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Reading (Epp’s textbook) 
6.1 – 6.3 



Set Theory 
 A set is a collection of elements. 

 If 𝑆 is a set, 
 The notation 𝑥 ∈ 𝑆 means that 𝑥 is an element of 𝑆. 

  The notation 𝑥 ∉ 𝑆 means that 𝑥 is not an element of 𝑆.  

 There is only one set with no elements, named the empty set 
and denoted by the symbol ∅. 

 If A and B are sets, then A is called as subset of B, written 
𝐴 ⊆ 𝐵, if, and only if, every element of A is also an element of 
B. 

   A for any set A.  

 Let A and B be sets. A is a proper subset of B, if, and only if, 
() 1) every element of A is in B (𝐴 ⊆ 𝐵), 2) but there is at 
least one element of B that is not in A. 

 If A ⊆ B, then B is called a superset of A, written B ⊇ A 
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Subsets: Proving Set Equality  

 Given sets 𝐴 and 𝐵, 𝐴 equals 𝐵, written 𝐴 = 𝐵, if, and only if, 
every element of 𝐴 is in 𝐵 and every element of 𝐵 is in 𝐴. 

Symbolically: 𝐴 = 𝐵   𝐴 ⊆ 𝐵  and 𝐵 ⊆ 𝐴  

 Example:  
𝐴 = 𝑚 ∈ 𝑍  𝑚 = 2𝑎 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑎 ∈ 𝑍+ 
𝐵 = 𝑛 ∈ 𝑍  𝑛 = 2𝑏 − 2 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑏 ∈ 𝑍+ 
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 Prove that A ⊆ 𝐵. (Method of Generalization) 
1. Suppose 𝑥 is a particular but arbitrarily chosen element of 𝐴. 
2. We must show that 𝑥 ∈ 𝐵. By definition of 𝐵, this means we must 

show that 𝑥 = 2 × 𝑠𝑜𝑚𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 − 2. 
i. 𝑥 = 2𝑎. 
ii. Let b = 𝑎 + 1. Does b ∈ Z? 
iii. Now we must check that 𝑥 = 2 × 𝑏 − 2. 

 



Subsets: Proving Set Equality  

 Given sets 𝐴 and 𝐵, 𝐴 equals 𝐵, written 𝐴 = 𝐵, if, and only if, 
every element of 𝐴 is in 𝐵 and every element of 𝐵 is in 𝐴. 

Symbolically: 𝐴 = 𝐵   𝐴 ⊆ 𝐵  and 𝐵 ⊆ 𝐴  

 Example:  
𝐴 = 𝑚 ∈ 𝑍  𝑚 = 2𝑎 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑎 ∈ 𝑍+ 
𝐵 = 𝑛 ∈ 𝑍  𝑛 = 2𝑏 − 2 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑏 ∈ 𝑍+ 
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 Prove that B ⊆ 𝐴. (Method of Generalization) 

1. Suppose 𝑥 is a particular but arbitrarily chosen element of 𝐵. 

2. We must show that 𝑥 ∈ 𝐴. By definition of 𝐴, this means we must 
show that 𝑥 = 2 × 𝑠𝑜𝑚𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 . 

i. 𝑥 = 2𝑏 − 2. 

ii. Let a = 𝑏 − 1. Does a ∈ Z? 

iii. Now we must check that 𝑥 = 2 × 𝑎. 



Partitions of Sets 

 Two sets are called disjoint if, and only if, they have no 
elements in common. 

Symbolically: 𝐴 and 𝐵 are disjoint  𝐴 ∩ 𝐵 =  ∅. 

 Sets 𝐴1, 𝐴2, 𝐴3 … are mutually disjoint if, and only if, no two 
sets 𝐴𝑖 𝑎𝑛𝑑 𝐴𝑗 with distinct subscripts have any element in 

common. More precisely, for all i, j = 1, 2, 3, … 

𝐴𝑖 ∩ 𝐴𝑗 = ∅ whenever i ≠ j. 

 A finite or infinite collection of nonempty sets *𝐴1, 𝐴2, 𝐴3 … + 
is a partition of set 𝐴 if, and only if, 
1. 𝐴 is the union of all the 𝐴𝑖 

2. The sets 𝐴1, 𝐴2, 𝐴3 … are mutually disjoint. 
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Power Sets 

 P(A)           “power set of A” 

 P(A) = {B | B  A}     (contains all subsets of A) 

 Examples:  

 A = {x, y, z} 

P(A) = {, {x}, {y}, {z}, {x, y}, {x, z}, {y, z}, {x, y, z}} 

• A =  

P(A) = {} 

 If a set 𝑆 contains n distinct elements, 𝑛𝑵, we call 𝑆 a finite 
set with cardinality |𝑆|  =  𝑛. 
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Cardinality of Power Sets 

 Cardinality of power sets: 

o |𝑃(𝐴)| = 2|𝐴| 

 

 Imagine each element in A has an “on/off” switch 

 Each possible switch configuration in A corresponds to one 
element in 2A 
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Cartesian Products 
 The symbol (a, b) denotes the ordered pair (ordered two-tuple). 

