

Robust and Efficient Data Security Solution for
Pervasive Data Sharing in IoT

Wassila Lalouani, Mohamed Younis, Mohammad Ebrahimabadi and Naghmeh Karimi
Department of Computer Science and Electrical Engineering

University of Maryland, Baltimore County,
Baltimore, Maryland, USA,

{lwassil1, younis, e127, nkarimi}@umbc.edu

Abstract— Pervasive sensing is shaping up modern societies and
opening the door for many unconventional applications. Instead of
the contemporary access model where sensor data is disseminated
to a single user, multi-access scenarios are becoming more
prevalent, which raises the issue of how to authenticate users, how
to ensure access authorization, and how to prevent information
leakage. To address these issues, this paper presents a novel
lightweight protocol that promotes a data-driven methodology.
The idea is to employ hardware primitives to support
authentication of legit data recipients and to factor in the
previously shared data samples in generating encryption keys. Our
protocol in essence generates encryption keys that vary per packet
and in an implicitly synchronized manner between the data source
and each recipient. The generated key is also a function of the
hardware primitive and thus effectively prevents data access to
unauthorized recipients. We analyze the resilience of our protocol
to impersonation and message replay, and hardware primitive
modeling attacks. The security properties of our solution is
validated using the AVISPA toolset and its performance is
compared to the asymmetric cryptography approaches.
Keywords: Pervasive sensing, Secure data sharing, IoT, Data-driven
encryption, Hardware-based authentication.

I. INTRODUCTION
The current era is characterized by the popularity of devices

that combine sensing, computation and communication
capabilities. An Internet-of-Things (IoT) reflects incorporation
of many of these devices to provide unconventional services
and enable the realization of smart cities [1]. The key feature
that an IoT enables is the support for data collection and sharing
at a large scale. The pervasive availability of sensor devices
arguably is transformative where the collected data can be used
for facilitating operation autonomy in many application
domains. Examples include intelligent transportation systems,
telehealth solutions, smart manufacturing, home automation,
digital battlefield, etc. Most of these systems are usually
associated with large volumes of real time data that are
disseminated to multiple parties. In fact, the notion of Sensing-
as-a-Service has emerged to reflect such a data dissemination
model, where a data provider serves multiple subscribers. To
illustrate, in a telehealth system, multiple caregivers could have
access to data collected by a patient’s wearable sensor system.
Similarly, a road sensor could provide traffic data to light
signals, certain vehicles, traffic authorities, etc.

However, with such a data sharing model comes the concern
about security, particularly sustaining data integrity, preserving
privacy and ensuring access authorization [2][3]. The integrity

of the collected data is paramount in applications involving
control and decision support systems. For example, remote
monitoring of patients requires accurate and authentic data to
assess the health conditions and enable timely intervention
when needed. Similar scenarios can be noted about defense
systems where weapons are to be engaged and in the
transportation domain where the road safety could be risked if
decisions are made on tampered data. Privacy and authorized
access are also required in many applications, e.g., sharing of
patient data. An external attacker may eavesdrop on packet
transmissions and capture the data, or impersonate the
communicating parties. Therefore, provisions are needed to
safeguard the dissemination of the collected sensor data and
ensure that only authorized access is allowed.

Employing a cryptosystem is the conventional approach for
achieving data integrity and privacy. Access authorization also
needs authentication, which is often supported by crypto-
identifiers. Since asymmetric cryptosystems impose high
computation and communication overhead, the use of
lightweight symmetric schemes and authentication primitives is
desired in the context of IoT applications [4]. However, the
distributed operation mode, the ad-hoc networking, and the
pervasive nature of the devices, make the management of
symmetric pair-wise keys and device authentication to be quite
challenging. Specifically, the presence of a centralized trusted
authority for facilitating the interaction among device pairs
would constitute a performance overhead and could be even
infeasible. In addition, symmetric encryption may not suffice
to provide protection for longer duration given the
computational power that is available nowadays and which
could allow the adversary’s cryptanalysis to succeed. Hence,
frequent key updates will be necessary which will be inefficient
for pervasive data streaming. The challenge even grows when
considering the network dynamic and multi-access model,
where data can be shared with a restricted subset of devices that
can vary over time. Therefore, support of access control would
be needed to serve new authorized recipients while depriving
unauthorized devices and those whose authorization has
expired, from retrieving the data.

