

ESTA: An Efficient Method for Reliability Enhancement of RT-Level Designs

Naghmeh Karimi, Shahrzad Mirkhani, and Zainalabedin Navabi

Electrical and Computer Engineering Department
Faculty of Engineering – Campus #2 – University of Tehran, 14399 Tehran, IRAN

{naghmeh, shahrzad}@cad.ece.ut.ac.ir; navabi@ece.neu.edu

Abstract
This paper proposes a novel and efficient method for
RT Level online testing. Our method makes every RT-
Level resource online-testable, and guarantees high
single stuck-at fault detection (i.e., high reliability)
with low area/latency overhead. This method uses
available resources in their dead intervals (the
intervals during which a resource is not being used) to
test active resources. The area and/or latency
overhead are due to concurrent operation of active and
inactive resources. This method is evaluated by fault
simulating several benchmark designs before and after
applying the proposed algorithm. Experimental results
show that after applying our method, online fault
coverage is significantly improved.

1. Introduction
Testing the functionality of a circuit during its

normal operation has become a necessity of today’s
complex circuits. Online and concurrent testing [1] are
used for testing a circuit during its operation. Unlike
offline testing methods, e.g. traditional BIST
structures, online testing methods detect a fault in
faulty circuits as soon as the fault occurs. This
increases the reliability of the systems, and at the same
time, eliminates the need for the system to be halted
during the test process.

Online testing methods are grouped into different
categories. In one category, a set of pre-computed test
vectors and their expected circuit responses is stored
using extra hardware. In these methods, during the
normal operation of the circuit, when a circuit input
matches any of the stored test vectors, the circuit
output is observed and compared with the
corresponding pre-computed output to determine if the
circuit is faulty or not. These methods require
excessive hardware overhead for storing a sufficient
number of test vectors and expected responses [1].

Another approach uses pseudo-random vector
generators (e.g., LFSR’s) and signature analyzers (e.g.,
MISR’s) to generate test vectors and compress the
outputs. Since the sequence of applying test vectors is
specified here, the time to apply all necessary test

vectors (test latency) is unpredictable (often excessive).
The other disadvantage of these methods is that they
cannot be applied to sequential circuits [2].

In another category of online testing methods, the
test process can be done by simply duplicating the
computation of disjoint components and voting on the
results. Although these methods are naturally fault-
secure [3], they bear a large hardware overhead. This is
because several parts of a circuit (sometimes the whole
circuit) must be duplicated for test purposes [4].
However, due to the extensive hardware overhead in
the resource duplication methods, algorithmic
duplication methods have been proposed. In the
algorithmic duplication methods, the operations (as
opposed to resources) are duplicated. This results in
less, but still considerable hardware overhead [4-5].
Three examples of these techniques have been
presented in [5, 6, and 18].

Another online testing method deals with utilizing
coarse behavioral invariance either inherent in the
design [7-8] or imposed through error detection codes
[9-10], in order to check the correctness of the design
functionality. In this case, while the circuit computes
f(x) for input x, an additional function, g(x), with a
well-defined, simple-to-check relation to f(x) is also
computed. The operational health of the circuit is
verified by checking that the relation between f(x) and
g(x) holds. Coarse behavioral design invariance is
inherently available in limited domains [11].

In our method, the reliability of the design is
increased by utilizing the available resources in their
dead intervals (the clock cycles during which they are
inactive). By applying this method, the hardware
overhead is much less than those required by the
mentioned duplication and memory-based methods.

At the same time, since we use the normal inputs of
the circuit as test vectors, test latency of the circuit is
much lower than the online testing methods using pre-
computed or pseudo random inputs. Another advantage
of this method is that the testable circuit has 100%
resource coverage, i.e., all resources of the circuit are
tested exactly once per an input to output flow. This
method can be applied to a wide variety of designs. It

15th Asian Test Symposium (ATS'06)
0-7695-2628-4/06 $20.00 © 2006

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on September 30,2020 at 20:02:51 UTC from IEEE Xplore. Restrictions apply.

can be applied to both sequential and combinational
circuits, and both non-linear and linear circuits.

