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Abstract— Pervasive sensing is shaping up modern societies and 
opening the door for many unconventional applications. Instead of 
the contemporary access model where sensor data is disseminated 
to a single user, multi-access scenarios are becoming more 
prevalent, which raises the issue of how to authenticate users, how 
to ensure access authorization, and how to prevent information 
leakage. To address these issues, this paper presents a novel 
lightweight protocol that promotes a data-driven methodology. 
The idea is to employ hardware primitives to support 
authentication of legit data recipients and to factor in the 
previously shared data samples in generating encryption keys. Our 
protocol in essence generates encryption keys that vary per packet 
and in an implicitly synchronized manner between the data source 
and each recipient. The generated key is also a function of the 
hardware primitive and thus effectively prevents data access to 
unauthorized recipients. We analyze the resilience of our protocol 
to impersonation and message replay, and hardware primitive 
modeling attacks. The security properties of our solution is 
validated using the AVISPA toolset and its performance is 
compared to the asymmetric cryptography approaches.         
Keywords: Pervasive sensing, Secure data sharing, IoT, Data-driven 
encryption, Hardware-based authentication. 

I. INTRODUCTION 
The current era is characterized by the popularity of devices 

that combine sensing, computation and communication 
capabilities. An Internet-of-Things (IoT) reflects incorporation 
of many of these devices to provide unconventional services 
and enable the realization of smart cities [1]. The key feature 
that an IoT enables is the support for data collection and sharing 
at a large scale. The pervasive availability of sensor devices 
arguably is transformative where the collected data can be used 
for facilitating operation autonomy in many application 
domains. Examples include intelligent transportation systems, 
telehealth solutions, smart manufacturing, home automation, 
digital battlefield, etc. Most of these systems are usually 
associated with large volumes of real time data that are 
disseminated to multiple parties. In fact, the notion of Sensing-
as-a-Service has emerged to reflect such a data dissemination 
model, where a data provider serves multiple subscribers. To 
illustrate, in a telehealth system, multiple caregivers could have 
access to data collected by a patient’s wearable sensor system. 
Similarly, a road sensor could provide traffic data to light 
signals, certain vehicles, traffic authorities, etc.  

However, with such a data sharing model comes the concern 
about security, particularly sustaining data integrity, preserving 
privacy and ensuring access authorization [2][3].  The integrity 

of the collected data is paramount in applications involving 
control and decision support systems. For example, remote 
monitoring of patients requires accurate and authentic data to 
assess the health conditions and enable timely intervention 
when needed. Similar scenarios can be noted about defense 
systems where weapons are to be engaged and in the 
transportation domain where the road safety could be risked if 
decisions are made on tampered data. Privacy and authorized 
access are also required in many applications, e.g., sharing of 
patient data. An external attacker may eavesdrop on packet 
transmissions and capture the data, or impersonate the 
communicating parties. Therefore, provisions are needed to 
safeguard the dissemination of the collected sensor data and 
ensure that only authorized access is allowed. 

Employing a cryptosystem is the conventional approach for 
achieving data integrity and privacy. Access authorization also 
needs authentication, which is often supported by crypto-
identifiers. Since asymmetric cryptosystems impose high 
computation and communication overhead, the use of 
lightweight symmetric schemes and authentication primitives is 
desired in the context of IoT applications [4]. However, the 
distributed operation mode, the ad-hoc networking, and the 
pervasive nature of the devices, make the management of 
symmetric pair-wise keys and device authentication to be quite 
challenging. Specifically, the presence of a centralized trusted 
authority for facilitating the interaction among device pairs 
would constitute a performance overhead and could be even 
infeasible.  In addition, symmetric encryption may not suffice 
to provide protection for longer duration given the 
computational power that is available nowadays and which 
could allow the adversary’s cryptanalysis to succeed.  Hence, 
frequent key updates will be necessary which will be inefficient 
for pervasive data streaming. The challenge even grows when 
considering the network dynamic and multi-access model, 
where data can be shared with a restricted subset of devices that 
can vary over time. Therefore, support of access control would 
be needed to serve new authorized recipients while depriving 
unauthorized devices and those whose authorization has 
expired, from retrieving the data.  