To overcome the aforementioned challenges, this paper
promotes an innovative solution that supports effective and
robust data access control, and enables device-specific data
integrity and confidentiality. To ensure authorized data access,
we propose a lightweight authentication mechanism using
hardware-primitives. Specifically, we employ Physical

2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC)

978-1-6654-3161-3/22/$31.00 ©2022 IEEE 773

unclonable functions (PUFs), which constitute hardware
fingerprints since they depend on the variations in the
fabrication of integrated circuits and are not reproducible even
by the same manufacturers [5]. A PUF circuit acts as a unique
lookup table that is indexed by a fixed size bit-stream, referred
to as a challenge, for which a response is provided. A key
advantage of PUFs is that the response is generated
instantaneously by the circuit and cannot thus be read from
memory [6]. In addition, we propose a novel scheme for
supporting data integrity and confidentiality. The idea is to
generate data-driven encryption keys that factor in the features
of historical streamed data exchange between a communicating
device pair. We employ a machine learning (ML) model at both
the data sender and receiver that considers the transmitted data
values as a series in order to predict the next data value and use
it in defining an encryption key. Thus, the keys will
dynamically change and will be implicitly inferred rather than
explicitly exchanged through a key update protocol. Also the
encryption keys are not stored, making our scheme to be more
secure than conventional symmetric ciphers, e.g., AES.

To validate data access authorization, the legit receiver will
be authenticated in the data packet by factoring in a challenge-
response pair (CRP) of the embedded PUF at such a receiver.
This is achieved by making the generated encryption keys a
function of the CRPs as well as the predicted data value. In the
absence of consensus between the communicating party, the
packet payload cannot be decrypted to retrieve the data. Thus,
an eavesdropper will fail to gain access to data or even extract
any significant information from a single packet given the
variability of the key over time, which is caused by variation in
the sensor measurements and the employed CRPs for a receiver
and across different receivers. We validate the performance by
comparing the overhead to popular cryptographic approaches,
specifically PKI and ECC. We also provide security analysis to
show that our proposed Data Access Control and Integrity and
Confidentiality (DACIC) solution is able to counter all
imminent threats including impersonation, Sybil, man-in-the-
middle, and message replay. We further show that DACIC
mitigates the threat of PUF modeling attacks since the CRPs of
a receiver are not explicitly exchanged and their use for
authentication is by verifying their correctness through their
effect on the generated keys.

To the best of our knowledge, DACIC is the first approach
that combines hardware-based authentication primitives, and
data-driven methodologies to achieve an effective, lightweight,
robust and scalable security solution for pervasive data sharing
in the context of IoT applications. The rest of the paper is
organized as follows. The next section sets DACIC apart from
existing solutions. Section III discusses the considered system
model and covers some preliminaries. The design of DACIC is
presented in Section IV and its security properties are analyzed
in Section V. The performance of DACIC is evaluated in
Section VI. Finally, the paper is concluded in Section VII.

II. RELATED WORK
Given the contribution of DACIC, we focus on prior work

on data-and PUF based security solutions in the realm of IoT.

Data driven authentication/encryption: The use of data in
devising a security solution is popular in the realm of wearable
sensors where biometric signatures are authenticating data
sources, e.g., patients [7], identify verification, e.g., to granting
access to a bank account [8], and including watermarks in
records [9]. Biometric signals have also been leveraged to
generate encryption keys [10][11]. Unlike these techniques,
DACIC authenticates clients and generates encryption keys
based on the most-recent data samples, which introduces more
variability and makes the crypto-system more robust against
attacks. In addition, DACIC employs an LSTM (Long Short-
Term Memory) model in predicting the data based on which the
encryption keys are derived; since the LSTM factors in both the
data sequence and values, it is impossible for an eavesdropper
or unauthorized user to guess the key without mimicking the
entire process and using the same LSTM parameters.
PUF-based security solutions: Security of IoT is an active
research topic, where most attention has been dedicated to
authentication and generation/management of cryptographic
keys [3][4]. Many of the existing IoT authentication schemes
store the device identifier and encryption keys in its memory,
which could be revealed through hacking. To avoid such
vulnerability, quite a few studies have explored the use of PUFs.
Although these authentication schemes are lightweight, and
benefit from the unique footprints of PUF devices, they suffer
from vulnerabilities to security threats such as modeling
attacks, replay attacks, and impersonation attacks [12][13].

