
Figure. 3.

Besides the fault coverage metric, detection latency is also reported and analyzed.
Latency is defined as the difference between the time that the CED error signal is
activated and the time when a discrepancy first appears in the architecture register file of
the microprocessor. Sometimes, the CED output signal may be activated before a
discrepancy appears. We call this case an early detection. This type of detection provides
an easy recovery, since the register file is unaffected. Similarly, if the CED fires after a
discrepancy is identified, we call it a late detection. In this case, the microprocessor
should rollback to a previous valid checkpoint.

459459

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on September 30,2020 at 19:56:14 UTC from IEEE Xplore. Restrictions apply.

4.2. Experiment results and discussion

The most important aspect of a CED method
is the attained fault coverage. Our fault
coverage analysis consists of two different
parts: i) fault coverage of the cases where the
architectural state is different at the end of the
simulation, and ii) fault coverage of the cases
where a pipeline stall occurs. As explained in
section 4.1, the latter is a pessimistic estimate
because there is no capability to evaluate the
CED behavior after the stalling point.

Figure 4 presents the classification of the
16,904 runs for each SPEC benchmark. The
Erroneous and Stalled classes are the target of
our CED method. The differences between the
numbers of corrupted runs for each benchmark
exist because each benchmark uses a different
set of instructions during the simulation
window, which may or may not use the stuck-at
bit. Nevertheless, this variability provides a
better estimate of the CED performance, since
different instructions are utilized for each SPEC

benchmark.
Proceeding to the actual results, Figure 5

presents the fault coverage percentage for
each of the aforementioned classes (Erroneous and Stalled). The CED detects 52.2% of
the Erroneous cases on average. The consistency of the fault coverage among the 6
benchmarks corroborates that the CED method is independent of the program load.

Figure 6 shows the fault coverage of applying our CED method for each ILE type
discussed in section 2. Even though the proposed CED method targets timing issues
(Types 9 and 10), fault coverage in these groups is close to 50%. This happens because,
as described in [20], errors that do not fall into one of the 13 Types usually appear as
timing errors. These errors cannot be targeted by our CED method, as individual
instruction timing appears to be correct.

Figure 4. Simulation outcome results Figure 5. Fault coverage results

Figure 3. Simulation outcome classes

460460

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on September 30,2020 at 19:56:14 UTC from IEEE Xplore. Restrictions apply.

Figure 6. Correlation of CED
detections to ILEs

Table 2. Fault detection latency results

Another interesting conclusion drawn from
Figure 6, is that the CED method excels at
detecting faults concerning utilization of
Functional Units (FUs) and In-Order
Instruction Commitment. This is expected due
to the nature of the CED method and its
location between the Scheduler, the ROB and
the Execution Unit. The CED checks the
validity of the FUs utilization by checking the
opcodes and the operands. In addition many
commitment order violation (Type 13) errors
are the result of timing errors.

As defined in section 4.1, detection latency
is the difference between the time that the CED
error signal is activated and the time when a
discrepancy first appears in the architecture
register file of the microprocessor. Early
detection implies that the CED alarm signal is triggered before the discrepancy appears;
otherwise we have a late detection.

The results presented in Table 2 show that, in most cases, an early detection is
reported. Latency may not be reported for all detections, because a discrepancy may not
appear at the programmer-visible register file within the time window of 20,000 cycles.
As can be observed, an average of 95% of the total number of reported latencies are early
detections (latency <= 0).

The normalized average latency presented in the last column of Table 2 is the average
of latencies, with an early detection considered as latency of 0 cycles. The early detection
property of the CED indicates that, in most cases, a pipeline flush and restart is enough to
correct the fault. For the late detection cases, the worst case latency does not exceed 35
cycles, according to Table 2, so a checkpoint and restore operation could be fine-tuned
accordingly to correct the microprocessor state.

5. Conclusion and Future Work

The CED method proposed in this work for control logic of modern microprocessors is
based on the observation that the impact of most low-level faults in a modern
microprocessor is quickly visible on the starting and finishing instruction execution

SPEC
Benchmark Early detection

Normalized
Average Latency
(in clock cycles)

bzip2 93% 17
mcf 98% 22

parser 96% 5
vortex 97% 22
gzip 95% 34
cc 92% 35

Average 95% 23

461461

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on September 30,2020 at 19:56:14 UTC from IEEE Xplore. Restrictions apply.

timestamps. Predicting these timestamps and checking against their actual execution
values during normal operation results in detection of over 52% of the faults in the
Scheduler module with an average detection latency of 35 cycles. We are currently
extending the scope of the CED method to other control logic units. Our ultimate goal is
to efficiently detect faults in the control logic of a microprocessor by adding an ensemble
of small CED techniques, each targeting a different set of faults.

Acknowledgement

This research was sponsored by a generous gift by Intel Corporation and was
performed while the second author was a visiting student at Yale University.

