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Abstract
This paper presents a concurrent error detection technique for the control logic of a modern 

microprocessor. Our method is based on execution time prediction for each instruction 
executing in the processor. To evaluate the proposed method, we use a superscalar, 
dynamically-scheduled, out-of-order, Alpha-like microprocessor, on which we execute 
SPEC2000 integer benchmarks and we consider the coverage and the detection latency for 
faults in the scheduler module of the microprocessor controller. Experimental results show that 
through this method, a large percentage of control logic faults can be detected with low latency 
during normal operation of the processor.  

1. Introduction

The rapidly shrinking feature sizes of semiconductor fabrication, along with the 
corresponding physical challenges that they incur, continue to give rise to various design 
robustness concerns. For example, the frequent occurrence of transient errors has, once 
again, surfaced as a problem of contemporary interest. While soft errors, occurring due to 
strikes by neutrons or alpha particles which potentially lead to corresponding single event 
upsets (SEUs) in memory bits, or single event transients (SETs) in combinational logic 
have received the lion’s share of attention, they only constitute part of the problem. 
Indeed, various other issues related to design marginalities, process variations and corner 
operating conditions are starting to cause errors and to play an increasingly important 
role. Ranging in duration from single events to permanent faults, such errors have revived 
interest in concurrent error detection (CED) and/or correction methods that may 
ameliorate or resolve their effect. 

CED [1, 2] has been extensively studied in the past and numerous ideas and solutions 
have been investigated along various directions. The simplest approach is duplication, 
wherein a replica of the circuit is added to the design, possibly diversely implemented to 
avoid common mode failures [3]. The original and the replica serve as predictors of the 
functionality of each other and a simple comparator indicates any discrepancy in their 
outputs, thus detecting potential malfunctions. While simple, this technique is 
prohibitively expensive. Partial duplication solutions focusing only on the most critical 
parts of a circuit have, therefore, also been explored [4]. Another very popular CED 
approach has been the use of various codes, especially within the context of finite state 
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machine (FSM) controllers. Several redesign and resynthesis methods are described in [5, 
6], wherein parity or various unordered codes are employed to encode the states of the 
circuit. Utilization of multiple parity bits is also examined in [7] within the context of 
FSMs. These methods guarantee latency-free error detection; on the down side, they are 
intrusive and expensive. Non-intrusive CED methods have also been proposed. 
Implementations based on Bose-Lin and Berger codes are presented in [8] and [9], 
respectively, while parity-based CED methods are described in [1, 10, 11]. While the 
aforementioned methods guarantee latency-free detection of all errors, their cost is often 
prohibitive. Trading-off the incurred cost by allowing a non-zero, yet bounded latency 
has also been investigated [12]. 

At a coarser level, an attempt to identify inherent invariance either at the gate-level 
[13] or at the RTL [14] of a design has been made. Such invariance can be monitored 
during the normal operation of a circuit to identify errors that cause it to be violated. In 
[13] such invariance is mined from the gate-level of a controller implementation in the 
form of assertions, which are evaluated through simulation in order to select a cost-
effective appropriate subset. The same principle governs the approach in [14]; therein, 
however, invariance is identified through a path-construction algorithm, which exploits 
inherent transparency channels that exist in the RTL description of a modular design.  

At an even higher architectural level, several concurrent error detection and/or 
correction methods have been proposed. The concept of watchdog processors, which 
compute control-flow signatures and compare them to expected correct values, known at 
compilation time, is proposed in [15]. Concepts akin to instruction-level duplication and 
comparison to identify erroneous results are examined in [16, 17]. In [18], the authors 
examine the vulnerability of different parts of a microprocessor to soft errors and 
recommend various strategies (including register file protection with codes, parity coding 
to protect instruction words, and a timeout counter to flush the pipeline when no activity 
occurs for prolonged periods) to detect/correct such errors. Similar analysis is performed 
in [19], based on the concept of Architectural Vulnerability Factor (AVF), which 
prioritizes microprocessor modules based on their susceptibility. Such metrics can prove 
very useful in guiding allocation of CED resources  

This pluralism of options implies that no one solution fits the needs of every circuit or 
even every part of a circuit. Furthermore, it stresses the fact that generic solutions 
typically incur prohibitive cost, often times without providing commensurate coverage. 
Therefore, while developing CED methods for a circuit, it is important to tailor the 
solutions by leveraging the specifics of each module. 

