
Testing of Clock-Domain Crossing Faults in Multi-Core System-on-Chip*

Naghmeh Karimi†, Zhiqiu Kong†, Krishnendu Chakrabarty†, Pallav Gupta‡, and Srinivas Patil§

†Electrical & Computer Engineering Department ‡Test CAD Technology Group §SoC Enabling Group

Duke University Intel Corporation Intel Corporation

Durham, NC 27708 Folsom, CA 95630 Austin, TX 78704

{naghmeh.karimi, zhiqiu.kong, krish}@duke.edu pallav.gupta@intel.com srinivas.patil@intel.com

Abstract—Manufacturing test for clock-domain crossing
(CDC) defects is a major challenge for multi-core system-on-
chip (SoC) designs in the nanometer regime. Setup- and hold-
time violations in flip-flops situated on clock boundaries may
lead to catastrophic failures, even when circuits are equipped
with synchronizers at clock boundaries. In this work, we
comprehensively study the effect of CDC faults, and propose a
number of fault models to target such defects. In addition,
we develop an automatic test-pattern selection method for
CDC fault detection. This work is motivated by the fact that
CDC faults cannot always be detected by conventional ATPG
methods. The results of applying the proposed method to a
number of IWLS’05 benchmarks demonstrate the effectiveness
of our approach.

Keywords-Clock-domain crossing; multi-clock domain cir-
cuit; Test-pattern selection

I. INTRODUCTION

Advances in very large scale integrated (VLSI) technology

have enabled designers to integrate multi-core SoC on a

single die. As the number of intellectual property (IP) cores

in an SoC increases, high-speed communication between the

cores becomes a major challenge.

This problem is exacerbated when cores operate with

different clock signals fed either by different PLL sources,

or by a common PLL source but with different phases and

frequencies. Consequently, intra-core communication must

be handled carefully.

In multi-clock designs, a CDC occurs whenever data is

transferred from one clock domain to another. Depending

upon the relationship between the sender and receiver clocks,

various types of problems may arise during data transfer.

Some of these problems are metastability, data loss, and data

incoherency [1].

The effect of metastability must be neutralized when

data are transferred between different clock domains. This

can by accomplished by employing synchronizers at clock

boundaries. In their simplest form, synchronizers are flip-

flops that reside in the sender and receiver domains. The

receiver synchronizer samples the data coming from the

sender domain. The sender synchronizer removes unwanted

*This research was supported in part by NSF under grant No. CCF-0903392,
and by SRC under Contract No. 1992.

transitions (glitches) that occur before the combinational

output of the sending logic settles. Even if metastability is

eliminated, incorrect operation resulting from convergence

of synchronized data or improper synchronization of data-

transfer protocols (handshaking) can result in functional

errors [2]. Although computer-aided design (CAD) tools are

used to formally verify a CDC design for correct functional

behavior before the fabrication process, post-silicon multi-

clock circuits may still exhibit incorrect behavior due to

process variation-induced violation of setup- and hold-time

at the boundary flip-flops, even when they are equipped with

synchronizers at clock boundaries. Current manufacturing

test content is not developed to screen defective units re-

sulting from CDC errors. Thus, we comprehensively study

CDC faults with the goal of increasing test quality to reduce

the number of shipped defective chips [3].

Transition delay fault (TDF) testing is well-known and

widely used in industry to target timing defects. Despite their

benefits, current transition ATPG tools are not adequate for

detecting CDC faults because these tools do not model the

interaction between the logic residing on a clock boundary

while generating a test pattern to target a specific TDF.

Therefore, fault models and ATPG methodologies need to

be developed to target these faults. In this work, we have

developed the first manufacturing test method that targets

CDC faults in multi-core SoCs. The main contributions of

this work are as follows:

• We analyze the various functional errors associated

with CDCs and develop novel fault models for CDC

testing. These fault models are based on classical fault

models, but with additional constraints;

• We propose the first test-pattern selection method for

CDC testing;

• We demonstrate the efficacy of our proposed CDC test-

ing method using commercial CAD tools, and present

results on a number of IWLS’05 benchmark designs.

The remainder of this paper is organized as follows. Sec-

tion II presents related work on CDC verification and testing.