Section 2 discusses our proposed method (called
ESTA). In this section, a brief description of ESTA is
presented followed by the discussion of its algorithm.
Section 3 shows the results of applying ESTA on
several designs. The performance of ESTA is
evaluated by performing fault simulation before and
after applying this method on each test case. Since
applying test vectors to a circuit during its normal
operation follows the uniform distribution, we apply
random test vectors to our test cases. We have gained
an average of 76.5% online fault coverage in this
method by applying random test vectors. Before
applying this method, the online fault coverage of each
circuit was 0%.

2. Efficient Self Testing Algorithm
(ESTA)

This section presents our novel method for online
testing. This method uses a small amount of test
hardware overhead. It is a self test method, because the
resulting circuit is tested during its normal operation.
This circuit has 100% resource coverage, i.e., all
resources are tested once when applying an input
vector to the circuit. The goal of this method is to alter
the original circuit controller such that the whole
circuit becomes self-testable with a minimum
area/latency overhead.

2.1. Overview
In ESTA the online testing hardware is inserted

into the circuit during the RTL synthesis process, while
several other methods insert it after synthesis process
[2, 14-15]. These methods result in a large area/latency
overhead, since in synthesis process, resources are
scheduled and bound regardless of testability
considerations.

Using our method results in a less area/latency
overhead compared with methods that insert test circuit
after the synthesis process. Utilizing each free resource
for testing other resources in each clock cycle leads to
less area overhead. In addition, testing resources
concurrently with their normal operation leads to less
test time (latency) and less required registers.

Advantages of our method are in its wide range of
hardware structures it applies to, and its hardware
requirement. Many proposed algorithms require
excessive hardware overhead for storing their test
vectors. On the other hand, the time of applying all of
these test vectors to the CUT is unpredictable. Our
method uses the normal input vectors of the CUT as
their test vectors (if possible) in order to detect its

existing faults. Therefore, test latency noticeably
decreases compared with other methods. The proposed
algorithm is described in the sections that follow.

2.2. Algorithm Description
In the synthesis process, the behavioral description

of a circuit is converted to a Data Flow Graph (DFG).
This graph is a directed graph with operations as
vertices and data variables as arcs. The operations of
this DFG are scheduled and then bound to available
resources. Applying ESTA on the resulted scheduled
and bound DFG makes this DFG online testable.

In this section, we discuss ESTA algorithm. We
consider two constraints for constructing an online
testable design: T-area and T-delay. T-area deals with
the resources that are added to a DFG for self checking
purposes, while T-delay deals with the added number
of clock cycles to a DFG for self checking purposes.

2.2.1. T-area Constraint
First, consider the case in which T-area is our

constraint. In each clock cycle, there can be free and
busy resources of the same type. Let Fk and Bk be the
number of free and busy resources of type k
respectively. If in a clock cycle, Fk is not zero, we can
test a free resource with a busy one or another free
resource of the same type. Test process for these two
RUTs (Resource Under Test) is performed by applying
the same set of inputs to both resources and comparing
their results with a simple equation operator. If the
results are equal, there is a chance that both of these
resources are fault free. Otherwise, one of these
resources is faulty (Scenario 1).

If there is only one resource of kind k, a different
procedure must be taken. In this case, since there are
no other resources to test that unique resource, we have
to add test hardware (e.g., LFSR/MISR) to test this
resource individually. Test hardware is added if the
corresponding cost is lower than resource duplication
cost (Scenario 2).

To test a free resource with a busy one, the input
data of the busy resource is applied to the free one.
Otherwise (if both RUT’s are free resources in that
clock cycle) the controller must provide random data
for both RUT’s. Random data generation is achieved
by either inserting a global random pattern generator or
using other busy resources input data in the previous or
current clock cycles. For using busy resources in the
previous clock cycles, we have to use registers for
saving data. The above scenario happens if in at least
one clock, there are one or more free resources.