In this work, we combine several of the key ideas proposed in the above references and 
we develop a CED method for the scheduler module of a modern microprocessor 
controller. The proposed method utilizes architectural information (i.e. the functionality 
of the scheduler) to construct an invariant (i.e. the relation between the dispatching and 
starting execution time-stamps of an instruction). Consequently, monitoring of this 
simple invariant during normal operation enables detection of any fault or error resulting 
in a discrepancy between the expected and actual timestamps, with small detection 
latency, often even before the error corrupts the architectural state. We note that, while 
the microprocessor datapath is equally important, we mainly focus on control logic for 
two reasons. First, CED for datapath is understood much better and various residue code-
based techniques have been successfully applied. Second, advanced architectural features 
complicate significantly the task of the controller, making it much harder to analyze or 
predict its behavior in the presence of errors. 
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The remaining of this paper is organized as follows. In Section 2, we briefly review a 
fault simulation infrastructure that we have previously developed around a modern 
microprocessor and which we use to evaluate the proposed CED method. In Section 3, we 
discuss the details of the timestamp-based CED method as well as the Scheduler module 
of the microprocessor controller, which is targeted by this method. In Section 4, we 
experimentally assess the coverage and the detection latency of the proposed CED 
method using the aforementioned infrastructure to perform extensive experiments while 
the target microprocessor executes typical SPEC benchmark programs. Conclusions and 
future directions are provided in Section 5. 

2. Background

The research work described herein builds upon a previously developed infrastructure, 
which is presented in detail in [20]. The employed model is the Illinois Verilog Model 
(IVM) [18], an Alpha 21264-like microprocessor featuring superscalar, out-of-order 
execution. The complexity of such a model reflects most of the features of modern, high-
performance microprocessors enabling accurate evaluation of CED techniques targeting 
the same. The developed infrastructure supports simulation of actual programs (i.e. SPEC 
benchmarks), injection and simulation of Register Transfer Level (RTL) faults (both 
stuck-at and transients), as well as extensive I/O capabilities (i.e. Machine State Dumping 
and Trace Dumping features). 

Using the developed infrastructure, in [20] we investigated the correlation between 
RTL faults in the control logic and their instruction-level impact on the execution flow of 
typical programs. Specifically, we injected stuck-at faults at the Scheduler and the 
Reorder Buffer (ROB) modules of the microprocessor and we studied their impact on the 
execution of integer SPEC benchmarks. The arising Instruction Level Errors (ILEs) were 
divided into five groups reflecting the key aspects of instruction execution in a 
superscalar out-of-order microprocessor, namely (i) the operation that is executed, (ii) the 
operands that are being used, (iii) the functional unit where execution takes place, (iv) the 
starting and finishing time of execution, and (v) the order of commitment. These groups 
were further divided in 13 Types, as detailed in Table 1. 

Using RTL fault injection, 16,904 stuck-at faults were injected at the Scheduler 
module for each of the SPEC benchmarks executed. For every injected fault, an 

Table 1. Instruction level error types 
Type 1: Incorrect (yet valid) operation code used 

Group 1: Operation Errors 
Type 2: Invalid operation code used 
Type 3: Incorrect (yet valid) register addressed 
Type 4: Invalid register addressed 
Type 5: Premature use of register contents 

Group 2: Operand Errors 

Type 6: Incorrect immediate operand used 
Type 7: Incorrect functional unit type utilized Group 3: Execution Errors Type 8: Multiple functional units utilized 
Type 9: Early commencement 
Type 10: Late or no commencement 
Type 11: Longer duration 

Group 4: Timing Errors 

Type 12: Shorter duration 
Group 5: Order Errors Type 13: Commitment order violation 
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Figure 1. Classification of stuck-at faults 
of Scheduler module into ILE Types 

automated cycle-by-cycle analysis of 
the Scheduler traces was used to 
classify the fault to one of the ILE types 
defined in Table 1. The classification 
results are presented in Figure 1, 
averaged among the executed SPEC 
benchmarks.

The results of the study show that 
Timing Errors were the most dominant 
group of errors, particularly Type 10 
(Late or no instruction commencement) 
and Type 11 (Longer instruction 
duration). Based on this observation, in 
this work we develop a timestamp-
based CED technique which 
specifically targets these erroneous 
behaviors.

3. Developed CED method 

In this section, we propose a cost-effective strategy for Concurrent Error Detection 
(CED) of the control logic of the above processor. Using this strategy, transient faults, as 
well as permanent faults occurring due to gradual degradation during the lifetime of the 
microprocessor can be detected during its normal operation. The following subsections 
present the structure of the targeted Scheduler module and the CED technique. 

3.1. Scheduler module 

The targeted Scheduler is a dynamic module which can issue up to 6 instructions in 
each clock cycle. Instructions are issued out of order depending on the following factors: 

� Availability of the instructions in the Scheduler module 
� Avoidance of data hazards 
� Avoidance of structural hazards 

The Scheduler module contains an array of up to 32 instructions waiting to be issued. 
Each instruction coming to the Scheduler, resides in this buffer until an acknowledgement 
is received from the execution unit that it can start execution. At this time, the 
corresponding location in the scheduler list can be used for another newly arriving 
instruction to the scheduler module.  

