Set Theory

» Set Theory
» Properties of Sets

» Disproofs and Algebraic Proofs

Reading (Epp’s textbook)
6.1-6.3
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Set Theory

> A setis a collection of elements.
> If S is a set,

= The notation x € S means that x is an element of S.
= The notation x € S means that x is not an element of S.

» There is only one set with no elements, named the empty set
and denoted by the symbol @.

> If A and B are sets, then A is called as subset of B, written
A <€ B, if, and only if, every element of A is also an element of
B

» J < Afor any set A.

» Let A and B be sets. A is a proper subset of B, if, and only if,
() 1) every element of Aisin B (A € B), 2) but there is at
least one element of B that is not in A.

» If A € B, then B is called a superset of A, written B 2 A
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Subsets: Proving Set Equality

» Given sets A and B, A equals B, written A = B, if, and only if,
every element of A isin B and every element of B isin A.

Symbolically: A =B & A€ B andBCc A

» Example:
A={meZ|m=2a forsomea € Z}
B={neZln=2b—-2forsomeb € 7}

** Prove that A € B. (Method of Generalization)
1. Suppose x is a particular but arbitrarily chosen element of A.
2. We must show that x € B. By definition of B, this means we must
show that x = 2 X (some integer) — 2.
I x =2a.
ii. Letb=a+ 1.Doesb € Z?
iii. Now we must checkthatx =2 X b — 2.
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Subsets: Proving Set Equality

» Given sets A and B, A equals B, written A = B, if, and only if,
every element of A isin B and every element of B isin A.

Symbolically: A =B & A€ B andBCc A

» Example:
A={meZ|m=2a forsomea € Z}
B={neZln=2b—-2forsomeb € 7}
** Prove that B € A. (Method of Generalization)
1. Suppose x is a particular but arbitrarily chosen element of B.

2. We must show that x € A. By definition of A, this means we must
show that x = 2 X (some integer).

L x=2b— 2.
ii. Leta=b—1.Doesa € Z?
iii. Now we must checkthatx = 2 X a.
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Partitions of Sets

» Two sets are called disjoint if, and only if, they have no
elements in common.
Symbolically: A and B are disjoint & AN B = Q.

» Sets Ay, A,, A5 ... are mutually disjoint if, and only if, no two
sets A; and A; with distinct subscripts have any element in
common. More precisely, forallj, j=1, 2, 3, ...

A; N Aj = @ whenever i # j.
» A finite or infinite collection of nonempty sets {4,4,,45 ...}
is a partition of set A if, and only if,

1. Ais the union of all the A;
2. The sets A4, A5, A5 ... are mutually disjoint.
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Power Sets

> P(A) “power set of A”
» P(A)={B | Bc A} (contains all subsets of A)
» Examples:
" A={xV, 7}
P(A)={D, {x}, {y}, {z}, {x, v}, {x, z}, {y, z}, {x, v, z}}
e A=U
P(A) = {<}
> If a set S contains n distinct elements, neN, we call S a finite
set with cardinality |S| = n.
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Cardinality of Power Sets

» Cardinality of power sets:
o |P(A)| = 2M

» Imagine each element in A has an “on/off” switch

» Each possible switch configuration in A corresponds to one
element in 22

A 1 2 3 4 5 6 7 8
X X X X X | X % X %
Y v vV vV vV ¥V ¥ V¥V V
zZ 2z z 2z 2z 2z Z 2z Z
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Cartesian Products

» The symbol (a, b) denotes the ordered pair (ordered two-tuple).
(a,b) = (c,d) meansthata = cand b = d.

» In general two ordered n-tuples (x1, X5, ..., X, ) and (¥4, V2, «ue, Vi )
are equal if, and only if, x; = y{, X2 = V5, ..., Xy = Vi
Note that:
e AXQPD =0
e UxA=
* For non-empty sets A and B: A#B <> AxB # BxA
e If[Al=nand |B|=m, |[AxB|isnXm

» Cartesian product of two or more sets is defined as:
Al X AZ X oo X An = {(al, a, ...an) | a; € Al,az (S Az, e, n € An}
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Operations on Sets

Let sets A and B be subsets of a universal set U.

1. The union of A and B, denoted AU B, is the set of all
elements that are in at least one of 4 or B.
Symbolically: AUB ={x € U | x € Aor x € B}.

2. The intersection of A and B, denoted 4 N B, is the set of all
elements that are common to both 4 and B.
Symbolically: ANB ={x €U |x € Aand x € B}.

3. The difference of B minus A, denoted B — A4, is the set of all
elements that are in B and not A.
Symbolically: B—A={x €U |x € Band x & A}.

4. The complement of 4, denoted A€, is the set of all elements
in U that are not in A.
Symbolically: A ={x e U |x & A }.
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Properties of Sets

Theorem 6.2.1 Some Subset Relations

» Inclusion of Intersection: For all sets A and B,
(a)ANnB<S Aand(b)AnBCB.

