Set Theory

Set Theory

Properties of Sets

Disproofs and Algebraic Proofs

Reading (Epp's textbook) 6.1 – 6.3

Set Theory

- A set is a collection of elements.
- \succ If S is a set,
 - The notation $x \in S$ means that x is an element of S.
 - The notation $x \notin S$ means that x is not an element of S.
- There is only one set with no elements, named the empty set and denoted by the symbol Ø.
- ➢ If A and B are sets, then A is called as subset of B, written
 A ⊆ B, if, and only if, every element of A is also an element of B.
- $\succ \emptyset \subseteq A$ for any set A.
- ➤ Let A and B be sets. A is a proper subset of B, if, and only if, (⇔) 1) every element of A is in B ($A \subseteq B$), 2) but there is at least one element of B that is not in A.
- \succ If A ⊆ B, then B is called a superset of A, written B ⊇ A

Subsets: Proving Set Equality

Given sets A and B, A equals B, written A = B, if, and only if, every element of A is in B and every element of B is in A.

Symbolically: $A = B \iff A \subseteq B$ and $B \subseteq A$

> Example:

$$A = \{m \in Z \mid m = 2a \text{ for some } a \in Z\}$$
$$B = \{n \in Z \mid n = 2b - 2 \text{ for some } b \in Z\}$$

♦ Prove that $A \subseteq B$. (Method of Generalization)

- 1. Suppose *x* is a particular but arbitrarily chosen element of *A*.
- 2. We must show that $x \in B$. By definition of B, this means we must show that $x = 2 \times (some integer) 2$.

i.
$$x = 2a$$
.

- ii. Let b = a + 1. Does $b \in Z$?
- iii. Now we must check that $x = 2 \times b 2$.

Subsets: Proving Set Equality

Given sets A and B, A equals B, written A = B, if, and only if, every element of A is in B and every element of B is in A.

Symbolically: $A = B \iff A \subseteq B$ and $B \subseteq A$

> Example:

$$A = \{m \in Z \mid m = 2a \text{ for some } a \in Z\}$$
$$B = \{n \in Z \mid n = 2b - 2 \text{ for some } b \in Z\}$$

♦ Prove that $B \subseteq A$. (Method of Generalization)

- 1. Suppose x is a particular but arbitrarily chosen element of B.
- 2. We must show that $x \in A$. By definition of A, this means we must show that $x = 2 \times (some integer)$.

i. x = 2b - 2.

- ii. Let a = b 1. Does $a \in \mathbb{Z}$?
- iii. Now we must check that $x = 2 \times a$.

Partitions of Sets

Two sets are called **disjoint** if, and only if, they have no elements in common.

Symbolically: A and B are disjoint $\Leftrightarrow A \cap B = \emptyset$.

Sets A_1, A_2, A_3 ... are **mutually disjoint** if, and only if, no two sets A_i and A_j with distinct subscripts have any element in common. More precisely, for all *i*, *j* = 1, 2, 3, ...

 $A_i \cap A_j = \emptyset$ whenever $i \neq j$.

- > A finite or infinite collection of nonempty sets $\{A_1, A_2, A_3 \dots\}$ is a **partition** of set *A* if, and only if,
 - 1. A is the union of all the A_i
 - 2. The sets A_1, A_2, A_3 ... are mutually disjoint.

Power Sets

- P(A) "power set of A"
- \succ P(A) = {B | B \subseteq A} (contains all subsets of A)
- > Examples:
 - A = {x, y, z}
 P(A) = {Ø, {x}, {y}, {z}, {x, y}, {x, z}, {y, z}, {x, y, z}}
 - A = Ø

 $P(A) = \{\emptyset\}$

➢ If a set S contains n distinct elements, n∈N, we call S a finite set with cardinality |S| = n.

Cardinality of Power Sets

- Cardinality of power sets: $\circ |P(A)| = 2^{|A|}$
- Imagine each element in A has an "on/off" switch
- Each possible switch configuration in A corresponds to one element in 2^A

A	1	2	3	4	5	6	7	8
X	X	×	×	X	×	×	×	×
У	У	У	У	У	У	У	У	У
Z	Z	Z	Z	Z	Z	Z	Z	Z

Cartesian Products

- The symbol (a, b) denotes the ordered pair (ordered two-tuple). (a,b) = (c,d) means that a = c and b = d.
- ➢ In general two ordered n-tuples (x₁, x₂, ..., x_n) and (y₁, y₂, ..., y_n) are equal if, and only if, x₁ = y₁, x₂ = y₂, ..., x_n = y_n.

Note that:

- A×∅ = ∅
- Ø×A = Ø
- For non-empty sets A and B: $A \neq B \iff A \times B \neq B \times A$
- If |A| = n and |B| = m, $|A \times B|$ is $n \times m$
- ➤ Cartesian product of two or more sets is defined as: $A_1 \times A_2 \times \cdots \times A_n = \{(a_1, a_2 \dots a_n) \mid a_1 \in A_1, a_2 \in A_2, \dots, a_n \in A_n\}.$

Operations on Sets

Let sets A and B be subsets of a universal set U.

1. The **union** of A and B, denoted $A \cup B$, is the set of all elements that are in at least one of A or B.

Symbolically: $A \cup B = \{x \in U \mid x \in A \text{ or } x \in B\}.$

- 2. The **intersection** of *A* and *B*, denoted $A \cap B$, is the set of all elements that are common to both *A* and *B*. Symbolically: $A \cap B = \{x \in U \mid x \in A \text{ and } x \in B\}$.
- 3. The **difference** of *B* minus *A*, denoted B A, is the set of all elements that are in *B* and not *A*.