In Section III, we develop CDC fault models representing the

faulty behavior of CDC designs in the presence of physical

defects. We propose our test-pattern selection method to

2011 Asian Test Symposium

1081-7735/11 $26.00 © 2011 IEEE

DOI 10.1109/ATS.2011.68

7

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on September 30,2020 at 19:51:44 UTC from IEEE Xplore. Restrictions apply.

target CDC faults in Section IV. Implementation details

about the proposed method are presented in Section V, while

experimental results to demonstrate the effectiveness of this

technique are discussed in Section VI. We conclude this

paper in Section VII.

II. RELATED WORK

To the best of the authors’ knowledge, prior work in CDC

testing has been focused primarily on pre-silicon validation.

There is no study involving post-silicon CDC test in the

open literature.

Various types of errors are discussed in [4], [5], and

error recovery is described based on CDC synchronization

signals between different clock domains. In [6], enable-

based synchronization and data coherency involving CDC

is presented. The authors proposed using a static CDC

verification approach to target metastability, convergence,

and other CDC problems that traditional CAD tools, such as

logic simulation and static timing analysis, do not address.

The authors in [7] used an assertion-based verification

approach to verify proper functionality for CDC signals.

Two methods based on model checking for verifying syn-

chronizers in CDC designs were proposed in [8]. In [9], a

formal verification technique to detect CDC design errors

was discussed.

In [10], an assertion-based method was presented to

reduce the risk of clock-related errors. A built-in CDC

test for globally asynchronous locally synchronous (GALS)

systems was proposed in [11]. CDC jitters were analyzed,

and a design-for-test (DFT) method to emulate the delay

caused by the jitters was presented in [12]. In [13], the

delay of synchronizers was increased to eliminate the non-

determinism caused by metastability. A variety of CDC

verification tools have been developed by several CAD

companies.

As mentioned earlier, all of the current methods address

only pre-silicon validation of CDC designs. However, in the

presence of process variations, post-silicon testing of CDC

is also required to ensure correct operation, even if thorough

pre-silicon validation was performed before tapeout.

III. CDC FAULT MODEL

To be able to screen for CDC defects, the faulty behavior

of these defects must be logically represented using a fault

model. In this section, we propose the first CDC fault model

to capture the erroneous behavior.

In a synchronous circuit, the proper operation of a flip-

flop depends on the stability of its input signal for a certain

period of time before (setup-time) and after (hold-time) its

clock edge. If setup- and hold-times are violated, the flip-flop

output may oscillate for an indefinite amount of time, and

may or may not settle to a stable value before the next active

clock edge. This unstable behavior is known as metastability.

Fig. 1(a) shows an example of a multi-clock circuit in which

(a) CDC circuit. (b) Metastability on Q2.

Figure 1. An example of a CDC circuit and metastability.

signal S is launched by Clk1, and needs to be captured

properly by Clk2. As shown in Fig. 1(b), if a transition on

S happens very close to the active edge of Clk2, a setup-

time violation occurs, which may lead to metastability on

Q2.

CDC faults mainly occur due to setup- and hold-time vio-

lations on flip-flops residing at clock boundaries. Therefore,

we can categorize them as follows:

• Faults that occur due to setup-time violation;

• Faults that occur due to hold-time violation.

If a flip-flop experiences a setup-time violation, it does not

sample a change in value at its data input. In a hold-time

violation, however, it may incorrectly capture a data change

at its input. We next describe the fault model for each case.

A. Setup-Time Violation

Fig. 2(a) illustrates a sample waveform for the CDC

circuit shown in Fig. 1(a). If signal S experiences an

unexpected delay, and its value toggles during the setup-time

window of the receiver flip-flop, the receiver flip-flop may

capture the value “0” even though the expected value is “1”.

As per the example, because the output value of the sender

flip-flop does not change in the subsequent clock cycle, Q2
gets its expected value of “1” in the next clock cycle. In this

case, the setup-time violation of the receiver flip-flop can be

modeled as a slow-to-rise fault with a delay of one clock

cycle.

Fig. 2(b) shows another possibility of a setup-time vi-

olation for the same CDC circuit. First, the receiver flip-

flop experiences a setup-time violation. Then, the output

of the sender flip-flop changes before the next active clock

edge arrives for the receiver flip-flop. Thus, the receiver flip-

flop cannot capture the transition of signal S, and remains

unchanged. In this case, the setup-time violation of the

receiver flip-flop can be modeled by a slow-to-rise fault with

an infinite delay.

