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Abstract 
This paper proposes a novel and efficient method for 
RT Level online testing. Our method makes every RT-
Level resource online-testable, and guarantees high 
single stuck-at fault detection (i.e., high reliability) 
with low area/latency overhead. This method uses 
available resources in their dead intervals (the 
intervals during which a resource is not being used) to 
test active resources. The area and/or latency 
overhead are due to concurrent operation of active and 
inactive resources. This method is evaluated by fault 
simulating several benchmark designs before and after 
applying the proposed algorithm. Experimental results 
show that after applying our method, online fault 
coverage is significantly improved.  

1. Introduction 
Testing the functionality of a circuit during its 

normal operation has become a necessity of today’s 
complex circuits. Online and concurrent testing [1] are 
used for testing a circuit during its operation. Unlike 
offline testing methods, e.g. traditional BIST 
structures, online testing methods detect a fault in 
faulty circuits as soon as the fault occurs. This 
increases the reliability of the systems, and at the same 
time, eliminates the need for the system to be halted 
during the test process. 

Online testing methods are grouped into different 
categories. In one category, a set of pre-computed test 
vectors and their expected circuit responses is stored 
using extra hardware. In these methods, during the 
normal operation of the circuit, when a circuit input 
matches any of the stored test vectors, the circuit 
output is observed and compared with the 
corresponding pre-computed output to determine if the 
circuit is faulty or not. These methods require 
excessive hardware overhead for storing a sufficient 
number of test vectors and expected responses [1]. 

Another approach uses pseudo-random vector 
generators (e.g., LFSR’s) and signature analyzers (e.g., 
MISR’s) to generate test vectors and compress the 
outputs. Since the sequence of applying test vectors is 
specified here, the time to apply all necessary test 

vectors (test latency) is unpredictable (often excessive). 
The other disadvantage of these methods is that they 
cannot be applied to sequential circuits [2]. 

In another category of online testing methods, the 
test process can be done by simply duplicating the 
computation of disjoint components and voting on the 
results. Although these methods are naturally fault-
secure [3], they bear a large hardware overhead. This is 
because several parts of a circuit (sometimes the whole 
circuit) must be duplicated for test purposes [4]. 
However, due to the extensive hardware overhead in 
the resource duplication methods, algorithmic 
duplication methods have been proposed. In the 
algorithmic duplication methods, the operations (as 
opposed to resources) are duplicated. This results in 
less, but still considerable hardware overhead [4-5]. 
Three examples of these techniques have been 
presented in [5, 6, and 18]. 

Another online testing method deals with utilizing 
coarse behavioral invariance either inherent in the 
design [7-8] or imposed through error detection codes 
[9-10], in order to check the correctness of the design 
functionality. In this case, while the circuit computes 
f(x) for input x, an additional function, g(x), with a 
well-defined, simple-to-check relation to f(x) is also 
computed. The operational health of the circuit is 
verified by checking that the relation between f(x) and 
g(x) holds. Coarse behavioral design invariance is 
inherently available in limited domains [11]. 

In our method, the reliability of the design is 
increased by utilizing the available resources in their 
dead intervals (the clock cycles during which they are 
inactive). By applying this method, the hardware 
overhead is much less than those required by the 
mentioned duplication and memory-based methods. 

At the same time, since we use the normal inputs of 
the circuit as test vectors, test latency of the circuit is 
much lower than the online testing methods using pre-
computed or pseudo random inputs. Another advantage 
of this method is that the testable circuit has 100% 
resource coverage, i.e., all resources of the circuit are 
tested exactly once per an input to output flow. This 
method can be applied to a wide variety of designs.  It 
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can be applied to both sequential and combinational 
circuits, and both non-linear and linear circuits. 

Section 2 discusses our proposed method (called 
ESTA). In this section, a brief description of ESTA is 
presented followed by the discussion of its algorithm. 
Section 3 shows the results of applying ESTA on 
several designs. The performance of ESTA is 
evaluated by performing fault simulation before and 
after applying this method on each test case. Since 
applying test vectors to a circuit during its normal 
operation follows the uniform distribution, we apply 
random test vectors to our test cases. We have gained 
an average of 76.5% online fault coverage in this 
method by applying random test vectors. Before 
applying this method, the online fault coverage of each 
circuit was 0%.  

2. Efficient Self Testing Algorithm 
(ESTA) 

This section presents our novel method for online 
testing. This method uses a small amount of test 
hardware overhead. It is a self test method, because the 
resulting circuit is tested during its normal operation. 
This circuit has 100% resource coverage, i.e., all 
resources are tested once when applying an input 
vector to the circuit. The goal of this method is to alter 
the original circuit controller such that the whole 
circuit becomes self-testable with a minimum 
area/latency overhead. 