Scenario 1 happens when at least in one clock
cycle, there are one or more free resources. If at all
times all resources of the same type are busy (i.e., Fk is

15th Asian Test Symposium (ATS'06)
0-7695-2628-4/06 $20.00 © 2006

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on September 30,2020 at 20:02:51 UTC from IEEE Xplore. Restrictions apply.

*8

*5*1

*6*2

*3

*4 *7+4 +8

+3 +7

+6+2

+5-1 Clock Cycle 1

Clock Cycle 2

Clock Cycle 3

Clock Cycle 4

a b c d e f g h i j

k l

m

n o

+1
im0 im1 im2

im3 im4

always 0), then we expand the total latency by an extra
clock cycle. Obviously in this clock cycle, all busy
resources in the previous cycles are free and can be
tested with each other (Scenario 3). Scenario 3 is also
applied if after processing the whole DFG, there is at
least one not-tested resource using the above scenarios.

2.2.2. T-delay Constraint
Considering T-Delay as the constraint is different

from considering the T-area constraint only if there is
more than one resource of type k and all these
resources are busy during all clock cycles, or when
after processing the whole DFG, there is at least one
not-tested resource. Under this condition, we add
[]mn ÷ resources to the data path, where n is the
number of busy resources of type k in each clock cycle
and m is the latency of the given DFG. Adding these
extra resources to the original DFG results in a DFG
that can be tested using Scenario 1.

2.3. Resource Usage Graph
According to the above discussion, at each clock

cycle we need to know the number of free and busy
resources. Since a DFG represents only the busy
resources during the circuit operation, we present
another flow graph which can demonstrate the number
of free resources as well as busy ones. We call this
flow graph the Resource Usage Graph (RUG). RUG is
a graph in which vertices represent the available
resources and the edges represent the data transfer
between these resources.

Consider the scheduled and bound DFG shown in
Fig. 1. All operations of this circuit are performed
during four clock cycles. Shown below are binding of
operations of this DFG to adders (A1 and A2),
multipliers (M1 and M2), and subtractor (S1):

 Operations +1 to +4 are bound to A1
 Operations +5 to +8 are bound to A2
 Operations *1 to *4 are bound to M1
 Operations *5 to *7 are bound to M2
 Operation *8 is bound to M3
 Operation -1 are bound to S1

Therefore, the datapath consists of two adders,
three multipliers and one subtractor. Figure 2 shows
the corresponding RUG of the DFG in Fig. 1.

Graph of Fig. 2 shows utilization of available
resources versus time. Applying the method in Section
2.2 on the RUG of Fig. 2, various scenarios discussed
regarding T-area and T-delay constraints will be done.
In this RUG, adders A1 and A2 are used in clock cycles
1 to 4. Then we have to add one ([]42 ÷) extra adder
for testing A1 and A2.

In this case if A1 and the extra adder are tested in
clock cycle i (1 ≤ i ≤ 4), A2 and the extra adder can be
tested in any clock cycle other than i (with Scenario 1).
In Fig. 2, only one subtractor is available. Thus to test
this resource, we have to add another subtractor to the
list of available resources or test logic (e.g., LFSR and
MISR) around S1, depending on their cost. In the
former case (extra subtractor), S1 can be tested with
the extra subtractor using S1 input data during clock
cycle 1. They can also be tested with random input data
in clock cycles 2, 3 or 4. However in the latter case
(test logic) S1 can be tested in cycles 2, 3 or 4.

As for the multipliers of Fig. 2, in clock cycle 1, M3

is free while M1 and M2 are busy. According to
Scenario 1, one of M1 or M2 can be tested with M3 in
clock cycle 1 and the other one can be tested with M3
in clock cycle 3 or 4. Note that in clock cycle 2 none of
the multipliers can be tested since all of them are busy.