In general, if a value change of a CDC signal S violates

the setup-time of the receiver flip-flop, then the faulty

behavior can be modeled as a transition (slow-to-rise or

slow-to-fall) fault with a delay of k clock cycles, where k
= 1 if the pulse observed in signal S is at least 1.5 times

8

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on September 30,2020 at 19:51:44 UTC from IEEE Xplore. Restrictions apply.

(a) (b)

Figure 2. Timing waveforms showing setup-time violations for the circuit
in Fig. 1(a).

(a) (b)

Figure 3. Timing waveforms showing hold-time violations for the circuit
in Fig. 1(a).

wider than the receiver clock period. Otherwise, k = ∞. In

the rest of this paper, a CDC fault arising due to setup-time

violations will be referred to as a S-CDC fault.

B. Hold-Time Violation

If a flip-flop experiences a hold-time violation, data

changes on its input may be incorrectly sampled. Fig.

Fig. 3(a) shows a sample waveform for the CDC circuit

shown in Fig. 1(a). If signal S changes during the hold-time

interval of the receiver flip-flop, an incorrect change on the

output may be observed. As per the example, the receiver

flip-flop gets an output value of “1” one clock cycle earlier

than expected. In this case, the hold-time violation at the

receiver flip-flop can be modeled as a transient fault with a

duration of one clock cycle.

Fig. 3(b) shows another example of a hold-time violation

for the CDC circuit of Fig. 1(a). First, the receiver flip-flop

experiences a hold-time violation. Then, the output of the

sender flip-flop changes before the next active edge of the

receiver flip-flop. Thus, the receiver flip-flop captures the

transition of signal S. Similar to the previous example, the

hold-time violation of the receiver flip-flop can be modeled

as a transient fault with a duration of one clock cycle.

In general, if any value change of a CDC signal S
violates the hold-time of the receiver flip-flop, then the faulty

behavior can be modeled as a transient fault with a duration

of one clock cycle. In the rest of this paper, a CDC fault

arising due to hold-time violations will be referred to as a

H-CDC fault.

IV. PROPOSED CDC-ORIENTED DOUBLE-CAPTURE

(CODC) TESTING SCHEME

Based on the fault models described in Section III, we

now describe a test strategy to detect S-CDC faults. We

do not consider H-CDC faults in this paper; a thorough

treatment of them is left for future work.

TDF testing is widely used in industry to target timing de-

fects. However, traditional TDF ATPG tools are not adequate

for detecting S-CDC faults because they do not consider the

interaction between the logic residing on a clock boundary

while generating a test pattern to target a TDF fault. In order

to detect S-CDC faults, we need to generate a transition in

the sender domain, and observe its effect in the receiver

domain.

For TDF detection, an ATPG tool generates a transition at

the fault site, and propagates the transition to an observable

point. While this condition is also required for detecting

S-CDC faults, it is not sufficient. That is, the transition

at the fault site must be provided by the sender domain.

Thus, a major shortcoming of traditional ATPG tools is

that they do not consider this constraint. Consequently, they

cannot guarantee coverage of CDC faults. To overcome this

limitation, this paper addresses a testing scheme to directly

target S-CDC faults.

Launch-on-Shift (LoS) and Launch-on-Capture (LoC) are

two widely used TDF testing methods. Since LoC is easier

to implement in practice, we only consider this method to

detect S-CDC faults.

Figure 4. A CDC example for illustrating our proposed test-pattern
selection method.

Fig. 4 shows a CDC example that is used to illustrate

the proposed test-pattern selection method. For the sake of

clarity, only the synchronizer flip-flops are shown. In this

case, the functional and scan paths on the clock boundary are

identical. However, our method is readily applicable (without

any loss of generality) to circuits with different functional

and scan paths on the clock boundaries. Assume that we

want to target the S-CDC fault modeled by a slow-to-rise

fault at the output of the receiver flip-flop. To detect this

fault, we need to first generate a rising transition on signal

A. Then, we must transfer this transition to signal B in

9

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on September 30,2020 at 19:51:44 UTC from IEEE Xplore. Restrictions apply.

the next active edge of Clk2. To be able to detect this CDC

fault on signal B, we need to apply three test vectors instead

of the two that are applied by the traditional LoC method.

Fig. 5-6 show the active paths highlighted in bold for the

three steps needed to detect the fault. These steps are as

follows:

Figure 5. Illustration of Step 1 to target slow-to-rise CDC fault on signal
B (scan path highlighted in bold).