2.1. Overview 
In ESTA the online testing hardware is inserted 

into the circuit during the RTL synthesis process, while 
several other methods insert it after synthesis process 
[2, 14-15]. These methods result in a large area/latency 
overhead, since in synthesis process, resources are 
scheduled and bound regardless of testability 
considerations. 

Using our method results in a less area/latency 
overhead compared with methods that insert test circuit 
after the synthesis process. Utilizing each free resource 
for testing other resources in each clock cycle leads to 
less area overhead. In addition, testing resources 
concurrently with their normal operation leads to less 
test time (latency) and less required registers. 

Advantages of our method are in its wide range of 
hardware structures it applies to, and its hardware 
requirement. Many proposed algorithms require 
excessive hardware overhead for storing their test 
vectors. On the other hand, the time of applying all of 
these test vectors to the CUT is unpredictable. Our 
method uses the normal input vectors of the CUT as 
their test vectors (if possible) in order to detect its 

existing faults. Therefore, test latency noticeably 
decreases compared with other methods. The proposed 
algorithm is described in the sections that follow. 

2.2. Algorithm Description 
In the synthesis process, the behavioral description 

of a circuit is converted to a Data Flow Graph (DFG). 
This graph is a directed graph with operations as 
vertices and data variables as arcs. The operations of 
this DFG are scheduled and then bound to available 
resources. Applying ESTA on the resulted scheduled 
and bound DFG makes this DFG online testable. 

In this section, we discuss ESTA algorithm. We 
consider two constraints for constructing an online 
testable design: T-area and T-delay. T-area deals with 
the resources that are added to a DFG for self checking 
purposes, while T-delay deals with the added number 
of clock cycles to a DFG for self checking purposes. 

2.2.1. T-area Constraint 
First, consider the case in which T-area is our 

constraint. In each clock cycle, there can be free and 
busy resources of the same type. Let Fk and Bk be the 
number of free and busy resources of type k 
respectively. If in a clock cycle, Fk is not zero, we can 
test a free resource with a busy one or another free 
resource of the same type. Test process for these two 
RUTs (Resource Under Test) is performed by applying 
the same set of inputs to both resources and comparing 
their results with a simple equation operator. If the 
results are equal, there is a chance that both of these 
resources are fault free. Otherwise, one of these 
resources is faulty (Scenario 1). 

If there is only one resource of kind k, a different 
procedure must be taken. In this case, since there are 
no other resources to test that unique resource, we have 
to add test hardware (e.g., LFSR/MISR) to test this 
resource individually. Test hardware is added if the 
corresponding cost is lower than resource duplication 
cost (Scenario 2). 

To test a free resource with a busy one, the input 
data of the busy resource is applied to the free one. 
Otherwise (if both RUT’s are free resources in that 
clock cycle) the controller must provide random data 
for both RUT’s. Random data generation is achieved 
by either inserting a global random pattern generator or 
using other busy resources input data in the previous or 
current clock cycles. For using busy resources in the 
previous clock cycles, we have to use registers for 
saving data. The above scenario happens if in at least 
one clock, there are one or more free resources. 

Scenario 1 happens when at least in one clock 
cycle, there are one or more free resources. If at all 
times all resources of the same type are busy (i.e., Fk is 
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always 0), then we expand the total latency by an extra 
clock cycle. Obviously in this clock cycle, all busy 
resources in the previous cycles are free and can be 
tested with each other (Scenario 3). Scenario 3 is also 
applied if after processing the whole DFG, there is at 
least one not-tested resource using the above scenarios.  

2.2.2. T-delay Constraint 
Considering T-Delay as the constraint is different 

from considering the T-area constraint only if there is 
more than one resource of type k and all these 
resources are busy during all clock cycles, or when 
after processing the whole DFG, there is at least one 
not-tested resource. Under this condition, we add 
[ ]mn ÷  resources to the data path, where n is the 
number of busy resources of type k in each clock cycle 
and m is the latency of the given DFG. Adding these 
extra resources to the original DFG results in a DFG 
that can be tested using Scenario 1. 

2.3. Resource Usage Graph 
According to the above discussion, at each clock 

cycle we need to know the number of free and busy 
resources. Since a DFG represents only the busy 
resources during the circuit operation, we present 
another flow graph which can demonstrate the number 
of free resources as well as busy ones. We call this 
flow graph the Resource Usage Graph (RUG). RUG is 
a graph in which vertices represent the available 
resources and the edges represent the data transfer 
between these resources. 

