Nilanjan Banerjee is a Professor at University of Maryland, Baltimore County. He is also an Associate Director of Cybersecurity in Manufacturing at UMBC.
He is an expert in mobile and sensor systems with focus on designing end-to-end cyber-physical systems with applications to physical
rehabilitation, physiological monitoring, and home energy management systems. He is also an expert in cybersecurity for embedded and cyber-physical systems.
Presently his research focuses on two broard areas: (1) Wearable Sensing and Analytics for Physiological Sensing; and (2) Cybersecurity for Manufacturing and Supply Chain Management.
His research is funded by the National Science Foundation, National Insitutes of Health, Office of Naval Research, Army Research Lab, Microsoft, Department of Defense, and the Technology
Development Corporation. He has published more than 60 peer-reviewed conference and journal articles in top conferences including
MobiSys, IPSN, Mobicom, Ubicomp, RTSS, Sensors, IEEE Transactions on Networking, IEEE Transactions on Multi-scale Computing, and
IEEE Sensors. He is a National Science Foundation CAREER awardee and has received a Microsoft Research Software Engineering Innovations Award,
UMBC Up and Coming Inventor, a UMBC Innovation Collaborative, a UMBC Mid-Career Excellence Awardee, a Yahoo! Outstanding Dissertation Award, and a Best
Undergraduate Thesis award.
He is interested in commercializing his reseach products. He is the co-founder and CEO of Tanzen Medical, Inc. and he is the CSO of
LifePlus, Inc. His research and commercialization effort has been highlited in several news outlets including the Baltimore Sun, the Washington Post, and the MIT technology review.
He holds a Ph.D. and a M.S. in Computer Science from the University of Massachusetts Amherst and a BTech. (Hons.) from Indian Institute of Technology, Kharagpur.
Funded by the Army Research Laboratory. Description Coming Soon...
Description Coming Soon.
We study power-supply sidechannel leakage on FPGAs and ASICs through hardware experimentaion and simulation. Our goal is discovery of new side-channel volnerabilites along with techniques and EDA tools for coutermeasures in embedded systems. We are espcially focused on security for low-power embedded systems.
Our goal is to make it easier for home residents to make smart choices about managing energy. Renewable technologies, such as solar and wind, are becoming more widely adopted, however, current best practices for energy use and conservation do not necessarily apply in green homes. This project seeks to better understand energy generation and consumption in green homes, and to explore automated techniques for helping residents to achieve better utilization of resources. This includes building demand response systems, energy analytics for home energy usage, and visualization systems for home energy usage. Project website
PerEnergy2015 PMC 2014 IGCC2014 CHIEA2014 PerCom2014 BuildSys2013
An estimated 1.5 million individuals in the United States are hospitalized each year because of strokes, brain injuries and spinal cord injuries. Severe impairment such as paralysis, paresis, weakness and limited range of motion are common sequels resulting from these injuries, requiring extensive rehabilitation. This project is developing invisible sensing systems (using textile-based capacitive sensor arrays and micro-doppler radars) embedded into bed sheets, pillows, wheelchair pads, and clothing, for environmental control and physical therapy for such paralysis patients. The system detects gestures regardless of evolving environmental and patient conditions and provides explicit real-time feedback to the user. Through the use of low-cost and ultra-low power capacitive sensing and micro-radars built into headgears, the system reduces hospital visits and therapy costs.
In a number of projects, we are working on developing hierarchical processing systems. These include combining processors of different capabilities and energy consumption, as well as platforms with varying capabilities and energy consumption into a single integrated system that has a wide operating range and low energy consumption. We have applied the concept to developing systems for gait analysis, sensor microserver design, solar power nodes for emergency control.
Sidewalk navigation for the visually impaired, especially those who use wheelchairs, can be a daunting task. While laws advocate proper standards for accessibility-compatible sidewalks, several develop cracks and obstacles over time and many have curbs and steps. Emerging wearable devices such as Google glasses provide an opportunity for continuous vision-based systems that can navigate individuals around accessibility issues on sidewalks. Unfortunately, real-time vision-based navigation systems are scarce. The problem stems from a basic limitation of vision algorithms---without a priori contextual information on a scene, it is impossible for a vision algorithm to search for objects of interest. To address this critical problem, this project proposes a cyber-physical system that augments machine vision algorithms with a priori contextual information collected using human crowdsourcing. The key idea is to use humans in conjunction with custom system build a rich library of information on scenes with accessibility issues. This library can then be used to design context aware machine vision algorithms that can efficiently detect accessibility problems in real-time. Project website