To overcome the aforementioned challenges, this paper 
promotes an innovative solution that supports effective and 
robust data access control, and enables device-specific data 
integrity and confidentiality. To ensure authorized data access, 
we propose a lightweight authentication mechanism using 
hardware-primitives. Specifically, we employ Physical 
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unclonable functions (PUFs), which constitute hardware 
fingerprints since they depend on the variations in the 
fabrication of integrated circuits and are not reproducible even 
by the same manufacturers [5]. A PUF circuit acts as a unique 
lookup table that is indexed by a fixed size bit-stream, referred 
to as a challenge, for which a response is provided. A key 
advantage of PUFs is that the response is generated 
instantaneously by the circuit and cannot thus be read from 
memory [6]. In addition, we propose a novel scheme for 
supporting data integrity and confidentiality. The idea is to 
generate data-driven encryption keys that factor in the features 
of historical streamed data exchange between a communicating 
device pair.  We employ a machine learning (ML) model at both 
the data sender and receiver that considers the transmitted data 
values as a series in order to predict the next data value and use 
it in defining an encryption key. Thus, the keys will 
dynamically change and will be implicitly inferred rather than 
explicitly exchanged through a key update protocol. Also the 
encryption keys are not stored, making our scheme to be more 
secure than conventional symmetric ciphers, e.g., AES. 

To validate data access authorization, the legit receiver will 
be authenticated in the data packet by factoring in a challenge-
response pair (CRP) of the embedded PUF at such a receiver. 
This is achieved by making the generated encryption keys a 
function of the CRPs as well as the predicted data value. In the 
absence of consensus between the communicating party, the 
packet payload cannot be decrypted to retrieve the data. Thus, 
an eavesdropper will fail to gain access to data or even extract 
any significant information from a single packet given the 
variability of the key over time, which is caused by variation in 
the sensor measurements and the employed CRPs for a receiver 
and across different receivers. We validate the performance by 
comparing the overhead to popular cryptographic approaches, 
specifically PKI and ECC. We also provide security analysis to 
show that our proposed Data Access Control and Integrity and 
Confidentiality (DACIC) solution is able to counter all 
imminent threats including impersonation, Sybil, man-in-the-
middle, and message replay. We further show that DACIC 
mitigates the threat of PUF modeling attacks since the CRPs of 
a receiver are not explicitly exchanged and their use for 
authentication is by verifying their correctness through their 
effect on the generated keys. 

To the best of our knowledge, DACIC is the first approach 
that combines hardware-based authentication primitives, and 
data-driven methodologies to achieve an effective, lightweight, 
robust and scalable security solution for pervasive data sharing 
in the context of IoT applications. The rest of the paper is 
organized as follows. The next section sets DACIC apart from 
existing solutions. Section III discusses the considered system 
model and covers some preliminaries. The design of DACIC is 
presented in Section IV and its security properties are analyzed 
in Section V. The performance of DACIC is evaluated in 
Section VI. Finally, the paper is concluded in Section VII.    

II. RELATED WORK 
Given the contribution of DACIC, we focus on prior work 

on data-and PUF based security solutions in the realm of IoT. 

Data driven authentication/encryption: The use of data in 
devising a security solution is popular in the realm of wearable 
sensors where biometric signatures are authenticating data 
sources, e.g., patients [7], identify verification, e.g., to granting 
access to a bank account [8], and including  watermarks in 
records [9]. Biometric signals have also been leveraged to 
generate encryption keys [10][11]. Unlike these techniques, 
DACIC authenticates clients and generates encryption keys 
based on the most-recent data samples, which introduces more 
variability and makes the crypto-system more robust against 
attacks. In addition, DACIC employs an LSTM (Long Short-
Term Memory) model in predicting the data based on which the 
encryption keys are derived; since the LSTM factors in both the 
data sequence and values, it is impossible for an eavesdropper 
or unauthorized user to guess the key without mimicking the 
entire process and using the same LSTM parameters. 
PUF-based security solutions: Security of IoT is an active 
research topic, where most attention has been dedicated to 
authentication and generation/management of cryptographic 
keys [3][4].  Many of the existing IoT authentication schemes 
store the device identifier and encryption keys in its memory, 
which could be revealed through hacking. To avoid such 
vulnerability, quite a few studies have explored the use of PUFs. 
Although these authentication schemes are lightweight, and 
benefit from the unique footprints of PUF devices, they suffer 
from vulnerabilities to security threats such as modeling 
attacks, replay attacks, and impersonation attacks [12][13]. 