Consider the scheduled and bound DFG shown in 
Fig. 1. All operations of this circuit are performed 
during four clock cycles. Shown below are binding of 
operations of this DFG to adders (A1 and A2), 
multipliers (M1 and M2), and subtractor (S1): 

 Operations +1 to +4 are bound to A1 
 Operations +5 to +8 are bound to A2 
 Operations *1 to *4 are bound to M1 
 Operations *5 to *7 are bound to M2 
 Operation *8 is bound to M3 
 Operation -1 are bound to S1 

 
 

 
 
 
 
 
 
 
 
 

Therefore, the datapath consists of two adders, 
three multipliers and one subtractor. Figure 2 shows 
the corresponding RUG of the DFG in Fig. 1. 

Graph of Fig. 2 shows utilization of available 
resources versus time. Applying the method in Section 
2.2 on the RUG of Fig. 2, various scenarios discussed 
regarding T-area and T-delay constraints will be done. 
In this RUG, adders A1 and A2 are used in clock cycles 
1 to 4. Then we have to add one ( [ ]42 ÷ ) extra adder 
for testing A1 and A2. 

In this case if A1 and the extra adder are tested in 
clock cycle i (1 ≤ i ≤ 4), A2 and the extra adder can be 
tested in any clock cycle other than i (with Scenario 1). 
In Fig. 2, only one subtractor is available. Thus to test 
this resource, we have to add another subtractor to the 
list of available resources or test logic (e.g., LFSR and 
MISR) around S1, depending on their cost. In the 
former case (extra subtractor), S1 can be tested with 
the extra subtractor using S1 input data during clock 
cycle 1. They can also be tested with random input data 
in clock cycles 2, 3 or 4. However in the latter case 
(test logic) S1 can be tested in cycles 2, 3 or 4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
As for the multipliers of Fig. 2, in clock cycle 1, M3 

is free while M1 and M2 are busy. According to 
Scenario 1, one of M1 or M2 can be tested with M3 in 
clock cycle 1 and the other one can be tested with M3 
in clock cycle 3 or 4. Note that in clock cycle 2 none of 
the multipliers can be tested since all of them are busy. 

If we change the constraint from T-delay to T-area 
in the above example, testing the adders requires 
extension of the latency of the RUG from 4 to 5 clock 
cycles. In clock cycle 5 adders A1 and A2 can be tested 
using Scenario 1. Testing S1, M1, M2 and M3 are done 
the same as the T-delay constraint. 

2.4. ESTA Pseudo Code 
Figure 3 shows a pseudo code for our proposed 

method. The following definitions are used in this 
pseudo code. 

• Ncc: Total clock cycles in the original RUG. Figure 1. A simple DFG 

Figure 2. RUG constructed from the simple DFG 
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• Ntypes: Number of available resource types. 
• Fk: Number of k-type free resources in the current 

clock cycle (1 ≤  k ≤ Ntypes). 
• Bk: Number of k-type busy resources in the current 

clock cycle. 
• Nk: Number of k-type resource instances. Note that 

Nk is constant during all clock cycles. (Nk=Fk+Bk at 
each clock cycle) 

• NTFk: Number of k-type free resources that have not 
been tested yet. 

• NTBk: Number of k-type busy resources that have not 
been tested yet. 

• Rk,j: The jth k-type resource instance (1≤ k ≤ Ntypes and 
1≤ j ≤ Nk). 
Note that parameters Fk, Bk, NTFk, and NTBk are re-

calculated at the beginning of each clock cycle. 
In the simple RUG shown in Fig. 2, k is 1, 2, and 3 

for the adder, multiplier, and subtractor, respectively. 
The above parameters are evaluated as follows. 

• Ncc = 4. 
• Ntypes = 3. 
• Fk: in clock cycles 1 to 4 

o F1: 0, 0, 0, 0 
o F2: 1, 0, 2, 1 
o F3: 0, 1, 1, 1 

• Bk: in clock cycles 1 to 4 
o B1: 2, 2, 2, 2 
o B2: 2, 3, 1, 2 
o B3: 1, 0, 0, 0 

• Nk:  
o N1: 2 
o N2: 3 
o N3: 1 

• NTFk: Is determined during the algorithm. 
• NTBk: Is determined during the algorithm. 
• Rk,j: 

o Adder: R11, R12 
o Multiplier: R21, R22, R23 
o Subtractor: R31 

This algorithm uses a RUG as input, processes the 
RUG from clock cycle 1 to Ncc, and results a modified 
RUG. In the output RUG all resource instances are 
testable. This algorithm treats each operation 
independently, and for an operation all its instances are 
simultaneously processed. Therefore, while processing 
one resource type, the other resource types are ignored. 