Structural hazards are considered by the Scheduler before issuing an instruction. The 
microprocessor model has 2 simple, 1 complex, 1 branch and 2 memory instruction 
functional units. Thus there is a limitation on the number of instructions of each type that 
can be issued in each clock cycle.  

The microprocessor model also includes a Rename module. The renaming process 
removes the possibility of Write-After-Read (WAR) and Write-After-Write (WAW) 
hazards. However, due to the dependency of the instruction operands there can still be a 
Read-After-Write (RAW) hazard. To deal with such RAW hazards, the Scheduler module 
uses a Scoreboard technique [21].  
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Figure 2. Block diagram of proposed CED technique 

Furthermore, for each instruction coming to the Scheduler, the Reorder Buffer module 
assigns an identification number, called ROBid. This ROBid follows the instruction until 
it commits and serves as a mechanism for ensuring in-order instruction commitment in 
the out-of-order execution of the microprocessor. 

3.2. CED strategy 

Based on the functionality of the Scheduler module discussed above, we implemented 
a CED mechanism to detect a portion of permanent as well as transient errors of this 
module, during the normal operation of the microprocessor. Our method is based on 
execution time prediction for each instruction resides in Scheduler module. The 
prediction is based on the fact that each coming instruction to the Scheduler starts 
execution after a certain number of clock cycles assuming that there is no structural or 
data hazard. A high-level block diagram of the proposed method is shown in Figure 2. 

The CED mechanism keeps track of the incoming instructions to the Scheduler and 
predicts the execution time of these instructions based on the information gathered from 
the Scoreboard and Scheduler units. If an instruction encounters no data or structural 
hazards due, its execution time is predicted considering the structure of the 
microprocessor model. Then the ROBid of that instruction, which uniquely identifies it, is 
stored along with the predicted execution time.  

The CED module checks if instructions stored in its internal buffer are correctly 
executed at the appropriate functional unit at the correct timestamp. An instruction may 
be replayed if the operands are not ready; this happens in the analyzed microprocessor 
model because forwarding mechanisms may provide the necessary operands directly to 
the execution unit, so the scheduler tries to issue instructions even if their operands are 
not ready yet. The developed CED technique checks the Scoreboard module, which is 
part of the Scheduler, for the availability of the operands and predicts the starting 
timestamps. 

The CED algorithm can be summarized as follows: 

1. Extract ROBid, Instruction Type and Operands information from instruction array 
entering the Scheduler. 

2. Based on bookkeeping information of functional units utilized and operands in 
use, predict when an instruction should start execution. 

Rename Scheduler

ROB CED

Execution
Unit

Instructions
(up to 4)

Request ROBids
ROBids

Issued 
Instructions

(up to 6)
Extract 

Instruction 
Properties

To Memory
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3. Track instruction execution at the functional units. Raise alarm if any discrepancy 
identified.

The proposed CED method is not duplication, since it reuses parts of the Scheduler 
such as the Scoreboard, which can be protected easily by using techniques such as parity. 

4. Experimental Results 

In this section, we discuss the fault model used to evaluate the developed CED method 
and we present an extensive analysis of the results. Specifically, we report statistics about 
the fault coverage and the latency of the proposed CED method. 

4.1. Experimental setup 

To asses the fault coverage of the developed CED, the stuck-at fault model is used. 
Because our target is control logic, and more specifically the scheduler, faults are 
injected only in this module. A total of 16,904 s@0 and s@1 faults are injected using the 
RTL model fault injection technique of [20], which was briefly described in section 2.  

In order to evaluate the developed CED method, six different SPEC benchmarks are 
utilized. Each benchmark is executed at the fault-injected RTL model for 20,000 cycles. 
After the end of the simulation, the architectural state of the microprocessor is compared 
to a fault-free (golden) run. If any discrepancies are identified, then the error is classified 
into one of two different sets: i) if the error propagates to the architecture register file, 
then the execution is marked as Erroneous, and ii) otherwise, if a discrepancy exists in 
the machine state but not in the architecture register file, the fault is likely masked and 
propagates to a part of the microprocessor that does not affect the execution – thus we 
classify the execution as Masked.  

Besides architectural state discrepancies, an injected fault may lead to a different 
simulation outcome: stall of the pipeline, if the executed program uses unimplemented 
instructions. As explained in [20], the microprocessor model lacks certain instructions, 
such as system calls or floating-point operations. Even though the golden run is carefully 
chosen so that no such instructions are fetched, a fault may still drive the microprocessor 
to incorrectly call one of these instructions in the same time window. In this case, due to 
the described microprocessor model limitations, the execution stalls and the 
corresponding run is marked as Stalled. This is indeed an erroneous behavior, yet we 
cannot tell whether the proposed CED method will detect the fault after the 
unimplemented instruction. Thus, the number reported is very pessimistic and covers 
faults detected before the microprocessor stalls; in a full instruction set implementation 
the fault coverage would be higher. The complete classification process is presented in 
Figure. 3. 