Chatterjee et al. [14] use PUFs to generate public and private 
keys to be used for securing data transfer in IoT. The proposed 
scheme is resilient against replay attacks, yet it is 
computationally intensive and would not suit resource-
constrained IoT devices. J.  R. Wallrabenstein [15] opts to avoid 
storing the private key in the device memory in order to achieve 
tamper resistance. The approach is to embed an Elliptic Curve 
Cryptosystem (ECC) on the IoT device, to be used along with 
the PUF to regenerate the private key when needed. However, 
the approach imposes increased hardware overhead on the IoT 
device. Meanwhile, Li el al. [16] employ ECC along with the 
PUF to achieve mutual authentication. DACIC avoids such 
complexity by enabling the use of only lightweight symmetric 
cryptosystems. In addition, it provides mutual authentication 
for the communicating parties as well as per packet 
authentication. Along with the PUF, DACIC factors in the 
exchanged data in achieving authorization, confidentiality and 
authentication. Particularly, DACIC ensures the legitimacy of 
the data receivers on a per-packet basis and is thus deemed to 
be a continuous authentication method [17]. To our knowledge 
such a security solution has not been considered in the literature.  

III. SYSTEM MODEL AND PRELIMINARIES 
A. System Model 

A typical operation in an IoT pervasive data sharing system 
involves clients that subscribe to receive data provided by 
distinct sources. A source could be offering the data as a service, 
e.g., road-side units sharing traffic data with on-road vehicles, 
or sharing the data to get a service, e.g., sharing the wearable 
system measurements of a patient with remote caregivers. In 
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both scenarios the operation of the system requires a robust 
mechanism to ensure data integrity, confidentiality and access 
control, hence there is a need for authenticating communicating 
parties. DACIC strives to achieve the aforementioned security 
goals by incorporating of hardware fingerprints and employing 
a data driven approach to secure packet transmissions. A data-
driven methodology is pursued to achieve continual packet 
protection over time and counter data provider impersonation 
attempts. In essence, generating encryption keys based on the 
previously shared data will couple the communicating pair, i.e., 
data provider and client, and enable authenticating the sender of 
the packet.  

Each client is to be equipped with a PUF that serves as a 
fingerprint. The data providers will leverage the client’s 
fingerprint in the data sharing process in order to ensure the 
authenticity of authorized receivers. A PUF can be viewed as a 
lookup table that maps a bit-stream, referred to as challenge, to 
corresponding response bits.  For the client such a table is not 
stored, but instead generated through a simple circuit, as we 
explain in the next subsection. During enrollment, e.g. data 
service subscription, the client transmits a subset of its PUF 
challenge-response pairs to the data provider. The enrollment 
process is assumed to be secure, e.g., facilitated by a trusted 
third party, and is beyond the scope of this paper. In DACIC, 
the data provider Sx uses the CRPs that it knows about a client 
Uy to ensure that a data packet is only readable by Uy, i.e., the 
CRPs are used to implicitly authenticate the identity of 
authorized clients.  DACIC assumes that a data provider cannot 
be manipulated. In addition, a PUF is not needed for 
authenticating the provider in DACIC, as we explain later. 
Finally, we assume a reliable link layer protocol is employed 
for communication in the system such that a packet delivery is 
acknowledged to confirm reception.  