(a) Step 2. (b) Step 3.

Figure 6. Illustration of Steps 2-3 to target slow-to-rise S-CDC fault on
signal B (functional path highlighted in bold).

• Step 1: Shift a test vector (V1) in scan mode such that

A and B get a value of “0” (Fig. 5).

• Step 2: Operate in functional mode (apply functional

clocks Clk1 and Clk2, respectively) and generate vec-

tor V2 such that A and B get a value of “1” and “0”,

respectively (Fig. 6(a)).

• Step 3: Operate in functional mode, and generate vector

V3 such that B gets a value of “1” (Fig. 6(b)).

If k > 0 synchronizers are placed between the sender

and receiver flip-flops, then Step 2 involves one cycle of

functional clock Clk1 but k + 1 cycles of functional clock

Clk2. Steps 3 remains unchanged.
This CDC testing scheme, which we refer to as CDC-

oriented Double-Capture testing (CoDC), comprises of one

launch and two capture cycles. To target the S-CDC fault

modeled by a slow-to-rise fault on signal B, we need to

generate vectors V1-V3 in consecutive clock cycles such that

the output of the sender and receiver clock boundary flip-

flops (A and B) get the values shown in Table I. Note that

the transition on B is at-speed with respect to Clk2. Thus,

a S-CDC fault on B can be easily detected.

Table I
SYNCHRONIZER VALUES FOR DETECTING SLOW-TO-RISE S-CDC

FAULT ON SIGNAL B.

Cycle # Mode Value at A Value at B

1 Scan 0 0

2 Functional 1 0

3 Functional − 1

− is a don’t care.

No assumptions are made or restrictions are placed on

the clocking scheme. The clock signals are fed either by

different PLL sources, or by a common PLL source but with

different phases and frequencies.

The CoDC approach can also be used to target CDC

faults when data transfer between two clock domains is

accomplished through asynchronous handshaking. In such

scenarios, the data arrives at the receiver domain within an

upper limit of n clock cycles. We can test for CoDC faults by

applying n functional clock cycles using Clk2 and using a

transition detector to record a transition on B in the window

of n clock cycles.

V. CODC IMPLEMENTATION DETAILS

To implement the CoDC method, we used commercial

EDA tools for ATPG and logic simulation. Since two

or more synchronizers are often added in practice to the

receiver domain to handle asynchronous data transfers, we

assume (without any loss of generality for the proposed

method) in our experiments that the receiver domain for each

CDC includes two synchronizers. Fig. 7 shows a flowchart of

the steps taken for applying the proposed method. For each

circuit under test, full-scan insertion was first performed.

Next, we extracted all connected pairs of flip-flops residing

at clock boundaries. For each sender/receiver flip-flop pair,

we used a commercial ATPG tool to generate test vectors

targeting the slow-to-rise fault on the output of the sender

flip-flop under the constraint that the output of the receiver

flip-flop holds the value “0”. In this way, the first and second

steps of the CoDC scheme are performed simultaneously.

Due to the limitations of the ATPG tool, we could only

extract up to 255 test vectors for each fault. We were not

able to extract all possible test vectors that satisfy the first

two requirements of the CoDC method.

In the next step, we used a commercial logic simulator

to simulate the generated sets of test vectors and extract

the subsets satisfying the third requirement of the CoDC

method, i.e., generating a value of “1” on the output of the

receiver flip-flop in the second clock cycle of the functional

mode. We built a scoreboard for each S-CDC fault and the

test vectors that detected that fault. Finally, a minimum set

covering algorithm was applied to the test vectors to select

a minimal set that detected all slow-to-rise S-CDC faults.

10

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on September 30,2020 at 19:51:44 UTC from IEEE Xplore. Restrictions apply.

Figure 7. Flowchart for the implementation of the CoDC method.

VI. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we provide details of the simulation setup

used to evaluate the effectiveness of the CoDC scheme.

Then, we present results on a number of IWLS’05 bench-

marks, and discuss our observations.

A. Experimental Setup

We applied the CoDC method to four IWLS’05 bench-

marks that contain multiple clock domains. They are the

WISHBONE AC 97 Controller (ac97_ctrl), the WISH-

BONE Memory Controller (mem_ctrl), the USB function

core (usb_funct), and the Ethernet IP core (ethernet)

[14]. We used commercial EDA tools for test pattern gener-

ation, and logic and fault simulation. We implemented our

own tools and scripts for performing pattern selection and

evaluation. They were implemented in C++ and Python.