6. References
[1] M. Goessel, and S. Graf, Error Detection Circuits, McGraw-Hill, 1993.
[2] S. Mitra, and E. J. McCluskey, “Which Concurrent Error Detection Scheme to Choose?” in Proc. of the

International Test Conference, 2000, pp. 985–994.
[3] A. Avizienis, and J. P. J. Kelly, “Fault Tolerance by Design Diversity: Concepts and Experiments”, IEEE

Transactions on Computers, vol. 17, no. 8, pp. 67-80, 1984.
[4] K. Mohanram, and N. A. Touba, “Cost-Effective Approach for Reducing Soft Error Rate in Logic Circuits,” in

Proc. of the International Test Conference, 2003, pp. 893–901.
[5] G. Aksenova, and E. Sogomonyan, “Design of Self-Checking Built-in Check Circuits for Automata with

Memory,” Automation and Remote Control, vol. 36, no. 7, pp. 1169–1177, 1975.
[6] S. Dhawan, and R. C. D. Vries, “Design of Self-Checking Sequential Machines,” IEEE Transactions on

Computers, vol. 37, no. 10, 1988, pp. 1280–1284.
[7] C. Zeng, N. Saxena, and E.J. McCluskey, “Finite State Machine Synthesis with Concurrent Error Detection,”

in Proc. of the International Test Conference, 1998, pp. 672–679.
[8] D. Das, and N. A. Touba, “Synthesis of Circuits with Low-Cost Concurrent Error Detection Based on Bose-

Lin Codes,” Journal of Electronic Testing: Theory and Applications, vol. 15, no. 2, 1999, pp. 145–155.
[9] N. K. Jha and S.-J. Wang, “Design and Synthesis of Self-Checking VLSI Circuits,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 12, no. 6, 1993, pp. 878–887.
[10] R. A. Parekhji, G. Venkatesh, and S. D. Sherlekar, “Concurrent Error Detection Using Monitoring Machines,”

IEEE Design and Test of Computers, vol. 12, no. 3, 1995, pp. 24–32.
[11] S. Almukhaizim, P. Drineas, and Y. Makris, “Entropy-Driven Parity-Tree Selection for Low-Overhead

Concurrent Error Detection in Finite State Machines,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 25, no. 8, 2006, pp. 1547-1554.

[12] S. Almukhaizim, P. Drineas, and Y. Makris, “On Concurrent Error Detection with Bounded Latency in FSMs
in Proc. of the IEEE Design Automation and Test in Europe Conference (DATE), 2004, pp. 596-601.

[13] R. Vemu, A. Jas, J. A. Abraham, S. Patil, and R. Galivanche, “Low-Cost Concurrent Error Detection Technique
for Processor Control Logic,” in Proc. of Design Automation and Test in Europe, 2008, pp. 897-902.

[14] Y. Makris, I. Bayraktaroglu, and A. Orailoglu, “Enhancing Reliability of RTL Controller-Datapath Circuits via
Invariant-Based Concurrent Test,” IEEE Transactions on Reliability, vol. 53, no. 2, 2004, pp. 269-278.

[15] A. Mahmood, and E. J. McCluskey, “Concurrent Error Detection Using Watchdog Processors-A Survey”,
IEEE Transactions on Computers, vol. 37, no. 2, 1988, pp. 160-174.

[16] A. Mendelson, and N. Suri, “Designing High-Performance and Reliable Superscalar Architectures-the Out of
Order Reliable Superscalar (O3RS) Approach”, In Proc. of International Conference on Dependable Systems
and Networks, 2000, pp. 25-28.

[17] A. K. Somani, and J. Nickel, “REESE: a Method of Soft Error Detection in Microprocessors”, in Proc. of
International Conference on Dependable Systems and Networks, 2001, pp.401-410.

[18] N. J. Wang, J. Quek, T. M. Rafacz, S. J. Patel, “Characterizing the Effect of Transient Faults on a High-
Performance Processor Pipeline”, in Proc. of International Conference on Dependable Systems and Networks,
Florence, Italy, 2004, pp.61-70.

[19] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin, “A Systematic Methodology to Compute
the Architectural Vulnerability Factors for a High-Performance Microprocessor,” In Proc. of International.
Symposium on Microarchitecture, 2003, pp. 29-40.

[20] N. Karimi, M. Maniatakos, A. Jas, and Y. Makris, “On the Correlation between Controller Faults and
Instruction-Level Errors in Modern Microprocessors,” in Proc. of International Test Conference, 2008.

[21] J. L. Hennessy, and D. A. Patterson, Computer Architecture: A Quantitative Approach, Third Edition, Morgan
Kaufmann Publishers, 2003.

462462

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on September 30,2020 at 19:56:14 UTC from IEEE Xplore. Restrictions apply.