» Inclusion in Union: For all sets A and B,
(aJASAUBand (b)BES AU B.

» Transitive Property of Subsets: For all sets A, B, and C,
if ACS Band B < C, then A € C.
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Properties of Sets

An identity is an equation that is universally true for all elements
in some set.

» Theorem 6.2.2 Set Identities (page 355)

Theorem 6.2.2(3)- Distributive Laws: For all sets, A, B, and C,
(a) AU(BNC)=(AUB)n (AU C)and
(b)An(BUC)=(AnB)U(AnC).

Theorem 6.2.2(9) - De Morgan’s Laws: For all sets A and B,
(a) (AU B)“= A° N B¢ and
(b) (AN B)“= A° U B°.
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Proving Distributivity of U

Prove that for all sets, A, B, and C,
AUBNC)=(AUB)n (AUZC()

Proof:

Suppose A, B, and C are sets.

1. ProofthatAU(BNnC)S(AUB)N (AU C():

Case 1 (x € A): Since x € A, then x € A U B by definition of union and
also x € A U C by definition of union.

Hence x € (AU B) n (A U C) by definition of intersection.

Case 2 (x € B n C): Since x € BN C, then x € B and x € C by definition
of intersection.

Sincex€EB, x€ AU Bandsincex €C, x€ AU C, both by definition of
union.

Hence x € (AU B) n (A U C) by definition of intersection.

In both cases, x € (AU B) n (AU C).

Hence AU (BN C)<S (AU B) N (AU C) by definition of subset.
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Proving Distributivity of U (Cont.)

Prove that for all sets, A, B, and C,
AUBNC)=(AUB)n (AUC()

Proof continues:

2. Proofthat(AUB)Nn (AUC)S AU (Bn ():

Suppose x € (AU B) n (A U C). By definition of intersection, x E AU Band x €
A U C. Consider the two cases x € A and x £A.

Case 1 (x € A): Since x € A, we can immediately conclude thatx€ AU (B n ()
by definition of union.

Case 2 (x £A): Since x E AU B, x is in at least one of A or B. But x is not in

A; hence x is in B. Similarly, sincex EA U C, xis in at least one of A or C. But

x is notin A; hence x is in C. We have shown that both x € Band x € C, and

so by definition of intersection, x € B n C. It follows by definition of union that
XEAU(BnC().

In both cases x € A U (B n C). Hence, by definition of subset, (A U B) n (AU C)
CAU(Bn ().

Conclusion: From 1 and 2 we proved that AU (BN C)=(AUB) n (AU C).
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De Morgan’s Law

Prove that for all sets, A, B, and C,
(AN B)‘= A° U B*

Proof:
Suppose A and B are sets.
1. Proofthat(A N B)° € A° U B¢
If x E(A N B)“. [We must show that x € A°U B€.]
By definition of complement, x €4 N B.
But to say that x €A N B means that

it is false that (x isin A and x is in B).
By De Morgan’s laws of logic, this implies that

xisnotinAorxisnotinB,
which can be written x & A or x & B.

Hence x € A€ or x € B¢ by definition of complement. It follows, by
definition of union, that x € A° U B¢[as was to be shown].

So (AN B)° € A U B€ by definition of subset.
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De Morgan’s Law

Proof continues:

2. Proof that A U B € (AN B)*

If x € A° U B€. [We must show that x € (A N B)“.]

By definition of union, x € A or x € B¢

By definition of complement, x €A or x &B.

In other words
it is false that (xisin Aor xisinB).

By De Morgan’s laws of logic, this implies that
xisnotinAandxis notin B,

By definition of intersection can be written x €4 N B.

Hence x € (A N B)¢ by definition of complement [as was to be
shown].

So A° U B¢ € (A N B)¢ by definition of subset.

Conclusion: Since both set containments, (1) and (2), have been
proved, (A N B)“= A® U B¢ by definition of set equality.
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Disproving an Alleged Set Property

Is the following set property true?
For all setsA, B,andC, (A-B)U (B-C)=A-_C.

Disprove: Recall that to show a universal statement is false, it
suffices to find a counterexample for which it is false.

i [
{ R A R
Construct a concrete
c counterexample in order
L .
to confirm your answer.
(A-B)U (B-C) A-C
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Algebraic Proofs of Set Identities

Construct an algebraic proof that for all sets A, B, and C,
(AUB)-C=(A-C)U (B-C).

Solution:

Let A, B, and C be any sets. Then:
(AUB)-C=(AUB)n C* by the set difference law
=C°*n(AUB) by the commutative law for N
=(C*nA)U(C° nB) by the distributive law
=(AnC°)U(BnC° bythe commutative law for N
=(A-C)U (B-C) by the set difference law.
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