To generate a test pattern set that detects TDFs as well

as S-CDC faults, top-off ATPG was performed after pattern

selection to meet the fault coverage requirement for TDFs.

The final pattern set for our procedure therefore consists of

the selected pattern set plus the top-off ATPG pattern set.

All experiments were performed on a dual-processor Pen-

tium Intel server running at 3.2 GHz with 2 GB of memory.

CPU time for the flow described in Fig. 7 was estimated by

aggregating the times needed for the different steps. While

the runtime for the ATPG tool was small (a few seconds

per S-CDC fault), invoking the commercial logic simulator

multiple times leads to the runtimes ranged from 9 to 25

minutes per fault. Therefore, to reduce the cost of detecting

S-CDC faults, we are developing a test generation scheme

targeting S-CDC faults under the constraints discussed in

Section IV.

B. Experimental Results

In this subsection, we present the results in four parts.

The first part deals with the gate-level specification of each

benchmark used in this study. The second part discusses

the distribution of faults in each benchmark. The third part

compares traditional LoC/TDF testing with the our CoDC

method. Finally, the fourth part demonstrates the effect of

pattern sampling on CDC fault detection.
Note that in our experiments, we only considered slow-

to-rise S-CDC faults. We expect to get similar results for

slow-to-fall S-CDC faults without any change in method-

ology. In each benchmark with two clock domains, we

only considered the CDC paths from clock domain 1 to

2. The CDC paths from clock domain 2 to 1 were not

considered. Again, we expect similar results if we consider

the additional CDC paths. In addition, we treat ethernet
benchmark as three different testcases based on the dif-

ferent CDC paths: ethernet(1-2); ethernet(2-3);

ethernet(3-1). In the ethernet(i-j) testcase,

i, j ∈ {1, 2, 3}, we consider the CDC paths from Domain i
to Domain j.

1) Benchmark Details: Table II lists various details about

the benchmarks used in our experiments. The ethernet
benchmark has three clock domains. All other benchmarks

have two clock domains.

Table II
BENCHMARKS STATISTICS

Benchmark # Clock domains # Flip-Flops # Gates

ac97_ctrl 2 2,199 28,083

mem_ctrl 2 1,083 22,015

usb_funct 2 1,746 25,531

ethernet 3 10,544 153,948

2) Number of Faults: Table III shows the number of

transition and S-CDC faults in each benchmark. The second

column shows the number of slow-to-rise (slow-to-fall)

faults for each circuit, and the third column shows the

number of CDC faults that can be attributed to violations

on flip-flop setup times at clock domain boundaries (i.e.,
S-CDC faults).

As mentioned earlier, for benchmarks with two clock

domains, we only considered CDC paths from clock domain

1 to 2. For the ethernet benchmark, we considered CDC

paths from clock domains 1 to 2, 2 to 3, and 3 to 1.

Table III
NUMBER OF FAULTS FOR THE BENCHMARKS

Benchmark Slow-to-rise(fall) Slow-to-rise(fall)
S-CDC

ac97_ctrl 36,510 734
mem_ctrl 38,082 342
usb_funct 40,076 1,342

ethernet(1-2) 160,394 560
ethernet(2-3) 160,394 206
ethernet(3-1) 160,394 1,918

3) Pattern Set Comparison: In this section, we highlight

the effectiveness of the CoDC method in detecting CDC

faults.
Detected CDC faults: To compare the traditional LoC

method against the CoDC scheme, we first investigated the

11

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on September 30,2020 at 19:51:44 UTC from IEEE Xplore. Restrictions apply.

number of S-CDC faults detected by each method for the

four benchmarks. We applied our method to each benchmark

and extracted the set of test patterns satisfying the constraints

discussed in Section IV. Next, top-off ATPG was performed

to meet the fault coverage requirement for TDFs. As a result,

the final pattern set was the union of the CoDC and the top-

off ATPG pattern sets.

To evaluate the number of S-CDC faults detected by the

traditional LoC method for each benchmark, we used a

commercial ATPG tool to generate test patterns detecting

all slow-to-rise TDFs for that benchmark. Then, we used the

generated patterns to perform logic simulation. Finally, the

subset of the generated patterns that satisfied the constraints

discussed in Section IV was extracted, and the S-CDC faults

detected by these vectors were reported.