B. Physical unclonable functions 
Fundamentally, a PUF design leverages process variation in the 
manufacturing of semiconductor devices.  Such variation 
affects the timing that signals travel at a scale that is arbitrary 
in nature. We note that the variation can be observed among 
devices from the same manufacturer.  By building a circuit like 
the one shown in Fig. 1, one can define a hardware fingerprint 
for the individual devices [5]. Fig. 1 shows the circuit of an 
Arbiter PUF, which is one of the prominent PUF designs. Each 
of the signals C0, …, Cn-1 impact the setting of the multiplexer 
and consequently the path the input signal takes to reach the 
arbiter (realized as a latch in Fig. 1). Given that the signal 
propagation delays are different due to manufacturing variation 
and the latched value will vary. The bits C0, …, Cn-1 are 
considered as PUF challenge and the output Q constitutes the 
PUF response. A multi-bit response can be realized by 
replicating the circuit or querying it with multiple challenges. 
As for each same set of challenges, two distinct PUF circuits 
generally provide different response, the PUF can be used to 
identify clients and ensure their authenticity. 
C. Attack Model 

DACIC opts to safeguard the system against two attacker 
types. The first is an external attacker that eavesdrops on the 

communication links between data providers and clients. The 
objective of such an attacker is to intercept transmissions and:  
(i) applies cryptanalysis to access the data. This could be for 

data piracy reasons, gaining knowledge of privacy 
information, or manipulating the shared data, i.e., for 
launching man-in-the-middle attack.  

(ii) impersonates any of the communicating parties to fool 
other nodes in the systems. Impersonating a client could be 
for example to charge it for a service that the attacker 
receives. For data providers, impersonation could be to send 
bogus data and defame the source for competition reasons. 

(iii) replays messages in order to either confuse clients by 
providing outdated data or to defame the source. 

The second type is an internal attacker that knows the security 
protocol. The attacker could be a client that: (1) has ceased to 
subscribe and wants to illegally access the data, or (2) opts to 
violate the privacy of other clients by knowing what data they 
receive. An internal attacker could also try to impersonate a data 
provider. A prominent example for such an attack scenario is 
when a provider Si that lost a client Uy to a competitor S2, tries 
to impersonate and defame S2 by sending bogus data to Uy.  

IV. DACIC DESIGN    

A. Appraoch Overview  
In smart cities, a client (user) could subscribe to a data delivery 
service. Such data may be the transmission of sensor 
measurements, traffic conditions, stock market updates, etc. In 
these application scenarios, the received data may be used in 
making critical decisions and hence sustaining data integrity 
during the transmission becomes very important. In addition, 
the subscription itself could be fee-based or subject to privacy 
agreement, and consequently the provided data should be 
accessible only to the authorized clients. DACIC opts to achieve 
the data integrity goal and obscure the transmission from 
eavesdroppers, including former clients. While employing an 
asymmetric cryptosystem will be a viable option, it is 
undesirable in the realm of IoT due to resource constraints. To 
overcome the vulnerability of symmetric encryption to 
cryptanalysis and the complication of the associated key 
management process, DACIC employs a data-driven key 
generation process that enables keys to vary overtime.   

A block diagram description of DACIC is shown in Fig. 2. 
DACIC ensures the integrity and the confidentiality of the data 
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Fig. 1. Schematic diagram description of an Arbiter PUF, where the 
challenge bits control the individual multiplexers and cause the input signal 
to experience different delays on distinct devices and consequently the 
latched value (Q) would differ. 
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traffic using per packet encryption keys. The idea is to factor in 
the historical data that the source provided to a client in 
generating an encryption key. DACIC employs a deep learning 
model that views the packet payloads as a data series, D1, D2, 
…, Dn, and predicts the next data value, PDn+1. By applying the 
same model at both the data provider and the client, the 
encryption key can be inferred without an explicit key 
management procedure. Any attempts to impersonate the 
source will fail given dependence on the historical data. 
Moreover, the variability of the encryption among packets 
makes cryptanalysis ineffective. We note that the use of deep 
learning models, rather than producing PDn+1 using a function, 
enables great protection since the model cannot be reversed 
engineered by capturing the most recent n packets.    