Chatterjee et al. [14] use PUFs to generate public and private
keys to be used for securing data transfer in IoT. The proposed
scheme is resilient against replay attacks, yet it is
computationally intensive and would not suit resource-
constrained IoT devices. J. R. Wallrabenstein [15] opts to avoid
storing the private key in the device memory in order to achieve
tamper resistance. The approach is to embed an Elliptic Curve
Cryptosystem (ECC) on the IoT device, to be used along with
the PUF to regenerate the private key when needed. However,
the approach imposes increased hardware overhead on the IoT
device. Meanwhile, Li el al. [16] employ ECC along with the
PUF to achieve mutual authentication. DACIC avoids such
complexity by enabling the use of only lightweight symmetric
cryptosystems. In addition, it provides mutual authentication
for the communicating parties as well as per packet
authentication. Along with the PUF, DACIC factors in the
exchanged data in achieving authorization, confidentiality and
authentication. Particularly, DACIC ensures the legitimacy of
the data receivers on a per-packet basis and is thus deemed to
be a continuous authentication method [17]. To our knowledge
such a security solution has not been considered in the literature.

III. SYSTEM MODEL AND PRELIMINARIES
A. System Model

A typical operation in an IoT pervasive data sharing system
involves clients that subscribe to receive data provided by
distinct sources. A source could be offering the data as a service,
e.g., road-side units sharing traffic data with on-road vehicles,
or sharing the data to get a service, e.g., sharing the wearable
system measurements of a patient with remote caregivers. In

2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC)

774

both scenarios the operation of the system requires a robust
mechanism to ensure data integrity, confidentiality and access
control, hence there is a need for authenticating communicating
parties. DACIC strives to achieve the aforementioned security
goals by incorporating of hardware fingerprints and employing
a data driven approach to secure packet transmissions. A data-
driven methodology is pursued to achieve continual packet
protection over time and counter data provider impersonation
attempts. In essence, generating encryption keys based on the
previously shared data will couple the communicating pair, i.e.,
data provider and client, and enable authenticating the sender of
the packet.

Each client is to be equipped with a PUF that serves as a
fingerprint. The data providers will leverage the client’s
fingerprint in the data sharing process in order to ensure the
authenticity of authorized receivers. A PUF can be viewed as a
lookup table that maps a bit-stream, referred to as challenge, to
corresponding response bits. For the client such a table is not
stored, but instead generated through a simple circuit, as we
explain in the next subsection. During enrollment, e.g. data
service subscription, the client transmits a subset of its PUF
challenge-response pairs to the data provider. The enrollment
process is assumed to be secure, e.g., facilitated by a trusted
third party, and is beyond the scope of this paper. In DACIC,
the data provider Sx uses the CRPs that it knows about a client
Uy to ensure that a data packet is only readable by Uy, i.e., the
CRPs are used to implicitly authenticate the identity of
authorized clients. DACIC assumes that a data provider cannot
be manipulated. In addition, a PUF is not needed for
authenticating the provider in DACIC, as we explain later.
Finally, we assume a reliable link layer protocol is employed
for communication in the system such that a packet delivery is
acknowledged to confirm reception.

B. Physical unclonable functions
Fundamentally, a PUF design leverages process variation in the
manufacturing of semiconductor devices. Such variation
affects the timing that signals travel at a scale that is arbitrary
in nature. We note that the variation can be observed among
devices from the same manufacturer. By building a circuit like
the one shown in Fig. 1, one can define a hardware fingerprint
for the individual devices [5]. Fig. 1 shows the circuit of an
Arbiter PUF, which is one of the prominent PUF designs. Each
of the signals C0, …, Cn-1 impact the setting of the multiplexer
and consequently the path the input signal takes to reach the
arbiter (realized as a latch in Fig. 1). Given that the signal
propagation delays are different due to manufacturing variation
and the latched value will vary. The bits C0, …, Cn-1 are
considered as PUF challenge and the output Q constitutes the
PUF response. A multi-bit response can be realized by
replicating the circuit or querying it with multiple challenges.
As for each same set of challenges, two distinct PUF circuits
generally provide different response, the PUF can be used to
identify clients and ensure their authenticity.
C. Attack Model

DACIC opts to safeguard the system against two attacker
types. The first is an external attacker that eavesdrops on the

communication links between data providers and clients. The
objective of such an attacker is to intercept transmissions and:
(i) applies cryptanalysis to access the data. This could be for

data piracy reasons, gaining knowledge of privacy
information, or manipulating the shared data, i.e., for
launching man-in-the-middle attack.

(ii) impersonates any of the communicating parties to fool
other nodes in the systems. Impersonating a client could be
for example to charge it for a service that the attacker
receives. For data providers, impersonation could be to send
bogus data and defame the source for competition reasons.

(iii) replays messages in order to either confuse clients by
providing outdated data or to defame the source.

The second type is an internal attacker that knows the security
protocol. The attacker could be a client that: (1) has ceased to
subscribe and wants to illegally access the data, or (2) opts to
violate the privacy of other clients by knowing what data they
receive. An internal attacker could also try to impersonate a data
provider. A prominent example for such an attack scenario is
when a provider Si that lost a client Uy to a competitor S2, tries
to impersonate and defame S2 by sending bogus data to Uy.