As shown in Fig. 3, for each resource type, the 
clock cycles of the given RUG are analyzed 
consecutively until all instances of that resource type 
are made testable. When every instance of a resource is 
made testable, it is marked as tested (i.e., Rj,k.tested = 
true). Depending on the status of the analyzed 
resources (busy or free in the specified clock cycle) 
two strategies can be applied: 

• Strategy 1 - One busy with one free resource: 
This strategy is to make one busy (free) resource 
instance (clock cycle c) testable using another free 
(busy) resource instance (in clock cycle c). 

• Strategy 2 - One free with another free resource: 
This strategy is to make one free resource instance 
testable using another free resource instance. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This algorithm is developed based on the following 

heuristics: 
At each clock cycle if any resource instance can be 

made testable (using another available instance), it will 
be made testable, i.e., the process of making instances 
testable is done as soon as possible. 

The priority of Strategy 1 is higher than Strategy 2. 
Also, the priority of making a busy instance testable 
using a free not-tested instance is higher than making a 
busy instance testable using a free tested instance 
(since in the former case, two resource instance are 
made testable simultaneously). 

Based on the above heuristics and the two strategies 
discussed above, we will describe the details of each 
strategy. In Strategy 1 (testing a busy resource with a 
free resource), three cases can occur: 
• NTBk = Fk: Here, each not-tested busy instance can 

be paired with a corresponding free instance. 

Figure 3. The proposed pseudo code for ESTA

for k=1 to Ntypes loop 
Lable1:cc := 1; 
   while (true) loop 
      Calculate Fk and Bk in clock cycle=cc; 
      Calculate NTFk from Fk; Calculate NTBk from Bk; 
      if (Nk>1) { --Nk=Bk+Fk 
         if (NTBk /= 0) { 
            if (Fk /= 0) { 
               Strategy1: test free-busy and mark both as tested; 
                Recalculate Fk, Bk, NTFk, and NTBk; }} 
         if (NTFk /= 0) { 
            if (Bk /= 0) { 
               Strategy1: test busy-free and mark both as tested; 
               Recalculate Fk, Bk, NTFk, and NTBk; 
            else --Bk=0 
               Strategy2: test free-free and mark both as tested; 
               Recalculate Fk, and NTFk; }} 
      else --Nk = 1 
         if (not Rk,1.tested) { 
            if (Area(Test_Logic) > Area(Rk,1)) { 
               Nk++; 
               Goto Lable1; 
            else 
               Add Test_Logic around Rk,1; 
               Rk,1.tested := true; }}} 
      cc++; --go to the next clock cycle 
      if ((cc > Ncc) OR (all Rk,j.tested are true))   break; 
   end loop; 
   if (not(all Rk,j.tested are true)) { 
      –there are still not tested resources which were always busy 
      if (constraint = T_Delay) { 
         Add  ccNNTB ÷  resources of type k to Nk; Goto Lable1; 

      else --constraint = T_Area 
         Ncc++; --add one extra cycle 
         Strategy2: Test free-free resources and check both as tested; 
         Recalculate Fk, Bk, NTFk, and NTBk; }} 
end loop; 
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• NTBk > Fk: Here, only a number of not-tested busy 
instances (equal to Fk) can be made testable. The 
rest of not tested busy instances (NTBk-Fk) will be 
postponed to consequent clock cycles. 

• NTBk < Fk: Here, all not-tested busy instances can 
be paired with free (not-tested has priority) 
instances. If there are still free not-tested 
instances, according to the above heuristics, they 
can be paired with tested busy instances. In this 
case, even more than one free instance can be 
tested with a busy instance. If the number of tested 
busy instances is zero, the remaining not-tested 
free instances will be paired with each other (two 
or more instances can be tested with each other). 

 
In Strategy 2 (testing a free resource with another 

free resource), the number of busy instances is zero. 
Thus, a free instance should be made testable using 
another free instance. We can have two scenarios here: 
• NTFk is even (= 2n):  Two not-tested instances are 

paired, i.e., we have n different pairs. 
• NTFk is odd (=2n+1): We make n testable pairs 

using 2n not-tested instances and one testable pair 
using one remaining not tested instance with one 
tested instance. We are sure that we have at least 
one tested instance, because according to the 
algorithm we have more than one instance here. 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Strategies 1 and 2, discussed above, deal with 
Scenario 1 in the pseudo code shown in Fig. 3. The rest 
of this pseudo code relates to Scenarios 2 and 3 which 
were discussed in details in Section 2.2.  