If we change the constraint from T-delay to T-area
in the above example, testing the adders requires
extension of the latency of the RUG from 4 to 5 clock
cycles. In clock cycle 5 adders A1 and A2 can be tested
using Scenario 1. Testing S1, M1, M2 and M3 are done
the same as the T-delay constraint.

2.4. ESTA Pseudo Code
Figure 3 shows a pseudo code for our proposed

method. The following definitions are used in this
pseudo code.

• Ncc: Total clock cycles in the original RUG. Figure 1. A simple DFG

Figure 2. RUG constructed from the simple DFG

*
*

+
+

-

*
*
*

+
+

-

*
*

*

+

+

-

*

*

*

+

+

-

*

A1

A2

M1

M2

M3

S1

time

resource

15th Asian Test Symposium (ATS'06)
0-7695-2628-4/06 $20.00 © 2006

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on September 30,2020 at 20:02:51 UTC from IEEE Xplore. Restrictions apply.

• Ntypes: Number of available resource types.
• Fk: Number of k-type free resources in the current

clock cycle (1 ≤ k ≤ Ntypes).
• Bk: Number of k-type busy resources in the current

clock cycle.
• Nk: Number of k-type resource instances. Note that

Nk is constant during all clock cycles. (Nk=Fk+Bk at
each clock cycle)

• NTFk: Number of k-type free resources that have not
been tested yet.

• NTBk: Number of k-type busy resources that have not
been tested yet.

• Rk,j: The jth k-type resource instance (1≤ k ≤ Ntypes and
1≤ j ≤ Nk).
Note that parameters Fk, Bk, NTFk, and NTBk are re-

calculated at the beginning of each clock cycle.
In the simple RUG shown in Fig. 2, k is 1, 2, and 3

for the adder, multiplier, and subtractor, respectively.
The above parameters are evaluated as follows.

• Ncc = 4.
• Ntypes = 3.
• Fk: in clock cycles 1 to 4

o F1: 0, 0, 0, 0
o F2: 1, 0, 2, 1
o F3: 0, 1, 1, 1

• Bk: in clock cycles 1 to 4
o B1: 2, 2, 2, 2
o B2: 2, 3, 1, 2
o B3: 1, 0, 0, 0

• Nk:
o N1: 2
o N2: 3
o N3: 1

• NTFk: Is determined during the algorithm.
• NTBk: Is determined during the algorithm.
• Rk,j:

o Adder: R11, R12
o Multiplier: R21, R22, R23
o Subtractor: R31

This algorithm uses a RUG as input, processes the
RUG from clock cycle 1 to Ncc, and results a modified
RUG. In the output RUG all resource instances are
testable. This algorithm treats each operation
independently, and for an operation all its instances are
simultaneously processed. Therefore, while processing
one resource type, the other resource types are ignored.

As shown in Fig. 3, for each resource type, the
clock cycles of the given RUG are analyzed
consecutively until all instances of that resource type
are made testable. When every instance of a resource is
made testable, it is marked as tested (i.e., Rj,k.tested =
true). Depending on the status of the analyzed
resources (busy or free in the specified clock cycle)
two strategies can be applied:

• Strategy 1 - One busy with one free resource:
This strategy is to make one busy (free) resource
instance (clock cycle c) testable using another free
(busy) resource instance (in clock cycle c).

• Strategy 2 - One free with another free resource:
This strategy is to make one free resource instance
testable using another free resource instance.

This algorithm is developed based on the following

heuristics:
At each clock cycle if any resource instance can be

made testable (using another available instance), it will
be made testable, i.e., the process of making instances
testable is done as soon as possible.

The priority of Strategy 1 is higher than Strategy 2.
Also, the priority of making a busy instance testable
using a free not-tested instance is higher than making a
busy instance testable using a free tested instance
(since in the former case, two resource instance are
made testable simultaneously).