IV. DACIC DESIGN

A. Appraoch Overview
In smart cities, a client (user) could subscribe to a data delivery
service. Such data may be the transmission of sensor
measurements, traffic conditions, stock market updates, etc. In
these application scenarios, the received data may be used in
making critical decisions and hence sustaining data integrity
during the transmission becomes very important. In addition,
the subscription itself could be fee-based or subject to privacy
agreement, and consequently the provided data should be
accessible only to the authorized clients. DACIC opts to achieve
the data integrity goal and obscure the transmission from
eavesdroppers, including former clients. While employing an
asymmetric cryptosystem will be a viable option, it is
undesirable in the realm of IoT due to resource constraints. To
overcome the vulnerability of symmetric encryption to
cryptanalysis and the complication of the associated key
management process, DACIC employs a data-driven key
generation process that enables keys to vary overtime.

A block diagram description of DACIC is shown in Fig. 2.
DACIC ensures the integrity and the confidentiality of the data

1

0

1

0

1

0

1

0

1

0

1

0

C0 C1 Cn-1

Q

i

Latch

Fig. 1. Schematic diagram description of an Arbiter PUF, where the
challenge bits control the individual multiplexers and cause the input signal
to experience different delays on distinct devices and consequently the
latched value (Q) would differ.

2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC)

775

traffic using per packet encryption keys. The idea is to factor in
the historical data that the source provided to a client in
generating an encryption key. DACIC employs a deep learning
model that views the packet payloads as a data series, D1, D2,
…, Dn, and predicts the next data value, PDn+1. By applying the
same model at both the data provider and the client, the
encryption key can be inferred without an explicit key
management procedure. Any attempts to impersonate the
source will fail given dependence on the historical data.
Moreover, the variability of the encryption among packets
makes cryptanalysis ineffective. We note that the use of deep
learning models, rather than producing PDn+1 using a function,
enables great protection since the model cannot be reversed
engineered by capturing the most recent n packets.

As noted earlier, each client is to be equipped with a PUF
that serves as a fingerprint. When a client Uy enrolls for a data
service from a particular source Sx, a set of CRPs of the client’s
PUF is provided to Sx. The latter will utilize these CRPs to
implicitly authenticate the receiver of a transmitted packet, i.e.,
the client. In addition to the predicted data, PDn+1, DACAC
factors in the response of Uy’s PUF in a challenge bit stream in
the generation of the encryption keys. Hence, the packet will be
decrypted only by Uy, which is the authorized receiver in such
a case. By considering the client’s PUF response and due to the
fact that a new key is generated for each packet, DACIC
practically enables authentication of the client on a per-packet
basis. This is a very powerful protection and makes packet
interception useless for an external attacker. We note that an
internal attacker that knows CRPs for Uy, e.g., a former service
provider, does not know the data and hence cannot infer PDn+1,
and decrypt the message. By avoiding explicit dynamic key
management, reliance of simple hardware fingerprinting
primitive, and using a symmetric cryptosystem, DACIC limits
the computation and communication overhead for secure data
sharing in a multi-source and multi-client IoT system.

B. Data Sample Prediction
The underlying design process for the data-driven

encryption is that streamed data in the aforementioned

applications exhibits temporal properties. For example, data
from a wearable sensor system reports changes in body
conditions and generally reflects trends. Similarly, variations in
traffic intensity data and weather are temporally dependent.
Deep learning models, particularly, recurrent neural networks
(RNN), are the most appropriate for capturing the variability of
the transmitted data over time. DACIC leverages such temporal
data dependence to adaptively vary the employed encryption
key in a synchronized manner between the data provider and
individual clients. The idea is to deploy a deep network at the
source that factors in the previous n data items D1, D2, …, Dn,
e.g., the five most recent traffic densities, to predict the new
data, PDn+1. The same deep network will be employed at the
client and hence will yield the same predicted data. We note
that the predicted data PDn+1 is used only for key generation;
the actual data Dn+1 will be still included in the packet,
encrypted by the key generated through data prediction.