(𝑎, 𝑏) = (𝑐, 𝑑) means that 𝑎 = 𝑐 and 𝑏 = 𝑑.  

 In general two ordered n-tuples (𝑥1,  𝑥2 , … , 𝑥𝑛 ) and (𝑦1,  𝑦2 , … , 𝑦𝑛 ) 
are equal if, and only if, 𝑥1 = 𝑦1, 𝑥2 = 𝑦2, … , 𝑥𝑛 = 𝑦𝑛.  

Note that: 

• A =  

• A =  

• For non-empty sets A and B: AB  AB  BA 

• If |A| = n and |B| = m, |A × B| is 𝑛 × 𝑚 

 Cartesian product of two or more sets is defined as: 
𝐴1 × 𝐴2 × ⋯ × 𝐴𝑛 = 𝑎1, 𝑎2 … 𝑎𝑛   𝑎1 ∈ 𝐴1, 𝑎2 ∈ 𝐴2, … , 𝑎𝑛 ∈ 𝐴𝑛+. 
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Operations on Sets 
Let sets 𝐴 and 𝐵 be subsets of a universal set 𝑈. 

1. The union of 𝐴 and 𝐵, denoted 𝑨 ∪ 𝑩, is the set of all 
elements that are in at least one of 𝐴 or 𝐵. 
Symbolically: 𝐴 ∪ 𝐵 = 𝑥 ∈ 𝑈  𝑥 ∈ 𝐴 𝑜𝑟 𝑥 ∈ 𝐵+. 

2. The intersection of 𝐴 and 𝐵, denoted 𝑨 ∩ 𝑩, is the set of all 
elements that are common to both 𝐴 and 𝐵. 
Symbolically: 𝐴 ∩ 𝐵 = 𝑥 ∈ 𝑈  𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝑥 ∈ 𝐵+. 

3. The difference of 𝐵 minus 𝐴, denoted 𝑩 − 𝑨, is the set of all 
elements that are in 𝐵 and not 𝐴. 
Symbolically: 𝐵 − 𝐴 = 𝑥 ∈ 𝑈  𝑥 ∈ 𝐵 𝑎𝑛𝑑 𝑥 ∉ 𝐴+. 

4. The complement of 𝐴, denoted 𝐴𝑐, is the set of all elements 
in 𝑈 that are not in 𝐴. 
Symbolically: 𝐴𝑐 = 𝑥 ∈ 𝑈  𝑥 ∉ 𝐴 +. 
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Properties of Sets 

Theorem 6.2.1 Some Subset Relations 

 Inclusion of Intersection: For all sets A and B, 

(a) A ∩ B ⊆ A and (b) A ∩ B ⊆ B. 

 Inclusion in Union: For all sets A and B, 

(a) A ⊆ A ∪ B and (b) B ⊆ A ∪ B. 

 Transitive Property of Subsets: For all sets A, B, and C, 

if A ⊆ B and B ⊆ C, then A ⊆ C. 
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Properties of Sets 

An identity is an equation that is universally true for all elements 
in some set. 

 Theorem 6.2.2 Set Identities (page 355) 

 

Theorem 6.2.2(3)- Distributive Laws: For all sets, A, B, and C, 

(a) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) and 

(b) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C). 

 

Theorem 6.2.2(9) - De Morgan’s Laws: For all sets A and B, 

(a) (𝐴 ∪ 𝐵)𝑐=  𝐴𝑐 ∩ 𝐵𝑐  and  

(b) (𝐴 ∩ 𝐵)𝑐= 𝐴𝑐 ∪ 𝐵𝑐. 
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Proving Distributivity of ∪ 
Prove that for all sets, A, B, and C,  

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) 
Proof: 
Suppose A, B, and C are sets. 
1. Proof that A ∪ (B ∩ C) ⊆ (A ∪ B) ∩ (A ∪ C): 

Case 1 (x ∈ A): Since x ∈ A, then x ∈ A ∪ B by definition of union and 
also x ∈ A ∪ C by definition of union.  
Hence x ∈ (A ∪ B) ∩ (A ∪ C) by definition of intersection. 

Case 2 (x ∈ B ∩ C): Since x ∈ B ∩ C, then x ∈ B and x ∈ C by definition 
of intersection. 
Since x ∈ B, x ∈ A ∪ B and since x ∈ C, x ∈ A ∪ C, both by definition of 
union.  
Hence x ∈ (A ∪ B) ∩ (A ∪ C) by definition of intersection. 
In both cases, x ∈ (A ∪ B) ∩ (A ∪ C).  
Hence A ∪ (B ∩ C) ⊆ (A ∪ B) ∩ (A ∪ C) by definition of subset. 
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Proving Distributivity of ∪ (Cont.) 
Prove that for all sets, A, B, and C,  

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) 

Proof continues: 

2.   Proof that (A ∪ B) ∩ (A ∪ C) ⊆ A ∪ (B ∩ C): 

Suppose x ∈ (A ∪ B) ∩ (A ∪ C). By definition of intersection, x ∈ A ∪ B and x ∈ 
A ∪ C. Consider the two cases x ∈ A and x ∉ A. 

