CMSC 628: Introduction to Mobile Computing

Nilanjan Banerjee

University of Maryland Baltimore County nilanb@umbc.edu http://csee.umbc.edu/~nilanb/teaching/628/

Introduction to Mobile Computing

1

Today's lecture

- Demo on using the SensorManager and the LocationManager.
- More discussion on Sensors

Two types of sensors on the android platform

- Hardware sensors
 - Physical sensors present on the phone
 - Accelerometers, temperature, gyroscope
- Software sensors
 - Virtual sensors that are built on top of hardware sensors.
 - Orientation sensors --- accelerometer + gyroscope?

Sensor type exported by the Android framework

- Motion Sensors
 - Accelerometers, gravity, gyroscope, linear acceleration, rotation vector
- Position Sensors
 - Magnetic field sensors, orientation sensors, proxmity sensors
- Environmental Sensors
 - Ambient temperature, light, pressure, humidity, device temperature

Motion Sensors

TYPE_ACCELEROMETER	SensorEvent.values[0]	Acceleration force along the x axis (including gravity).	m/s ²
	SensorEvent.values[1]	Acceleration force along the y axis (including gravity).	
	SensorEvent.values[2]	Acceleration force along the z axis (including gravity).	
TYPE_GRAVITY	SensorEvent.values[0]	Force of gravity along the x axis.	m/s ²
	SensorEvent.values[1]	Force of gravity along the y axis.	
	SensorEvent.values[2]	Force of gravity along the z axis.	

Motion Sensors

TYPE_GYROSCOPE	SensorEvent.values[0]	Rate of rotation around the x axis.	rad/s
	SensorEvent.values[1]	Rate of rotation around the y axis.	
	SensorEvent.values[2]	Rate of rotation around the z axis.	
TYPE_LINEAR_ACCELERATION	SensorEvent.values[0]	Acceleration force along the x axis (excluding gravity).	m/s ²
	SensorEvent.values[1]	Acceleration force along the y axis (excluding gravity).	
	SensorEvent.values[2]	Acceleration force along the z axis (excluding gravity).	

Motion Sensors

TYPE_ROTATION_VECTOR	SensorEvent.values[0]	Rotation vector component along the x axis (x * sin(θ/2)).	Unitless
	SensorEvent.values[1]	Rotation vector component along the y axis (y * sin(θ/2)).	
	SensorEvent.values[2]	Rotation vector component along the z axis (z * sin(θ/2)).	
	SensorEvent.values[3]	Scalar component of the rotation vector (($\cos(\theta/2)$). ¹	

Accelerometers

- Pros:
 - Cheap sensor (from an energy perspective)
 - Can be used for relative motion detection, posture etc.
 - Every device has this sensor
- Cons
 - Very noisy
 - Component of g- attached to the sensor
- Can apply filtering techniques to minimize noise in the accelerometer data

Accelerometers