In our recent work [18], we have demonstrated the viability
of data sample prediction in the context of wearable sensory
system, where the temporal dependency pattern is modeled
using RNN. DACIC leverages such a technique in the general
context of IoT applications, where the data payload of the n last
transmitted packets is fed to a Long Short Term Memory
(LSTM) model to forecast the next data item. Due to their
mitigation of the gradient vanishing and their ability to extract
patterns, LSTM models have been widely used in traffic and
measurement prediction. LSTM makes such a prediction using
specific architectures containing three gate types, namely,
Forget, Memory and Output gates. Each LSTM cell contains a
state vector and in each step determines the part of historical
information to be forgotten, and filters out the relevant
information to the prediction. By running the same LSTM, both
the data provider and client will have the same predicted value
in order to generate the symmetric key. By employing such a
data prediction scheme, an eavesdropper and former service
subscriber will not be able to decode messages due to the
dependency to the latest data measurements. We finally note
that unlike other functions that factor in the historical data, deep
learning models capture the application semantics and also
cannot be reverse engineered. While the complexity of LSTM
could be viewed as high, we argue that pursuing offline training
diminishes the computational complexity drastically. The
model parameters as well as the initial data records are
exchanged during a secure enrollment phase. The model still
evolves over time based on the received data.

C. Key Generation
DACIC achieves pairwise authentication of the

communicating party for each packet while ensuring data
confidentiality against eavesdroppers. The client needs to
ensure that the data it receives is from the correct provider; at
the same time the provider makes sure that the packet can be
decrypted exclusively by the intended receiver. To achieve such
objective, the client can agree with the data server on a set of
CRPs to use in the communication. In essence, the client can
determine that the packet originated from the node that
processes the correct response for its challenges. At the same
time, the process of generating a key using the PUF of the client

Sample prediction

Data Provider Client

Actual
Data

Packet Key

Predicted
Data PDm+1

Packet payload
...

Key Generator

Sample prediction

Predicted
Data PDm+1

Key Generator

Actual
Data

Packet payload

Data Source ID
x

Client: R
i= fy (C

i)

Data Source ID
x

Client: R
i= fy (C

i)

Fig. 2. A block diagram description of DACIC capturing the operation at the
data provider and client side by side.

2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC)

776

ensures that only the client can decrypt the message. However,
the per-packet keys will be thus dependent on the number of
CRPs that a client shares with data sources, which will not scale
for many-to-many communication traffic. Furthermore, sharing
a restricted number of CRPs will make the key repetitive and
degrade the system resilience to message replay attacks.
DACIC overcomes the aforementioned issues by pursuing an
innovative data driven key generation process. The fundamental
idea is to factor in the recent packet exchange between a data
provider and a client to derive a communication link fingerprint
that ensures the authenticity of the next data packet.

DACIC employs symmetric keys per packet in order to keep
the computational complexity low and sustain high resilience to
message replay and impersonation attacks. A symmetric key is
generated using the predicted data, data provider identity, and
client authenticity code. The latter is in essence the response Ri
of the client’s PUF to a challenge bit stream Ci. As discussed
earlier, the LSTM will factor in the most recent n data payloads
to predict the next value; that is:

PDn+1 = Ω(D1, D2, …, Dn) (1)
To generate the packet key, DACIC uses a simple function

H: g → q, as illustrated by Fig. 2. The input g to such a function
reflects the concatenated bit patterns of the three factors, and
the output is the key with some desired length q. The key length
will be determined based on the encryption algorithm and on
the capabilities of the involved data providers and clients in
order to balance the high-security and low-overhead goals.
Obviously, the same function H should be employed at the
client and the data provider.

K = H(IDx || PDn+1 || Ri) (2)
where || is concatenation operator, IDx is the identification
number of a data provider Sx, and Ri = Fy(Ci) is the PUF response
for challenge Ci on client Uy. If the combined size of all three
factors exceeds q, DACIC strives to fully utilize Ri and subsets
of the bits of PDn+1 and IDx. Meanwhile, if q >
|IDx|+|PDn+1|+|Ri|, bit padding will be applied. By
incorporating PDn+1, K will be dependent on the data and
implicitly authenticates the communicating parties. The value
of n will be subject to trade-off; a small n will simplify the
LSTM, yet it yields predicted value that may not vary if the
actual data does not change frequently enough. Nonetheless, the
shortcoming of a small n can be mitigated by varying Ci so that
the key, K, becomes different for consecutive packets.
D. Communication Protocol
As noted in Section III, at the enrollment phase, a client Uy will
share a small subset, ξ, of CPRs for its PUF with the data

provider Sx. DACIC also requires that different CRP subsets are
shared with the various providers, i.e., ξy,x ≠ ξy,z, ∀ Sx ≠ Sz.
Particularly, there has to be at least two CPRs, (Cd, Rd) and (Cp,
Rp), that is shared with only Sx, i.e., (Cj, Rj)∈ ξy,x | (Cj, Rj)∉ ξy,z