Based on the above heuristics and the two strategies
discussed above, we will describe the details of each
strategy. In Strategy 1 (testing a busy resource with a
free resource), three cases can occur:
• NTBk = Fk: Here, each not-tested busy instance can

be paired with a corresponding free instance.

Figure 3. The proposed pseudo code for ESTA

for k=1 to Ntypes loop
Lable1:cc := 1;
 while (true) loop
 Calculate Fk and Bk in clock cycle=cc;
 Calculate NTFk from Fk; Calculate NTBk from Bk;
 if (Nk>1) { --Nk=Bk+Fk
 if (NTBk /= 0) {
 if (Fk /= 0) {
 Strategy1: test free-busy and mark both as tested;
 Recalculate Fk, Bk, NTFk, and NTBk; }}
 if (NTFk /= 0) {
 if (Bk /= 0) {
 Strategy1: test busy-free and mark both as tested;
 Recalculate Fk, Bk, NTFk, and NTBk;
 else --Bk=0
 Strategy2: test free-free and mark both as tested;
 Recalculate Fk, and NTFk; }}
 else --Nk = 1
 if (not Rk,1.tested) {
 if (Area(Test_Logic) > Area(Rk,1)) {
 Nk++;
 Goto Lable1;
 else
 Add Test_Logic around Rk,1;
 Rk,1.tested := true; }}}
 cc++; --go to the next clock cycle
 if ((cc > Ncc) OR (all Rk,j.tested are true)) break;
 end loop;
 if (not(all Rk,j.tested are true)) {
 –there are still not tested resources which were always busy
 if (constraint = T_Delay) {
 Add  ccNNTB ÷ resources of type k to Nk; Goto Lable1;

 else --constraint = T_Area
 Ncc++; --add one extra cycle
 Strategy2: Test free-free resources and check both as tested;
 Recalculate Fk, Bk, NTFk, and NTBk; }}
end loop;

15th Asian Test Symposium (ATS'06)
0-7695-2628-4/06 $20.00 © 2006

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on September 30,2020 at 20:02:51 UTC from IEEE Xplore. Restrictions apply.

• NTBk > Fk: Here, only a number of not-tested busy
instances (equal to Fk) can be made testable. The
rest of not tested busy instances (NTBk-Fk) will be
postponed to consequent clock cycles.

• NTBk < Fk: Here, all not-tested busy instances can
be paired with free (not-tested has priority)
instances. If there are still free not-tested
instances, according to the above heuristics, they
can be paired with tested busy instances. In this
case, even more than one free instance can be
tested with a busy instance. If the number of tested
busy instances is zero, the remaining not-tested
free instances will be paired with each other (two
or more instances can be tested with each other).

In Strategy 2 (testing a free resource with another

free resource), the number of busy instances is zero.
Thus, a free instance should be made testable using
another free instance. We can have two scenarios here:
• NTFk is even (= 2n): Two not-tested instances are

paired, i.e., we have n different pairs.
• NTFk is odd (=2n+1): We make n testable pairs

using 2n not-tested instances and one testable pair
using one remaining not tested instance with one
tested instance. We are sure that we have at least
one tested instance, because according to the
algorithm we have more than one instance here.

Strategies 1 and 2, discussed above, deal with
Scenario 1 in the pseudo code shown in Fig. 3. The rest
of this pseudo code relates to Scenarios 2 and 3 which
were discussed in details in Section 2.2.

As we mentioned earlier in this section, the goal of
our algorithm is to modify the circuit’s controller to
produce extra control signals in order to apply test data
to resources during the circuit’s normal operation and
verify the correctness of the whole circuit. Figure 4
shows the corresponding RTL circuit before (4-a) and
after (4-b) applying our proposed algorithm to the
RUG in Fig. 2. Note that, for the sake of clarity, not all
registers and routings are shown, and only the
necessary parts of the circuit are depicted here.