Symbolically: $B - A = \{x \in U \mid x \in B \text{ and } x \notin A\}.$

4. The complement of A, denoted A^c, is the set of all elements in U that are not in A.
Symbolically: A^c = {x ∈ U | x ∉ A }.

Properties of Sets

Theorem 6.2.1 Some Subset Relations

- ➤ Inclusion of Intersection: For all sets A and B,
 (a) $A \cap B \subseteq A$ and (b) $A \cap B \subseteq B$.
- > Inclusion in Union: For all sets A and B,

(a) $A \subseteq A \cup B$ and (b) $B \subseteq A \cup B$.

➤ Transitive Property of Subsets: For all sets A, B, and C,
if A ⊆ B and B ⊆ C, then A ⊆ C.

Properties of Sets

An **identity** is an equation that is universally true for all elements in some set.

Theorem 6.2.2 Set Identities (page 355)

Theorem 6.2.2(3)- *Distributive Laws:* For all sets, *A*, *B*, and *C*, (*a*) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ and (*b*) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Theorem 6.2.2(9) - *De Morgan's Laws:* For all sets A and B, (a) $(A \cup B)^c = A^c \cap B^c$ and (b) $(A \cap B)^c = A^c \cup B^c$.

Proving Distributivity of U

Prove that for all sets, A, B, and C,

 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Proof:

Suppose A, B, and C are sets.

1. Proof that $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$:

Case 1 (x \in A): Since $x \in A$, then $x \in A \cup B$ by definition of union and also $x \in A \cup C$ by definition of union.

Hence $x \in (A \cup B) \cap (A \cup C)$ by definition of intersection.

Case 2 ($x \in B \cap C$ **)**: Since $x \in B \cap C$, then $x \in B$ and $x \in C$ by definition of intersection.

Since $x \in B$, $x \in A \cup B$ and since $x \in C$, $x \in A \cup C$, both by definition of union.

Hence $x \in (A \cup B) \cap (A \cup C)$ by definition of intersection.

In both cases, $x \in (A \cup B) \cap (A \cup C)$.

Hence $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$ by definition of subset.

Proving Distributivity of U (Cont.)

Prove that for all sets, A, B, and C,

 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Proof continues:

2. Proof that $(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$:

Suppose $x \in (A \cup B) \cap (A \cup C)$. By definition of intersection, $x \in A \cup B$ and $x \in A \cup C$. Consider the two cases $x \in A$ and $x \notin A$.

Case 1 ($x \in A$ **)**: Since $x \in A$, we can immediately conclude that $x \in A \cup (B \cap C)$ by definition of union.

Case 2 ($x \notin A$ **)**: Since $x \in A \cup B$, x is in at least one of A or B. But x is not in A; hence x is in B. Similarly, since $x \in A \cup C$, x is in at least one of A or C. But x is not in A; hence x is in C. We have shown that both $x \in B$ and $x \in C$, and so by definition of intersection, $x \in B \cap C$. It follows by definition of union that $x \in A \cup (B \cap C)$.

In both cases $x \in A \cup (B \cap C)$. Hence, by definition of subset, $(A \cup B) \cap (A \cup C)$ $\subseteq A \cup (B \cap C)$.

Conclusion: From 1 and 2 we proved that $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

Spring 2018

De Morgan's Law

Prove that for all sets, A, B, and C,

 $(A \cap B)^c = A^c \cup B^c$

Proof:

Suppose A and B are sets. 1. Proof that $(A \cap B)^c \subseteq A^c \cup B^c$ If $x \in (A \cap B)^c$. [We must show that $x \in A^c \cup B^c$.] By definition of complement, $x \notin A \cap B$. But to say that $x \notin A \cap B$ means that it is false that (x is in A and x is in B). By De Morgan's laws of logic, this implies that x is not in A or x is not in B, which can be written $x \notin A$ or $x \notin B$. Hence $x \in A^c$ or $x \in B^c$ by definition of complement. It follows, by definition of union, that $x \in A^c \cup B^c$ [as was to be shown]. So $(A \cap B)^c \subseteq A^c \cup B^c$ by definition of subset.

De Morgan's Law

Proof continues:

2. Proof that $A^c \cup B^c \subseteq (A \cap B)^c$ If $x \in A^c \cup B^c$. [We must show that $x \in (A \cap B)^c$.] By definition of union, $x \in A^c$ or $x \in B^c$ By definition of complement, $x \notin A$ or $x \notin B$. In other words

it is false that (x is in A or x is in B).

By De Morgan's laws of logic, this implies that

x is not in A and x is not in B,

By definition of intersection can be written $x \notin A \cap B$.

Hence $x \in (A \cap B)^c$ by definition of complement [as was to be shown].

So $A^c \cup B^c \subseteq (A \cap B)^c$ by definition of subset.

Conclusion: Since both set containments, (1) and (2), have been proved, $(A \cap B)^c = A^c \cup B^c$ by definition of set equality.

Disproving an Alleged Set Property

Is the following set property true?

For all sets A, B, and C, $(A - B) \cup (B - C) = A - C$.

Disprove: Recall that to show a universal statement is false, it suffices to find a counterexample for which it is false.

Construct a concrete counterexample in order to confirm your answer.

 $(A-B)\cup(B-C)$

Algebraic Proofs of Set Identities

Construct an algebraic proof that for all sets A, B, and C, $(A \cup B) - C = (A - C) \cup (B - C).$

Solution:

Let *A*, *B*, and *C* be any sets. Then:

 $(A \cup B) - C = (A \cup B) \cap C^c$ by the set difference law $= C^c \cap (A \cup B)$ by the commutative law for \cap $= (C^c \cap A) \cup (C^c \cap B)$ by the distributive law $= (A \cap C^c) \cup (B \cap C^c)$ by the commutative law for \cap $= (A - C) \cup (B - C)$ by the set difference law.