As we mentioned earlier in this section, the goal of 
our algorithm is to modify the circuit’s controller to 
produce extra control signals in order to apply test data 
to resources during the circuit’s normal operation and 
verify the correctness of the whole circuit. Figure 4 
shows the corresponding RTL circuit before (4-a) and 
after (4-b) applying our proposed algorithm to the 
RUG in Fig. 2. Note that, for the sake of clarity, not all 
registers and routings are shown, and only the 
necessary parts of the circuit are depicted here. 

3. Experimental Results 
To evaluate our method, we have applied the 

proposed algorithm to several benchmarks. The 
selected benchmarks are a 6th order FIR filter, a 3rd 
order IIR filter, a Discrete Cosine Transform (DCT), 
Wavelet, Paulin, and differential equation circuits [13]. 

The selected RT-level benchmarks have been 
synthesized and then the corresponding gate-level 
circuits have been fault simulated using DSM-FS (a 
VHDL fault simulator) [12] with several (between 200 
and 1000) random test vectors. Note that we have used 
single stuck-at fault model in our measurements. 

We have inserted online testing hardware into each 
RT-level benchmark using ESTA (this is done in the 
pre-synthesized model). Note that considering T-area 
or T-delay constraints in our benchmarks has the same 
results due to the structures of these benchmarks. 

After synthesizing the modified designs, we fault 
simulated the resulted gate-level circuit and then 
measured fault coverage considering the inserted 
output pin as the only primary output. The results are 
shown in Table 1. Note that in ESTA, we did not 
measure fault coverage for other primary outputs. 

As it can be seen in Table 1, the fault coverage 
before applying ESTA (Off-line fault coverage (before 
ESTA) column in Table 1) is much more than the fault 
coverage after applying it (On-line fault coverage 
(ESTA) column in Table 1). The off-line fault coverage 
with all circuit outputs being observable is very 
different from on-line coverage with only the error flag 
being observable. The off-line coverage in this table is 
only for reference, and not to be compared with our on-
line results. In off-line case a test instrument is 
required to test the design or an extra logic (BIST 
logic), which can only apply pseudo-random vectors, 
must be added to the design. But in our on-line case, 
without using any extra test instrument or without 
using pseudo-random test vectors, the circuit can be 
tested during its normal operation. Note that in the 

Figure 4-b. ESTA RTL structure of the circuit in Fig. 4-a

Figure 4-a. RTL structure of the RUG in Fig. 2 
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normal circuit (before applying ESTA) no faults can be 
detected during the normal operation, i.e. the online 
fault coverage in this situation is 0%.  

To have a better measure of performance of on-line 
testing, we have used fault security parameter [11]. 
This parameter is the ratio of the number of detected 
faults in ESTA to the number of detected faults in off-
line method. We have used the same set of test vectors 
for both off-line and ESTA methods. As it can be seen 
in Table 1, this parameter is about 76% in our test 
cases. It is obvious that in each duplication-based on-
line testing method, the faults on primary inputs of the 
circuit cannot be detected. However, the results in 
Table 1 include primary input faults. 

Comparing our results with results of other on-line 
testing methods, we have less area and delay overhead 
than [4, 16]. As shown in Table 1 in some test cases 
due to register retiming the critical path delay has been 
decreased. ESTA fault coverage cannot be compared 
with several methods [4, 5, 11, 16, and 17] since they 
have not reported their resulted fault coverage or they 
use a set of test cases using only one instance for each 
resource type, which is not suitable for our method. 

4. Conclusions 
This paper presents an online testing method for 

error detection and reliability. This method uses free 
resources for adding testability to circuit under test. Its 
main advantage is low area overhead as compared with 
on-line test methods using resource duplication. This 
method guarantees testing every resource during a flow 
of data from circuit inputs to its outputs. 
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* In these cases, the delay has been decreased after applying ESTA that is because of register re-timing. 

Circuit Name Area before/after 
ESTA 

Area 
overhead 

Delay before/after 
ESTA 

Off-line Fault Coverage  
(Before ESTA) 

On-line Fault 
Coverage (ESTA) 

Fault security 
parameter 

6th order FIR filter 378/453 19.8% 12.17/11.8* 92% 62% 77.62% 
3rd order IIR filter 406/475 16.9% 14.17/15.09 95% 61% 73.13% 

DCT 588/701 19.2% 35.24/18.83* 85% 75% 80.5% 
Wavelet 700/752 7.4% 34.78/38.84 91% 70% 81.67% 
Paulin 462/568 22.9% 32.53/35.89 80% 56% 70% 

Diff. Eq. 461/565 22.5% 32.50/36.06 81% 51% 76% 

Table 1. Applying ESTA on several benchmarks. 
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