A limitation of the commercial ATPG tool used in this

work is that it can only generate up to 255 test vectors for

each fault, i.e., it cannot generate all possible test patterns

satisfying the above constraints. This shortcoming limits the

coverage of the CoDC method, i.e., the S-CDC faults that

are reported as being undetected using CoDC may have

been detected if the ATPG tool did not limit the number

of generated patterns.

Table IV compares the LoC testing method with the CoDC

method in terms of detecting S-CDC faults. The second and

third columns in this table show the total number of the S-

CDC faults and the size of its testable subset, respectively.

When we used the commercial ATPG tool to generate

test patterns satisfying the first two requirements of the

CoDC method, no pattern was generated for some faults.

We considered these faults to be untestable S-CDC faults,

and reported the remaining faults (for which the ATPG tool

could generate at least one test pattern) as testable S-CDC

faults. The numbers reported in the third column can be

viewed as an upper bound on the number of testable S-CDC

faults for each benchmark. For some faults, the ATPG tool

can generate a number of test patterns satisfying the first two

conditions of the CoDC method, but when we simulate the

circuit using these patterns, the third condition may not be

satisfied. However, these faults may actually be untestable.

In such cases, the corresponding faults are reported as being

undetected but testable. Again, if the ATPG tool did not limit

the number of generated patterns for each fault, and was able

to generate all test patterns for a fault, we would have been

able to simulate all the generated patterns for each fault, and

report the exact number of untestable faults.

The fourth column in the table lists the number of S-CDC

faults detected by the traditional (baseline) LoC method. The

fifth column lists the total number of S-CDC faults detected

by the CoDC method. As discussed above, the numbers

reported in this column are a lower bound in each case on

the number of detected faults for the proposed method.

The sixth column reports the number of S-CDC faults

detected by the top-off ATPG step. Note that if the ATPG

tool would allow us to generate all patterns that satisfy the

first two requirements of the CoDC method for each fault

(instead of limiting to 255 patterns), no additional S-CDC

faults would be detected by top-off ATPG. However, since

we can target only 255 patterns per fault in the previous

ATPG step, top-off ATPG can sometimes provide additional

patterns that satisfy all three conditions of the CoDC method.

Finally, the last column lists the total number of S-CDC

faults detected by a combination of the CoDC method and

top-off ATPG. For the benchmark circuits considered here,

the traditional LoC method only detects 37% of the testable

S-CDC faults on average. On the other hand, the CoDC

method detects over 62% of these faults; in combination

with top-off ATPG, 66% of S-CDC faults are detected.

Detected slow-to-rise transition faults: Another set of

results that we present in this section investigates the number

of slow-to-rise transition faults detected by each method.

Table V shows the total number of slow-to-rise transition

faults in each benchmark as well as the number of detected

faults using either the LoC method or the CoDC method

with top-off ATPG. As shown in this table, the number of

detected faults in both cases are nearly equal. These results

and the results in Table IV show that the proposed CoDC

method with top-off ATPG enables us to detect a significant

number of S-CDC faults (66%) without adverse impact on

TDF coverage.

Pattern set: The next set of results compares the number

of test patterns generated by the LoC, CoDC, and top-off

ATPG methods. As shown in Table VI, with only 18% more

test patterns on average, a significantly higher percentage

of S-CDC faults can be detected by applying the CoDC

method.

4) Pattern Sampling Comparison: To assess the effective-

ness of the double-capture method, we used a commercial

ATPG tool to generate up to 255 patterns for each fault

satisfying the first two conditions of the CoDC method.

We then simulated the generated patterns to identify those

that also meet the third requirement of the CoDC method.

However, extracting results for all faults takes a considerable

amount of CPU time if all 255 test patterns are considered

for each fault. Therefore, we performed sampling with

different sample sizes to speed up logic simulation by over

an order of magnitude.

Tables VII-IX show the results of pattern sampling for

three benchmarks. Table VII shows the number of detected

slow-to-rise faults for different pattern sets (n = 5, 10, 15,

and 20). As shown in this table, for each benchmark, the

number of slow-to-rise faults detected by CoDC + top-off

ATPG for different sample size is nearly equal to the number

of slow-to-rise faults detected with sample size of 255 (Table

V). Therefore, sampling has no significant impact on the

number of slow-to-rise faults detected by CoDC + top-off

ATPG.