∀ Sx ≠ Sz, ∧ (j=d ∨ j=p). To establish a session, Uy and Sx
mutually authenticate each other through multiple CRP
validation, where Sx sends a nonce encrypted with the response
of one of the challenges Cj whose response Rj is only shared
with Sx. Specifically, the data provider sends the nonce
encrypted using Rd as follows:

{𝐶𝐶𝑑𝑑, [𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛]𝑅𝑅𝑑𝑑, 𝐶𝐶𝑝𝑝} (3)
The other challenge bit-stream, namely, Cp, that is included

in (3) is to instruct Uy on what to use in the reply back. Upon
reception of the message, Uy will decrypt the payload and
extract the nonce. Uy will then re-encrypt the nonce using the
response, Rp.

{𝐶𝐶𝑝𝑝, [𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛]𝑅𝑅𝑝𝑝} (4)
If Uy is a new client for Sx, there will be no historical record

of shared data, i.e., it will be the first session for Uy. Hence, Sx
will send an initial set of data items encrypted using Rd or Rp;
recall that (Cd, Rd) and (Cp, Rp) are shared only with Sx.
Alternatively, the nonce, exchanged challenges and
corresponding responses can be fed to the LSTM to generate
the first predicted data item. After the mutual authentication is
complete, data delivery services will commence. In DACIC a
client subscribes to a data delivery service; in this case the data
provider will randomly pick a CRP, (Ci, Ri), for the client when
forming each packet. The response Ri will be used in Eq. (2) to
generate the encryption key, while Ci will be included in the
payload, as shown in (5), so that the client knows how to
decrypt the data. Upon successful reception, the client will send
an acknowledgment. Fig. 3 summarizes the aforementioned
protocol steps.

PayloadPush = {Ci, [Dn+1]K} (5)
Finally, we note that each of the data payloads in (3) – (5)

will include a checksum before encryption in order to enable
detection of bit errors. This is typical for detecting wireless
transmission errors; yet it is particularly important in the
context of DACIC to mitigate noise errors that affect the PUF
response. In essence, receiving a packet that cannot be correctly
decoded will lead the client to ask for retransmission. Therefore,
DACIC will ensure the synchronization of the historical data
record on the provider and the client.

V. SECURITY ANALYSIS

In this section, we show that DACIC achieves the desired
security properties and mitigate known attacks.
Node Impersonation: An adversary may claim to be the
provider during the session establishment or data packet
transmission. By picking challenge bit-streams in (3) and (4)
that are known only to the specific data provider Sx, another
provider or an eavesdropper cannot decrypt the messages and
extract the nonce. The probability that the adversary could
guess the correct response to find the nonce is 1/2𝑚𝑚 where m is
the size of the response bit-stream. If the adversary fails to know
such a response, establishing a session will not be possible.

Fig. 3. A sequence diagram summary of DACIC’s communication protocol.

2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC)

777

Meanwhile, to impersonate a provider during data
transmission, the adversary has to generate the exact key. An
eavesdropper does not have access to Ri, the ML model and to
the last n data items (packet payloads) used by such a model. A
packet that is encrypted using a random key will be wrongly
decrypted and detected by the client using the checksum. When
the attacker is an internal client Ua and thus knows the ML
model, such an attacker does not know Ri of the legitimate client
Uy; each Client’s PUF provides distinct responses which
prevent Ua from generating the correct key and impersonating
the provider. Finally, an internal attacker is another provider Sa
that knows some CRPs for the client; such an attacker will fail
to know PDn+1, since it does have the actual data. The use of
LSTM is advantageous here as Sa does not have the model
parameters and cannot even guess the value of PDn+1.