Case 1 (x ∈ A): Since x ∈ A, we can immediately conclude that x ∈ A ∪ (B ∩ C) 
by definition of union. 

Case 2 (x ∉ A): Since x ∈ A ∪ B, x is in at least one of A or B. But x is not in 

A; hence x is in B. Similarly, since x ∈ A ∪ C, x is in at least one of A or C. But 

x is not in A; hence x is in C. We have shown that both x ∈ B and x ∈ C, and 

so by definition of intersection, x ∈ B ∩ C. It follows by definition of union that 

x ∈ A ∪ (B ∩ C). 

In both cases x ∈ A ∪ (B ∩ C). Hence, by definition of subset, (A ∪ B) ∩ (A ∪ C) 

⊆ A ∪ (B ∩ C). 

Conclusion: From 1 and 2 we proved that  A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C). 

12 CMSC 203 - Discrete Structures Spring 2018 



De Morgan’s Law 
Prove that for all sets, A, B, and C,  

(𝐴 ∩ 𝐵)𝑐= 𝐴𝑐 ∪ 𝐵𝑐  
Proof: 
Suppose A and B are sets. 
1. Proof that(𝑨 ∩ 𝑩)𝒄 ⊆ 𝑨𝒄 ∪ 𝑩𝒄 
If x ∈(𝐴 ∩ 𝐵)𝑐. [We must show that x ∈ 𝐴𝑐∪ 𝐵𝑐.]  
By definition of complement, x ∉ 𝐴 ∩ 𝐵. 
But to say that x ∉ 𝐴 ∩ 𝐵 means that 
  it is false that (x is in A and x is in B). 
By De Morgan’s laws of logic, this implies that 
  x is not in A or x is not in B,  
which can be written x ∉  A or x ∉  B. 
Hence x ∈ 𝐴𝑐 or x ∈ 𝐵𝑐 by definition of complement. It follows, by 
definition of union, that x ∈ 𝐴𝑐 ∪ 𝐵𝑐[as was to be shown].  
So (𝐴 ∩ 𝐵)𝑐 ⊆ 𝐴𝑐 ∪ 𝐵𝑐  by definition of subset. 
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De Morgan’s Law 
Proof continues: 
2.   Proof that 𝑨𝒄 ∪ 𝑩𝒄 ⊆ (𝑨 ∩ 𝑩)𝒄   
If x ∈ 𝐴𝑐 ∪ 𝐵𝑐. [We must show that x ∈ (𝐴 ∩ 𝐵)𝑐.]  
By definition of union, x ∈ 𝐴𝑐 or x ∈ 𝐵𝑐 
By definition of complement, x ∉ 𝐴 or x ∉ 𝐵. 
In other words  
  it is false that (x is in A or x is in B ). 
By De Morgan’s laws of logic, this implies that 
  x is not in A and x is not in B,  
By definition of intersection can be written x ∉ 𝐴 ∩ 𝐵. 
Hence x ∈  (𝐴 ∩ 𝐵)𝑐 by definition of complement [as was to be 
shown].  
So 𝐴𝑐 ∪ 𝐵𝑐 ⊆ (𝐴 ∩ 𝐵)𝑐  by definition of subset. 
 
Conclusion: Since both set containments, (1) and (2),  have been 
proved, (𝐴 ∩ 𝐵)𝑐= 𝐴𝑐 ∪ 𝐵𝑐  by definition of set equality. 
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Disproving an Alleged Set Property 
Is the following set property true? 

For all sets A, B, and C, (A − B) ∪ (B − C) = A − C. 

 

Disprove: Recall that to show a universal statement is false, it 
suffices to find a counterexample for which it is false. 
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(A − B) ∪ (B − C)  A − C 

Construct a concrete 
counterexample in order 
to confirm your answer. 

Construct a concrete 
counterexample in order 
to confirm your answer. 



Algebraic Proofs of Set Identities 
Construct an algebraic proof that for all sets A, B, and C, 

(A ∪ B) − C = (A − C) ∪ (B − C). 

 

Solution:  

Let A, B, and C be any sets. Then: 

(A ∪ B) − C = (A ∪ B) ∩ 𝐶𝑐  by the set difference law 

= 𝐶𝑐 ∩ (A ∪ B)     by the commutative law for ∩ 

= (𝐶𝑐 ∩ A) ∪ (𝐶𝑐 ∩ B)      by the distributive law 

= (A ∩ 𝐶𝑐) ∪ (B ∩ 𝐶𝑐)     by the commutative law for ∩ 

= (A − C) ∪ (B − C)             by the set difference law. 
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