12

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on September 30,2020 at 19:51:44 UTC from IEEE Xplore. Restrictions apply.

Table IV
DETECTED S-CDC FAULTS

Additional # Detected by
S-CDC # Testable # Detected by # Detected by detected by CoDC method +

Benchmark faults S-CDC faults LoC method CoDC method top-off ATPG top-off ATPG

ac97_ctrl 734 136 28 113 0 113
mem_ctrl 342 340 57 183 1 184
usb_funct 1,382 1,218 425 553 8 561

ethernet(1-2) 560 40 26 32 0 32
ethernet(2-3) 206 196 136 104 40 144
ethernet(3-1) 1,918 1,755 228 985 3 988

Table V
DETECTED SLOW-TO-RISE FAULTS

Additional # Detected by
Slow-to-rise # Detected by # Detected by detected by CoDC method +

Benchmark faults LoC method CoDC method top-off ATPG top-off ATPG

ac97_ctrl 36,510 33,653 14,730 18,929 33,659
mem_ctrl 38,082 17,940 8,330 9,604 17,934
usb_funct 40,076 35,429 25,595 9,837 35,432

ethernet(1-2) 160,394 155,205 20,135 135,068 155,203
ethernet(2-3) 160,394 155,199 29,162 126,041 155,203
ethernet(3-1) 160,394 155,228 68,693 86,536 155,229

Table VI
COMPARISON OF NUMBER OF TEST PATTERNS

CoDC +

Top-off top-off %

Benchmark LoC CoDC ATPG ATPG increase

ac97_ctrl 389 82 371 453 16

mem_ctrl 790 160 767 927 17

usb_funct 812 542 718 1,260 55

ethernet(1-2) 4,695 30 4,762 4,792 2

ethernet(2-3) 4,710 104 4,839 4,943 5

ethernet(3-1) 4,704 961 4,406 5,367 14

As expected, the number of S-CDC faults detected by

the CoDC method with sampling is less compared to the

case when 255 patterns are considered per fault. As shown

in Table VIII, the number of detected S-CDC faults using

CoDC + top-off ATPG for n = 5 is, on average, 51%

of the number of the S-CDC faults detected using CoDC

and top-off ATPG without sampling. For a sample size of

n = 20, on average 71% of the S-CDC faults that were

detected without sampling are still detected, and the number

of faults detected is considerably larger than that detected

by traditional LoC/TDF ATPG.

VII. CONCLUSIONS

We have analyzed the effect of CDC faults in multi clock-

domain circuits and developed fault models to represent

the incorrect behavior of these circuits in the presence of

CDC faults. We have also developed a test-pattern selection

method for detecting CDC faults. Experimental results for

the IWLS’05 benchmark circuits show that the patterns ex-

tracted by the proposed method detects a significant number

of the CDC faults compared with the patterns generated by

commercial ATPG tools. In addition, the results show that

by using a combination of the proposed method and top-

off ATPG, almost all testable TDFs can be detected with a

negligible overhead in the number of test patterns.

In this study, our goal was to leverage a commercial ATPG

tool to extract a set of test patterns that detect S-CDC faults

and TDFs. As a continuation of this work, we are developing

a more efficient, custom ATPG tool to target S-CDC faults.

REFERENCES

[1] Y. Feng, Z. Zhou, D. Tong, and X. Cheng, “Clock domain
crossing fault model and coverage metric for validation of
SoC design,” in Proc. Design Automation & Test in Europe
Conf., Mar. 2007, pp. 1–6.

[2] R. Ginosar, “Fourteen ways to fool your synchronizer,” in
Proc. Intl. Symp. Asynchronous Circuits and Systems, May
2003, pp. 89–96.

[3] M. Cole and D. Cohen, “Staying in sync,” Electronics, vol. 5,
no. 3, pp. 42–45, June-July 2007.

[4] “Clock domain crossing - Closing the loop on clock domain
function implementation problems,” Cadence Design Sys-
tems, Tech. Rep., 2004, ”http://w2.cadence.com/whitepapers/
cdc wp.pdf” (last accessed 9 June, 2011).