Besides the fault coverage metric, detection latency is also reported and analyzed. 
Latency is defined as the difference between the time that the CED error signal is 
activated and the time when a discrepancy first appears in the architecture register file of 
the microprocessor. Sometimes, the CED output signal may be activated before a 
discrepancy appears. We call this case an early detection.  This type of detection provides 
an easy recovery, since the register file is unaffected. Similarly, if the CED fires after a 
discrepancy is identified, we call it a late detection. In this case, the microprocessor 
should rollback to a previous valid checkpoint. 
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4.2. Experiment results and discussion 

The most important aspect of a CED method 
is the attained fault coverage. Our fault 
coverage analysis consists of two different 
parts: i) fault coverage of the cases where the 
architectural state is different at the end of the 
simulation, and ii) fault coverage of the cases 
where a pipeline stall occurs. As explained in 
section 4.1, the latter is a pessimistic estimate 
because there is no capability to evaluate the 
CED behavior after the stalling point. 

Figure 4 presents the classification of the 
16,904 runs for each SPEC benchmark. The 
Erroneous and Stalled classes are the target of 
our CED method. The differences between the 
numbers of corrupted runs for each benchmark 
exist because each benchmark uses a different 
set of instructions during the simulation 
window, which may or may not use the stuck-at 
bit. Nevertheless, this variability provides a 
better estimate of the CED performance, since 
different instructions are utilized for each SPEC 

benchmark.
Proceeding to the actual results, Figure 5 

presents the fault coverage percentage for 
each of the aforementioned classes (Erroneous and Stalled). The CED detects 52.2% of 
the Erroneous cases on average. The consistency of the fault coverage among the 6 
benchmarks corroborates that the CED method is independent of the program load. 

Figure 6 shows the fault coverage of applying our CED method for each ILE type 
discussed in section 2. Even though the proposed CED method targets timing issues 
(Types 9 and 10), fault coverage in these groups is close to 50%. This happens because, 
as described in [20], errors that do not fall into one of the 13 Types usually appear as 
timing errors. These errors cannot be targeted by our CED method, as individual 
instruction timing appears to be correct.

Figure 4. Simulation outcome results Figure 5. Fault coverage results 

Figure 3. Simulation outcome classes 
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Figure 6. Correlation of CED 
detections to ILEs 

Table 2. Fault detection latency results 

Another interesting conclusion drawn from 
Figure 6, is that the CED method excels at 
detecting faults concerning utilization of 
Functional Units (FUs) and In-Order 
Instruction Commitment. This is expected due 
to the nature of the CED method and its 
location between the Scheduler, the ROB and 
the Execution Unit. The CED checks the 
validity of the FUs utilization by checking the 
opcodes and the operands. In addition many 
commitment order violation (Type 13) errors 
are the result of timing errors.   

As defined in section 4.1, detection latency 
is the difference between the time that the CED 
error signal is activated and the time when a 
discrepancy first appears in the architecture 
register file of the microprocessor. Early 
detection implies that the CED alarm signal is triggered before the discrepancy appears; 
otherwise we have a late detection.

The results presented in Table 2 show that, in most cases, an early detection is 
reported. Latency may not be reported for all detections, because a discrepancy may not 
appear at the programmer-visible register file within the time window of 20,000 cycles. 
As can be observed, an average of 95% of the total number of reported latencies are early 
detections (latency <= 0). 

The normalized average latency presented in the last column of Table 2 is the average 
of latencies, with an early detection considered as latency of 0 cycles. The early detection 
property of the CED indicates that, in most cases, a pipeline flush and restart is enough to 
correct the fault. For the late detection cases, the worst case latency does not exceed 35 
cycles, according to Table 2, so a checkpoint and restore operation could be fine-tuned 
accordingly to correct the microprocessor state. 

5. Conclusion and Future Work 

The CED method proposed in this work for control logic of modern microprocessors is 
based on the observation that the impact of most low-level faults in a modern 
microprocessor is quickly visible on the starting and finishing instruction execution 

SPEC
Benchmark Early detection 

Normalized 
Average Latency 
(in clock cycles) 

bzip2 93% 17 
mcf 98% 22 

parser 96% 5 
vortex 97% 22 
gzip 95% 34 
cc 92% 35 

Average 95% 23 
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timestamps. Predicting these timestamps and checking against their actual execution 
values during normal operation results in detection of over 52% of the faults in the 
Scheduler module with an average detection latency of 35 cycles. We are currently 
extending the scope of the CED method to other control logic units. Our ultimate goal is 
to efficiently detect faults in the control logic of a microprocessor by adding an ensemble 
of small CED techniques, each targeting a different set of faults. 
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