On the other hand, given the usage of the PUF, it is not
possible for an attacker to impersonate a client during session
establishment, as noted above. In addition, impersonating a
client during data transmission is not viable since the provider
transmits the data and no information is sent by the client.
Replay attack: Being unable to decrypt packets, the attacker
may resend them at a later time, which could: (i) degrade the
client’s analysis by providing outdated data, and (ii) prevent the
synchronization between the communicating parties, and lead
to denying access for legitimate clients. Replaying a provider’s
data message will be detected by the client due to the variability
of the key over time. The provider’s packet will be encrypted
using distinct keys that depend on the PUF response and the ML
model output; thus it is impossible to reverse the key generation
process and decrypt the packet payload. Even if a CRP usage is
intermittently repeated, the response is still unknown to the
adversary and also the considered data in the ML model differs.
Thus even internal attacker cannot mimic the legitimate client
as the attacker does not have access to the latest PUF response.
For the synchronization issue it can be proven by recurrence.
Indeed, any replied packet can be detected by the client. Thus
consecutive replayed packets can be detected and thus the
attacker cannot cause desynchronization.
False data injection: To modify the data, the adversary needs to
first crack the keys using cryptanalysis in order to decrypt the
packet payload; this is extremely hard since each packet will
have a unique key. In case the data does not vary over a number
of consecutive packets and the output of the ML model stays
unchanged, the used CRP will differ and consequently the keys
will not be the same. Thus, any data manipulation attempt will
not succeed as the adversary will not be able to generate the
keys and incorporate any falsified information in the packet.
Any attempt to generate random keys can be easily uncovered
by the client.
PUF Modeling Attack: In DACIC, the client shares a limited
number of CRPs with the individual data providers in order to
prevent modeling attacks. We note that DACIC assumes that
data providers cannot be manipulated. Nonetheless, even a
malicious provider cannot accurately model the PUF of any of
its data subscribers. Moreover, an eavesdropper will not be able
to know the response of the used challenge bit-streams since
they are used in key generation and are not sent explicitly in any

of the packets. The keys vary per packet and hence even using
cryptanalysis, the response cannot be inferred from the key.

VI. VALIDATION EXPERIMENTS
To validate the effectiveness of DACIC, we considered two
example of data sharing applications, namely, smart telehealth
and smart grid. For the telehealth system, we used the ECG
samples extracted from PhysioNet dataset [19]. For smart grid
measurement, we used simulated data using MatPower for real
loads [20]. For both applications, an LSTM with three cells has
been used in DACIC. The function H reflects the scrambling of
the input bits. To validate the key variability over packets, we
measured the degree of similarity of keys of the same client over
time and between every pair of clients. The metric used to
assess the similarity is the Levenshtein distance. This is a
metric for assessing similarity between strings. It measures the
difference between two sequences of characters based on the
minimum number of characters to insert, delete or substitute in
order to match two given strings. We further evaluated the
security properties of DACIC using the AVISPA toolset.
Finally, we report the runtime complexity of DACIC compared
to contemporary crypto systems.
Key uniqueness: Fig. 4(a) capture the similarity of the keys
generated for the same provider as a matrix; the matrix is
diagonal implies that the keys are unique. Fig. 4(b) shows the
similarity matrix for the keys for pairs of providers. This
variability of the keys per packet is due to the difference in the
transmitted data and the employed PUFs. The results are
consistent for both telehealth and smart grid applications, which
demonstrates independence of the underlying data.
Computational Overhead: DACIC is a lightweight data sharing
framework. This property is due to the use of a symmetric
cryptosystem. We have compared DACIC with prominent
asymmetric techniques. Fig. 5 demonstrates the effectiveness of
DACIC in terms of execution time in comparison to RSA or
ECC using 1024-bit keys. The results reflect the encryption of
packets of 70 ECG records using the DES algorithm. The results
clearly demonstrate the advantage of DACIC.
Security Properties: We have employed AVISPA to verify the
security properties and the vulnerability of DACIC. AVISPA is
a widely-used formal security verification framework. We have
described data exchange protocols using the underlying High
Level Protocol Specification Language, and defined the client
and data provider roles, all possible states and transitions
including data exchanges and initializations and enrollment
steps. The security goals for the AVISPA simulation are the
authentication of clients and the provider and secrecy of the data
and the keys. The OFMC results demonstrate the robustness of
DACIC against eavesdropping, man in the-middle, replay and
impersonation attacks. Figure 6 is screenshot of the output of
the analysis, confirming the safety of the protocol of
communication and data transmission.

VII. CONCLUSIONS
This paper has presented DACIC, a novel lightweight
authentication and access authorization protocol. DACIC
adopts a data-driven methodology and hardware fingerprints for

2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC)

778

secure communication in multi-access data sharing systems.
The idea is to generate encryption keys that vary per packet and
in an implicitly synchronized manner between the data provider
and each client. The generated encryption keys factor in
hardware primitives to support authentication of legit data
recipients, and the shared data pattern and previously
transmitted data. We have validated the performance of DACIC
and analyzed its resilience against impersonation, data
manipulation and message replay, and hardware primitive
modeling attacks. Our future plan is to extend DACIC to
mitigate tempering attacks.

REFERENCE
[1] B. Ahlgren, M. Hidell and E. C. -H. Ngai, “Internet of Things for Smart

Cities: Interoperability and Open Data,” IEEE Internet Computing, vol. 20,
no. 6, pp. 52-56, Nov.-Dec. 2016.