3. Experimental Results
To evaluate our method, we have applied the

proposed algorithm to several benchmarks. The
selected benchmarks are a 6th order FIR filter, a 3rd
order IIR filter, a Discrete Cosine Transform (DCT),
Wavelet, Paulin, and differential equation circuits [13].

The selected RT-level benchmarks have been
synthesized and then the corresponding gate-level
circuits have been fault simulated using DSM-FS (a
VHDL fault simulator) [12] with several (between 200
and 1000) random test vectors. Note that we have used
single stuck-at fault model in our measurements.

We have inserted online testing hardware into each
RT-level benchmark using ESTA (this is done in the
pre-synthesized model). Note that considering T-area
or T-delay constraints in our benchmarks has the same
results due to the structures of these benchmarks.

After synthesizing the modified designs, we fault
simulated the resulted gate-level circuit and then
measured fault coverage considering the inserted
output pin as the only primary output. The results are
shown in Table 1. Note that in ESTA, we did not
measure fault coverage for other primary outputs.

As it can be seen in Table 1, the fault coverage
before applying ESTA (Off-line fault coverage (before
ESTA) column in Table 1) is much more than the fault
coverage after applying it (On-line fault coverage
(ESTA) column in Table 1). The off-line fault coverage
with all circuit outputs being observable is very
different from on-line coverage with only the error flag
being observable. The off-line coverage in this table is
only for reference, and not to be compared with our on-
line results. In off-line case a test instrument is
required to test the design or an extra logic (BIST
logic), which can only apply pseudo-random vectors,
must be added to the design. But in our on-line case,
without using any extra test instrument or without
using pseudo-random test vectors, the circuit can be
tested during its normal operation. Note that in the

Figure 4-b. ESTA RTL structure of the circuit in Fig. 4-a

Figure 4-a. RTL structure of the RUG in Fig. 2

15th Asian Test Symposium (ATS'06)
0-7695-2628-4/06 $20.00 © 2006

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on September 30,2020 at 20:02:51 UTC from IEEE Xplore. Restrictions apply.

normal circuit (before applying ESTA) no faults can be
detected during the normal operation, i.e. the online
fault coverage in this situation is 0%.

To have a better measure of performance of on-line
testing, we have used fault security parameter [11].
This parameter is the ratio of the number of detected
faults in ESTA to the number of detected faults in off-
line method. We have used the same set of test vectors
for both off-line and ESTA methods. As it can be seen
in Table 1, this parameter is about 76% in our test
cases. It is obvious that in each duplication-based on-
line testing method, the faults on primary inputs of the
circuit cannot be detected. However, the results in
Table 1 include primary input faults.

Comparing our results with results of other on-line
testing methods, we have less area and delay overhead
than [4, 16]. As shown in Table 1 in some test cases
due to register retiming the critical path delay has been
decreased. ESTA fault coverage cannot be compared
with several methods [4, 5, 11, 16, and 17] since they
have not reported their resulted fault coverage or they
use a set of test cases using only one instance for each
resource type, which is not suitable for our method.

4. Conclusions
This paper presents an online testing method for

error detection and reliability. This method uses free
resources for adding testability to circuit under test. Its
main advantage is low area overhead as compared with
on-line test methods using resource duplication. This
method guarantees testing every resource during a flow
of data from circuit inputs to its outputs.

References
[1] M. Bushnell, V. Agrawal, “Essentials of Electronic

Testing for Digital Memory and Mixed Signal VLSI
Circuits,” Kluwer Academic Publishers, 2000.

[2] I. Voyiatzis, A. Paschalis, “R-CBIST: An Effective
RAM-Based Input Vector Monitoring Concurrent BIST
Technique,” in Proc. of ITC, 1998.

[3] M. Nicolaidis, Y. Zorian, “On-line Testing for VLSI- A
compendium of approaches,” JETTA Journal, Vol. 12,
No. 1-2, 1988, pp. 7-20.

[4] P. Oikonomakos, M. Zwolinski, “Using High-Level
Synthesis to Implement On-line Testability,” IEEE
Real-Time Embedded System Workshop, 2001.