As noted earlier, each client is to be equipped with a PUF 
that serves as a fingerprint. When a client Uy enrolls for a data 
service from a particular source Sx, a set of CRPs of the client’s 
PUF is provided to Sx. The latter will utilize these CRPs to 
implicitly authenticate the receiver of a transmitted packet, i.e., 
the client. In addition to the predicted data, PDn+1, DACAC 
factors in the response of Uy’s PUF in a challenge bit stream in 
the generation of the encryption keys. Hence, the packet will be 
decrypted only by Uy, which is the authorized receiver in such 
a case. By considering the client’s PUF response and due to the 
fact that a new key is generated for each packet, DACIC 
practically enables authentication of the client on a per-packet 
basis. This is a very powerful protection and makes packet 
interception useless for an external attacker.  We note that an 
internal attacker that knows CRPs for Uy, e.g., a former service 
provider, does not know the data and hence cannot infer PDn+1, 
and decrypt the message. By avoiding explicit dynamic key 
management, reliance of simple hardware fingerprinting 
primitive, and using a symmetric cryptosystem, DACIC limits 
the computation and communication overhead for secure data 
sharing in a multi-source and multi-client IoT system.  

B. Data Sample Prediction 
The underlying design process for the data-driven 

encryption is that streamed data in the aforementioned 

applications exhibits temporal properties. For example, data 
from a wearable sensor system reports changes in body 
conditions and generally reflects trends. Similarly, variations in 
traffic intensity data and weather are temporally dependent. 
Deep learning models, particularly, recurrent neural networks 
(RNN), are the most appropriate for capturing the variability of 
the transmitted data over time.  DACIC leverages such temporal 
data dependence to adaptively vary the employed encryption 
key in a synchronized manner between the data provider and 
individual clients. The idea is to deploy a deep network at the 
source that factors in the previous n data items D1, D2, …, Dn, 
e.g., the five most recent traffic densities, to predict the new 
data, PDn+1. The same deep network will be employed at the 
client and hence will yield the same predicted data.  We note 
that the predicted data PDn+1 is used only for key generation; 
the actual data Dn+1 will be still included in the packet, 
encrypted by the key generated through data prediction. 

In our recent work [18], we have demonstrated the viability 
of data sample prediction in the context of wearable sensory 
system, where the temporal dependency pattern is modeled 
using RNN. DACIC leverages such a technique in the general 
context of IoT applications, where the data payload of the n last 
transmitted packets is fed to a Long Short Term Memory 
(LSTM) model to forecast the next data item. Due to their 
mitigation of the gradient vanishing and their ability to extract 
patterns, LSTM models have been widely used in traffic and 
measurement prediction. LSTM makes such a prediction using 
specific architectures containing three gate types, namely, 
Forget, Memory and Output gates. Each LSTM cell contains a 
state vector and in each step determines the part of historical 
information to be forgotten, and filters out the relevant 
information to the prediction. By running the same LSTM, both 
the data provider and client will have the same predicted value 
in order to generate the symmetric key. By employing such a 
data prediction scheme, an eavesdropper and former service 
subscriber will not be able to decode messages due to the 
dependency to the latest data measurements. We finally note 
that unlike other functions that factor in the historical data, deep 
learning models capture the application semantics and also 
cannot be reverse engineered. While the complexity of LSTM 
could be viewed as high, we argue that pursuing offline training 
diminishes the computational complexity drastically. The 
model parameters as well as the initial data records are 
exchanged during a secure enrollment phase. The model still 
evolves over time based on the received data.   

C. Key Generation 
DACIC achieves pairwise authentication of the 

communicating party for each packet while ensuring data 
confidentiality against eavesdroppers. The client needs to 
ensure that the data it receives is from the correct provider; at 
the same time the provider makes sure that the packet can be 
decrypted exclusively by the intended receiver. To achieve such 
objective, the client can agree with the data server on a set of 
CRPs to use in the communication. In essence, the client can 
determine that the packet originated from the node that 
processes the correct response for its challenges. At the same 
time, the process of generating a key using the PUF of the client 
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Fig. 2. A block diagram description of DACIC capturing the operation at the 
data provider and client side by side. 
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ensures that only the client can decrypt the message. However, 
the per-packet keys will be thus dependent on the number of 
CRPs that a client shares with data sources, which will not scale 
for many-to-many communication traffic. Furthermore, sharing 
a restricted number of CRPs will make the key repetitive and 
degrade the system resilience to message replay attacks. 
DACIC overcomes the aforementioned issues by pursuing an 
innovative data driven key generation process. The fundamental 
idea is to factor in the recent packet exchange between a data 
provider and a client to derive a communication link fingerprint 
that ensures the authenticity of the next data packet.  