[2] Y. Yang et al., “A survey on security and privacy issues in internet-of-
things,” IEEE Internet of Things Jour., vol. 4, no. 5, pp. 1250–1258, 2017.

[3] A. Ahanger and A. Aljumah, “Internet of things: A comprehensive study
of security issues and defense mechanisms,” IEEE Access, vol. 7, pp.
11020–11028, 2019.

[4] X. Liu et al., “A Security Framework for the Internet of Things in the Future
Internet Architecture,” Future Internet, vol. 9, No. 3, p. 27, 2017.

[5] G. E. Suh and S. Devadas, “Physical Unclonable Functions for Device
Authentication and Secret Key Generation,” Proc. of DAC, 2007, pp. 9–14.

[6] A. Shamsoshoara et al., “A survey on physical unclonable function (puf)-
based security solutions for internet of things,” Computer Networks,
vol.183, p. 107593, 2020.

[7] P. Gope and T. Hwang, “BSN-Care: A Secure IoT-Based Modern
Healthcare System Using Body Sensor Network,” IEEE Sensors Journal,
vol. 16, no. 5, pp. 1368-1376, March 2016.

[8] A. Ross, S. Banerjee, and A. Chowdhury, “Security in smart cities: A brief
review of digital forensic schemes for biometric data,” Pattern Recognition
Letters, Vol. 138, pp. 346-354, 2020.

[9] A. Anand and A. K. Singh, “An improved DWT-SVD domain
watermarking for medical information security,” Computer
Communications, Vol. 152, pp. 72 - 80, 2020.

[10] S. Pirbhulal, O. W. Samuel, W. Wu, A. K. Sangaiah, and G. Li, “A joint
resource-aware and medical data security framework for wearable
healthcare systems,” Future Gen. Comp. Sys., vol. 95, pp. 382-391, 2019.

[11] G. Zheng et al., “Multiple ECG Fiducial Points-Based Random Binary
Sequence Generation for Securing Wireless Body Area Networks,” IEEE
Journal of Biomedical & Health Info., vol. 21, no. 3, pp. 655-663, 2017.

[12] U. Chatterjee, R. S. Chakraborty, and D. Mukhopadhyay, “A PUF-Based
Secure Communication Protocol for IoT,” ACM Trans. Embedded
Computing Systems, vol. 16, no. 3, pp. 1-25, 2017.

[13] M. Aman et al., “Mutual Authentication in IoT Systems Using Physical
Unclonable Functions,” IEEE IoT J., vol. 4, no. 5, pp. 1327–1340, 2017.

[14] U. Chatterjee et al., “Building PUF Based Authentication and Key
Exchange Protocol for IoT Without Explicit CRPs in Verifier Database,”
IEEE Trans. on Depend. & Sec. Comp., vol. 16, no. 3, pp. 424–437, 2019

[15] J. R. Wallrabenstein, “Practical and Secure IoT Device Authentication
using Physical Unclonable Functions,” Proc. IEEE 4th Int’l Conf. on Future
Internet of Things and Cloud (FiCloud), pp. 99–106, 2016.

[16] S. Li, T. Zhang, B. Yu and K. He, “A Provably Secure and Practical PUF-
Based End-to-End Mutual Authentication and Key Exchange Protocol for
IoT,” IEEE Sensors Journal, 21(4), pp. 5487-5501, Feb. 2021.

[17] F. H. Al-Naji, R. Zagrouba, “A survey on continuous authentication
methods in Internet of Things environment,” Computer Communications,
Vol. 163, pp. 109-133, 2020.

[18] W. Lalouani, M. Younis, I. White-Gittensb, R. N. Emokpae, Jr. and L. E.
Emokpae “Energy-Efficient Collection of Wearable Sensor Data through
Predictive Sampling,” Smart Health, Vol. 21, July 2021, 100208.

[19] V. Novak et al., “Cerebral flow velocities during daily activities depend
1137 on blood pressure in patients with chronic ischemic infarctions,”
Stroke, 1138 vol. 41, no. 1, pp. 61–66, 2010.

[20] R. D. Zimmerman, C. Murillo-Sanchez, and R. J. Thomas, “Matpower’s
extensible optimal power flow architecture,” Proc. the IEEE Power and
Energy Soc. General Meeting, pp. 1–7, Calgery, Alberta, Jul. 2009.

(a)
ECG PMU

(b)
ECG PMU

Fig.4. Similarity of DACIC keys for: (a) the same provider, and (b) distinct
providers.

Fig.5. The time complexity of DACIC compared to RSA or ECC algorithms

Fig. 6. Screenshot of the OFMC output, confirming the robustness of DACIC

2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC)

779