[5] N. Hand, “The need for an automated clock-domain
crossing verification solution,” Mentor Graphics, Tech. Rep.,
May 2006, ”http://www.mentor.com/products/fv/techpubs/
emulation-systems-f1fc6a19-9e95-4fd0-8d84-d5e7cf0fc12a-dt?
selid=28966” (last accessed 9 June, 2011).

[6] S. Sarwary and S. Verma, “Critical clock-domain-crossing
bugs,” Electronics Design, Strategy, News, pp. 55–60, April
2008.

[7] C. Kwok, V. Gupta, and T. Ly, “Using assertion-based ver-
ification to verify clock domain crossing signals,” in Proc.
Design and Verification Conf., Feb. 2003, pp. 654–659.

13

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on September 30,2020 at 19:51:44 UTC from IEEE Xplore. Restrictions apply.

Table VII
SAMPLING RESULTS: NO. OF DETECTED SLOW-TO-RISE FAULTS FOR DIFFERENT PATTERN SETS

Benchmark Method n = 5 n = 10 n = 15 n = 20

CoDC 10,990 12,743 13,786 14,448

ac97_ctrl Top-off 22,671 20,917 19,873 19,215

CoDC + top-off 33,661 33,660 33,659 33,663

CoDC 5,145 6,307 6,521 6,729

mem_ctrl Top-off 12,787 11,631 11,412 11,205

CoDC + top-off 17,932 17,938 17,933 17,934

CoDC 21,865 23,618 24,052 24,465

usb_funct Top-off 13,566 11,812 11,376 10,963

CoDC + top-off 35,431 35,430 35,428 35,428

Table VIII
SAMPLING RESULTS: NO. OF DETECTED S-CDC FAULTS FOR DIFFERENT PATTERN SETS

Benchmark Method n = 5 n = 10 n = 15 n = 20

CoDC 62 73 79 83

ac97_ctrl Top-off 21 12 6 8

CoDC + top-off 83 85 85 91

CoDC 47 68 78 84

mem_ctrl Top-off 41 13 13 4

CoDC + top-off 88 81 91 88

CoDC 233 328 388 424

usb_funct Top-off 283 197 149 112

CoDC + top-off 516 525 537 536

Table IX
SAMPLING RESULTS: COMPARISON BETWEEN NO. OF TEST PATTERNS FOR DIFFERENT PATTERN SETS

Benchmark Method n = 5 n = 10 n = 15 n = 20

CoDC 61 69 71 75

ac97 ctrl Top-off 365 369 373 370

CoDC + Top-off 426 438 444 445

CoDC 46 64 71 75

mem ctrl Top-off 767 800 811 781

CoDC + Top-off 813 864 882 856

CoDC 228 323 383 418

usb funct Top-off 768 744 722 749

CoDC + Top-off 996 1,067 1,105 1,167

[8] T. Kapschitz and R. Ginosar, “Formal verification of synchro-
nizers,” in Correct Hardware Design and Verification Meth-
ods, ser. Lecture Notes in Computer Science, D. Borrione and
W. Paul, Eds. Springer, 2005, vol. 3725, pp. 359–362.

[9] B. Li and C. Kwok, “Automatic formal verification of clock
domain crossing signals,” in Proc. Asia and South Pacific
Design Automation Conf., Jan. 2009, pp. 654–659.

[10] M. Litterick, “Pragmatic simulation-based verification of
clock domain crossing signals and jitter using SystemVerilog
assertions,” in Proc. Design and Verification Conf., Feb. 2006,
pp. 1–6.

[11] C. Leong et al., “Built-in clock domain crossing (CDC) test
and diagnosis in GALS systems,” in Proc. Intl. Symp. Design
and Diagnostics of Electronic Circuits and Systems, Apr.
2010, pp. 72–77.

[12] T. Ly, N. Hand, and C. Kwok, “Formally verifying clock
domain crossing jitter using assertion-based verification,” in
Proc. Design and Verification Conf., 2004.

[13] M. Su, Y. Chen, and X. Gao, “A general method to make
multi-clock system deterministic,” in Proc. Design Automa-
tion & Test in Europe Conf., Mar. 2010, pp. 1480–1485.

[14] C. Albrecht, “IWLS 2005 benchmarks,” in Proc. Intl. Wksp.
Logic Synthesis, 2005.

14

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on September 30,2020 at 19:51:44 UTC from IEEE Xplore. Restrictions apply.