DACIC employs symmetric keys per packet in order to keep 
the computational complexity low and sustain high resilience to 
message replay and impersonation attacks. A symmetric key is 
generated using the predicted data, data provider identity, and 
client authenticity code. The latter is in essence the response Ri 
of the client’s PUF to a challenge bit stream Ci. As discussed 
earlier, the LSTM will factor in the most recent n data payloads 
to predict the next value; that is: 

PDn+1 = Ω(D1, D2, …, Dn)  (1) 
To generate the packet key, DACIC uses a simple function 

H: g → q, as illustrated by Fig. 2. The input g to such a function 
reflects the concatenated bit patterns of the three factors, and 
the output is the key with some desired length q. The key length 
will be determined based on the encryption algorithm and on 
the capabilities of the involved data providers and clients in 
order to balance the high-security and low-overhead goals. 
Obviously, the same function H should be employed at the 
client and the data provider. 

K = H(IDx || PDn+1 || Ri)    (2) 
where || is concatenation operator, IDx is the identification 
number of a data provider Sx, and Ri = Fy(Ci) is the PUF response 
for challenge Ci on client Uy. If the combined size of all three 
factors exceeds q, DACIC strives to fully utilize Ri and subsets 
of the bits of PDn+1 and IDx. Meanwhile, if q > 
|IDx|+|PDn+1|+|Ri|, bit padding will be applied. By 
incorporating PDn+1, K will be dependent on the data and 
implicitly authenticates the communicating parties. The value 
of n will be subject to trade-off; a small n will simplify the 
LSTM, yet it yields predicted value that may not vary if the 
actual data does not change frequently enough. Nonetheless, the 
shortcoming of a small n can be mitigated by varying Ci so that 
the key, K, becomes different for consecutive packets.   
D. Communication Protocol 
As noted in Section III, at the enrollment phase, a client Uy will 
share a small subset, ξ, of CPRs for its PUF with the data 

provider Sx. DACIC also requires that different CRP subsets are 
shared with the various providers, i.e., ξy,x ≠ ξy,z, ∀ Sx ≠ Sz. 
Particularly, there has to be at least two CPRs, (Cd, Rd) and (Cp, 
Rp), that is shared with only Sx, i.e., (Cj, Rj)∈ ξy,x | (Cj, Rj)∉ ξy,z 

∀ Sx ≠ Sz, ∧ (j=d  ∨ j=p). To establish a session, Uy and Sx 
mutually authenticate each other through multiple CRP 
validation, where Sx sends a nonce encrypted with the response 
of one of the challenges Cj whose response Rj is only shared 
with Sx. Specifically, the data provider sends the nonce 
encrypted using Rd as follows:  

{𝐶𝐶𝑑𝑑, [𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛]𝑅𝑅𝑑𝑑, 𝐶𝐶𝑝𝑝}    (3) 
The other challenge bit-stream, namely, Cp, that is included 

in (3) is to instruct Uy on what to use in the reply back. Upon 
reception of the message, Uy will decrypt the payload and 
extract the nonce. Uy will then re-encrypt the nonce using the 
response, Rp. 

{𝐶𝐶𝑝𝑝, [𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛]𝑅𝑅𝑝𝑝}    (4) 
If Uy is a new client for Sx, there will be no historical record 

of shared data, i.e., it will be the first session for Uy. Hence, Sx 
will send an initial set of data items encrypted using Rd  or Rp; 
recall that (Cd, Rd) and (Cp, Rp) are shared only with Sx.  
Alternatively, the nonce, exchanged challenges and 
corresponding responses can be fed to the LSTM to generate 
the first predicted data item.  After the mutual authentication is 
complete, data delivery services will commence. In DACIC a 
client subscribes to a data delivery service; in this case the data 
provider will randomly pick a CRP, (Ci, Ri), for the client when 
forming each packet. The response Ri will be used in Eq. (2) to 
generate the encryption key, while Ci will be included in the 
payload, as shown in (5), so that the client knows how to 
decrypt the data. Upon successful reception, the client will send 
an acknowledgment. Fig. 3 summarizes the aforementioned 
protocol steps. 

