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Reading (Epp’s textbook) 
4.3 – 4.8 



Divisibility 
 The notation d | n is read “d divides n.” Symbolically, if n and 

d are integers and d ≠ 0: 
d | n ⇔ ∃ an integer k such that n = dk. 

 
 When “d divides n” we say that d is a factor of n and that n is 

a multiple of d. 
 
 We write 𝑑𝑑 ∤ 𝑛𝑛 when d does not divide n. 
 

 For all integers n and d, 𝑑𝑑 ∤ 𝑛𝑛  ⇔  
𝑛𝑛
𝑑𝑑

  is not an integer. 
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Divisibility Theorems 
For integers a, b, and c it is true that 
 
 If a | b and a | c, then a | (b + c) 

Example: 3 | 6 and 3 | 9, so 3 | 15. 
 
 If a | b, then a | bc for all integers c 

Example: 5 | 10, so 5 | 20, 5 | 30, 5 | 40, … 
 
 If a | b and b | c, then a | c  (Transitivity) 

Example: 4 | 8 and 8 | 24, so 4 | 24.  
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Primes and Divisibility 
 A positive integer p greater than 1 is called prime if the only 

positive factors of p are 1 and p. 
 

 A positive integer that is greater than 1 and is not prime is 
called composite. 
 

 Any integer n > 1 is divisible by a prime number. 
 

The fundamental theorem of arithmetic: 
 

 Every positive integer can be written uniquely as a product of 
primes (p1, p2, . . . , pk), and positive integers e1, e2, . . . , ek 
such that: 

𝑛𝑛 =  𝑝𝑝𝑝𝑒𝑒𝑒𝑝𝑝𝑝𝑒𝑒𝑒𝑝𝑝𝑝𝑒𝑒𝑒 … 𝑝𝑝𝑝𝑝𝑒𝑒𝑒𝑒 
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Fundamental Theorem of Arithmetic: 
Examples 

• 75 =  𝑝 × 5 × 5 = 𝑝 × 5𝑒 
• 100 = 𝑝 × 𝑝 × 5 × 5 = 𝑝𝑒 × 5𝑒 
• 15 =  𝑝 × 5 
• 33 =  𝑝 × 𝑝𝑝 
• 12 =  𝑝 × 𝑝 × 𝑝 = 𝑝𝑒 × 𝑝 
• 28 =  𝑝 × 𝑝 × 7 = 𝑝𝑒 × 7 
• 512 =  𝑝 × 𝑝 × 𝑝 × 𝑝 × 𝑝 × 𝑝 × 𝑝 × 𝑝 × 𝑝 = 𝑝9 
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Quotient – Remainder Theorem 
 Given any integer n and positive integer d, there exist unique 

integers q and r such that: 

n = dq + r and 0 ≤ r < d. 

 In the above equation,  
  d is called the divisor,  
  n is called the dividend,  
  q is called the quotient, and  
  r is called the remainder.   

 Note that the remainder cannot be negative! 
 Examples where d = 5 

 17 = 5 x 3 + 2.   -13 = 5 x (-3) + 2.  
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div , mod and Parity property 
 Symbolically, if n and d are integers and d > 0, then 

n div d = q and n mod d = r ⇔ n = dq + r 

where q and r are integers and 0 ≤ r < d. 
 Thus n = d ·(n div d) + n mod d, and so 

n mod d = n − d · (n div d). 
 By the quotient-remainder theorem (with d = 2), there exist 

unique integers q and r such that 
n = 2q + r and 0 ≤ r < 2. 

n = 2q + 0 (even) or n = 2q + 1 (odd). 
 Any two consecutive integers have opposite parity. 
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Proof by Division into Cases 
 To prove a statement of the form “If A1 or A2 or . . . or An, 

then C,” prove all of the following: 
If A1, then C, 
If A2, then C, 

... 
If An, then C. 

This process shows that C is true regardless of which of A1, 
A2, . . . , An happens to be the case. 
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Floor and Ceiling 
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 Given any real number x, the floor of x, denoted 𝑥𝑥 , is 
defined as follows: 

𝑥𝑥  = that unique integer n such that n ≤ x < n + 1. 

 Given any real number x, the ceiling of x, denoted 𝑥𝑥 , is 
defined as follows: 

𝑥𝑥  = that unique integer n such that n − 1 < x ≤ n. 



Proving/Disproving a property of floor 
Is the following statement true or false? 
• ∀ 𝑥𝑥,𝑦𝑦 ∈ 𝑅𝑅, 𝑥𝑥 + 𝑦𝑦 =  𝑥𝑥 + 𝑦𝑦  

 
 
 

Is the following statement true or false? 
• ∀ 𝑥𝑥 ∈ 𝑅𝑅 𝑎𝑎𝑛𝑛𝑑𝑑 ∀ 𝑚𝑚 ∈ 𝑍𝑍, 𝑥𝑥 + 𝑚𝑚 =  𝑥𝑥 + 𝑚𝑚. 
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Counterexample 

Let n = 𝑥𝑥   and direct proof … 



Proof by Contradiction 
1. Suppose the statement to be proved is false.  

 That is, suppose that the negation of the statement is true. 