[5] S. N. Hamilton, A. Orailoglu, “On-Line Test for Fault-
Secure Fault Identification,” IEEE Trans. on VLSI
Systems, Vol. 8, No. 4, August 2000.

[6] A. Orailoglu, R. Karri, “Automatic Synthesis of Self-
Recovering VLSI Systems,” IEEE Trans. on Computers,
Vol. 45, No. 2, February 1996.

[7] A. Chatterjee, R. K. Roy, “Concurrent Error Detection
in Nonlinear Digital Circuits with Applications to
Adaptive Filters,” in Proc. of International Conference
on Computer Design, 1993, pp. 606-609.

[8] I. Bayraktaroglu, A. Orailoglu, “Concurrent Test for
Digital Linear Systems,” IEEE Trans. on Computer-
Aided Design of Integrated Circuits and Systems, Vol.
20, 2001, pp. 1775-1791.

[9] C. Stroud, et al., “A parametrized VHDL Library for
On-line Testing,” in Proc. International Test
Conference, 1997, pp.479-488.

[10] C. Zeng, N. Saxena, E. J. McCluskey, “Finite State
Machine Synthesis with Concurrent Error Detection,”
in Proc. ITC, 1999, pp. 672-679.

[11] Y. Makris, I. Bayraktaroglu, A. Orailoglu, ”Enhancing
Reliability of RTL Controller-Datapath Circuits via
Invariant-Based Concurrent Test,” IEEE Trans. on
Reliability, Vol. 53, No. 2, 2004.

[12] Z. Navabi, et al., “Using RT Level Component
Descriptions for Single Stuck-at Hierarchical Fault
Simulation,” JETTA Journal, Vol. 20, 2004.

[13] M. T. Lee, High-Level Test Synthesis of Digital VLSI
Circuits, Artech House, 1997.

[14] I. Voyiatzis, et al., “An Efficient Comparative
Concurrent Built-in Self Test Technique,” in Proc.
ATS, 1995.

[15] I. Voyiatzis, et al., “A Concurrent Built-In Self Test
Architecture Based on a Self-Testing RAM,” IEEE
Trans. on Reliability, Vol. 54, No. 1, March 2005.

[16] P. Oikonomakos, et al., “Versatile High-level Synthesis
of Self-checking Datapaths Using an On-line
Testability Metric,” in Proc. DATE Conference, 2003.

[17] R. Karri, B. Iyer, “Introspection: A Register Transfer
Level Technique for Concurrent Error Detection and
Diagnosis in Data Dominated Designs,” ACM Trans.
on Design Automation of Electronic Systems, Vol. 6,
No. 4, 2001, pp. 501-515.

[18] C. Bolchini, et al., “Concurrent Error Detection at
Architectural Level,” Proc. intl symposium on System
synthesis, 1998, pp. 72-75.

* In these cases, the delay has been decreased after applying ESTA that is because of register re-timing.

Circuit Name Area before/after
ESTA

Area
overhead

Delay before/after
ESTA

Off-line Fault Coverage
(Before ESTA)

On-line Fault
Coverage (ESTA)

Fault security
parameter

6th order FIR filter 378/453 19.8% 12.17/11.8* 92% 62% 77.62%
3rd order IIR filter 406/475 16.9% 14.17/15.09 95% 61% 73.13%

DCT 588/701 19.2% 35.24/18.83* 85% 75% 80.5%
Wavelet 700/752 7.4% 34.78/38.84 91% 70% 81.67%
Paulin 462/568 22.9% 32.53/35.89 80% 56% 70%

Diff. Eq. 461/565 22.5% 32.50/36.06 81% 51% 76%

Table 1. Applying ESTA on several benchmarks.

15th Asian Test Symposium (ATS'06)
0-7695-2628-4/06 $20.00 © 2006

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on September 30,2020 at 20:02:51 UTC from IEEE Xplore. Restrictions apply.