PayloadPush = {Ci, [Dn+1]K}  (5) 
Finally, we note that each of the data payloads in (3) – (5) 

will include a checksum before encryption in order to enable 
detection of bit errors. This is typical for detecting wireless 
transmission errors; yet it is particularly important in the 
context of DACIC to mitigate noise errors that affect the PUF 
response. In essence, receiving a packet that cannot be correctly 
decoded will lead the client to ask for retransmission. Therefore, 
DACIC will ensure the synchronization of the historical data 
record on the provider and the client. 

V. SECURITY ANALYSIS 

In this section, we show that DACIC achieves the desired 
security properties and mitigate known attacks. 
Node Impersonation: An adversary may claim to be the 
provider during the session establishment or data packet 
transmission. By picking challenge bit-streams in (3) and (4) 
that are known only to the specific data provider Sx, another 
provider or an eavesdropper cannot decrypt the messages and 
extract the nonce. The probability that the adversary could 
guess the correct response to find the nonce is 1/2𝑚𝑚 where m is 
the size of the response bit-stream. If the adversary fails to know 
such a response, establishing a session will not be possible.  

 
Fig. 3. A sequence diagram summary of DACIC’s communication protocol. 
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Meanwhile, to impersonate a provider during data 
transmission, the adversary has to generate the exact key. An 
eavesdropper does not have access to Ri, the ML model and to 
the last n data items (packet payloads) used by such a model. A 
packet that is encrypted using a random key will be wrongly 
decrypted and detected by the client using the checksum. When 
the attacker is an internal client Ua and thus knows the ML 
model, such an attacker does not know Ri of the legitimate client 
Uy; each Client’s PUF provides distinct responses which 
prevent Ua from generating the correct key and impersonating 
the provider. Finally, an internal attacker is another provider Sa 
that knows some CRPs for the client; such an attacker will fail 
to know PDn+1, since it does have the actual data. The use of 
LSTM is advantageous here as Sa does not have the model 
parameters and cannot even guess the value of PDn+1.    

On the other hand, given the usage of the PUF, it is not 
possible for an attacker to impersonate a client during session 
establishment, as noted above. In addition, impersonating a 
client during data transmission is not viable since the provider 
transmits the data and no information is sent by the client.  
Replay attack: Being unable to decrypt packets, the attacker 
may resend them at a later time, which could: (i) degrade the 
client’s analysis by providing outdated data, and (ii) prevent the 
synchronization between the communicating parties, and lead 
to denying access for legitimate clients. Replaying a provider’s 
data message will be detected by the client due to the variability 
of the key over time. The provider’s packet will be encrypted 
using distinct keys that depend on the PUF response and the ML 
model output; thus it is impossible to reverse the key generation 
process and decrypt the packet payload. Even if a CRP usage is 
intermittently repeated, the response is still unknown to the 
adversary and also the considered data in the ML model differs. 
Thus even internal attacker cannot mimic the legitimate client 
as the attacker does not have access to the latest PUF response. 
For the synchronization issue it can be proven by recurrence. 
Indeed, any replied packet can be detected by the client. Thus 
consecutive replayed packets can be detected and thus the 
attacker cannot cause desynchronization. 
False data injection: To modify the data, the adversary needs to 
first crack the keys using cryptanalysis in order to decrypt the 
packet payload; this is extremely hard since each packet will 
have a unique key. In case the data does not vary over a number 
of consecutive packets and the output of the ML model stays 
unchanged, the used CRP will differ and consequently the keys 
will not be the same. Thus, any data manipulation attempt will 
not succeed as the adversary will not be able to generate the 
keys and incorporate any falsified information in the packet. 
Any attempt to generate random keys can be easily uncovered 
by the client.  
PUF Modeling Attack: In DACIC, the client shares a limited 
number of CRPs with the individual data providers in order to 
prevent modeling attacks. We note that DACIC assumes that 
data providers cannot be manipulated. Nonetheless, even a 
malicious provider cannot accurately model the PUF of any of 
its data subscribers. Moreover, an eavesdropper will not be able 
to know the response of the used challenge bit-streams since 
they are used in key generation and are not sent explicitly in any 

of the packets. The keys vary per packet and hence even using 
cryptanalysis, the response cannot be inferred from the key.  

VI. VALIDATION EXPERIMENTS  
To validate the effectiveness of DACIC, we considered two 
example of data sharing applications, namely, smart telehealth 
and smart grid. For the telehealth system, we used the ECG 
samples extracted from PhysioNet dataset [19]. For smart grid 
measurement, we used simulated data using MatPower for real 
loads [20]. For both applications, an LSTM with three cells has 
been used in DACIC. The function H reflects the scrambling of 
the input bits. To validate the key variability over packets, we 
measured the degree of similarity of keys of the same client over 
time and between every pair of clients. The metric used to 
assess the similarity is the Levenshtein distance. This is a 
metric for assessing similarity between strings. It measures the 
difference between two sequences of characters based on the 
minimum number of characters to insert, delete or substitute in 
order to match two given strings. We further evaluated the 
security properties of DACIC using the AVISPA toolset. 
Finally, we report the runtime complexity of DACIC compared 
to contemporary crypto systems.  
Key uniqueness: Fig. 4(a) capture the similarity of the keys 
generated for the same provider as a matrix; the matrix is 
diagonal implies that the keys are unique. Fig. 4(b) shows the 
similarity matrix for the keys for pairs of providers. This 
variability of the keys per packet is due to the difference in the 
transmitted data and the employed PUFs. The results are 
consistent for both telehealth and smart grid applications, which 
demonstrates independence of the underlying data. 
Computational Overhead: DACIC is a lightweight data sharing 
framework. This property is due to the use of a symmetric 
cryptosystem.  We have compared DACIC with prominent 
asymmetric techniques. Fig. 5 demonstrates the effectiveness of 
DACIC in terms of execution time in comparison to RSA or 
ECC using 1024-bit keys. The results reflect the encryption of 
packets of 70 ECG records using the DES algorithm. The results 
clearly demonstrate the advantage of DACIC.  
Security Properties: We have employed AVISPA to verify the 
security properties and the vulnerability of DACIC. AVISPA is 
a widely-used formal security verification framework. We have 
described data exchange protocols using the underlying High 
Level Protocol Specification Language, and defined the client 
and data provider roles, all possible states and transitions 
including data exchanges and initializations and enrollment 
steps. The security goals for the AVISPA simulation are the 
authentication of clients and the provider and secrecy of the data 
and the keys. The OFMC results demonstrate the robustness of 
DACIC against eavesdropping, man in the-middle, replay and 
impersonation attacks. Figure 6 is screenshot of the output of 
the analysis, confirming the safety of the protocol of 
communication and data transmission.  

VII. CONCLUSIONS  
This paper has presented DACIC, a novel lightweight 
authentication and access authorization protocol. DACIC 
adopts a data-driven methodology and hardware fingerprints for 
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secure communication in multi-access data sharing systems. 
The idea is to generate encryption keys that vary per packet and 
in an implicitly synchronized manner between the data provider 
and each client. The generated encryption keys factor in 
hardware primitives to support authentication of legit data 
recipients, and the shared data pattern and previously 
transmitted data. We have validated the performance of DACIC 
and analyzed its resilience against impersonation, data 
manipulation and message replay, and hardware primitive 
modeling attacks. Our future plan is to extend DACIC to 
mitigate tempering attacks.  
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Fig.4. Similarity of DACIC keys for: (a) the same provider, and (b) distinct 
providers. 

 

 
Fig.5. The time complexity of DACIC compared to RSA or ECC algorithms 

 

 
Fig. 6. Screenshot of the OFMC output, confirming the robustness of DACIC 
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