2. Show that this supposition leads logically to a contradiction. 

3. Conclude that the statement to be proved is true. 

Theorem 
There is no integer that is both even and odd. 
Proof by Contradiction: 1) Suppose not. Assume that there is at 
least one integer n that is both even and odd.  
2) By definition:  n = 2b + 1 and n = 2a, for some integers a and b. 
Then 2b + 1 = 2a  1 = 2a – 2b   (a – b) = 1/2. (Contradiction?) 
3) The supposition is false and, hence, the theorem is true. 
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Proof by Contraposition 
 Express the statement to be proved in the form 

∀x in D, if P(x) then Q(x). 
 Rewrite this statement in the contrapositive form 

∀x in D, if Q(x) is false then P(x) is false. 
 Prove the contrapositive by a direct proof. 

a. Suppose x is a (particular but arbitrarily chosen) element 
of D such that Q(x) is false. 

b. Show that P(x) is false. 

12 CMSC 203 - Discrete Structures Spring 2018 



Relation between Contradiction & 
Contraposition 

 Express the statement to be proved in the form 
∀x in D, if P(x) then Q(x). 
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Suppose x is arbitrary 
element of D such that ~Q(x). 

Sequence of steps 
~P(x) 

Suppose ∃x in D such that 
P(x) and ~Q(x). 

Same sequence of steps 
Contradiction:
P(x) and ~P(x) 

Proof by Contraposition 

Proof by Contradiction 



Example 
 For all integers n, if 𝑛𝑛𝑒 is even then n is even. 
Proof by Contraposition: Suppose n is any odd integer. By 
definition of odd  

n = 2k + 1 for some integer k.  
𝑛𝑛𝑒 =  (𝑝𝑝𝑝 + 𝑝)𝑒= 4𝑝𝑝𝑒 + 4𝑝𝑝 + 𝑝 = 𝑝 𝑝𝑝𝑝𝑒 + 𝑝𝑝𝑝 + 𝑝.  

• But 𝑝𝑝𝑝𝑒 + 𝑝𝑝𝑝 is an integer because products and sums of 
integers are integers. 

• So 𝑛𝑛𝑒 = 2·(an integer) + 1, and thus, by definition of odd, 
𝑛𝑛𝑒 is odd. 

Proof by Contradiction: Suppose not. That is, suppose there is 
an integer n such that 𝑛𝑛𝑒 is even and n is not even. Hence, n is 
odd, and thus, by definition  

n = 2k + 1 for some integer k. (Same sequence of steps) 
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Greatest Common Divisors 
Let a and b be integers, not both zero. 
• The largest integer d such that d | a and d | b is called 

the greatest common divisor of a and b. 
 

• The greatest common divisor of a and b is denoted by 
gcd(a, b). 

 

Example 1: What is gcd(48, 72) ? 
 

 The positive common divisors of 48 and 72 are  
1, 2, 3, 4, 6, 8, 12, 16, and 24, so gcd(48, 72) = 24.  

 

Example 2: What is gcd(19, 72) ? 
 

 The only positive common divisor of 19 and 72 is 
1, so gcd(19, 72) = 1.  
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Greatest Common Divisors 
Theorem of arithmetic: 
 

x = p1
a1  p2

a2 … pn
an ,  y = p1

b1  p2
b2 … pn

bn , 
where p1 < p2 < … < pn are primes and ai, bi ∈ N for 1 ≤ i ≤ n 

 

 gcd(x, y) = p1
min(a1, b1 ) p2

min(a2, b2 ) … pn
min(an, bn )  

 

Example: 

a = 60 =  22 31 51  

b = 54 =  21 33 50  

gcd(a, b) =  21 31 50  = 6 
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Least Common Multiples 
 

The least common multiple of the positive integers a and 
b is the smallest positive integer that is divisible by both a 
and b. 
 

We denote the least common multiple of a and b by 
lcm(a, b). 

 

Examples: 
lcm(3, 7) = 21 

lcm(4, 6) = 12 

lcm(5, 10) = 10 
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Least Common Multiples 
Theorem of arithmetic: 
 

a = p1
a1  p2

a2 … pn
an ,  b = p1

b1  p2
b2 … pn

bn , 
where p1 < p2 < … < pn are primes and ai, bi ∈ N for 1 ≤ i ≤ n 

 

 lcm(a, b) = p1
max(a1, b1 ) p2

max(a2, b2 ) … pn
max(an, bn )  

 

Example: 

a = 60 =  22 31 51  

b = 54 =  21 33 50  

lcm(a, b) =  22 33 51  = 4 x 27 x 5 = 540 
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GCD and LCM 

a = 60 =  22   31   51  

b = 54 =  21   33   50  

lcm(a, b) =  22 33 51      = 540 

gcd(a, b) =  21 31 50      = 6 

Theorem:  a×b = gcd(a,b)×lcm(a,b) 
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The Euclidean Algorithm  
Lemma:  

If a and b are any integers not both zero, and if q and r are any 
integers such that a = bq + r, then 

gcd(a, b) = gcd(b, r ). 
The Euclidean Algorithm finds the greatest common divisor of two 
integers a and b.  
1. Let A and B be integers with A > B ≥ 0. 
2. Repeatedly apply the Lemma since the pair (B, r) is smaller than 

(A, B) until r = 0. 
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The Euclidean Algorithm  
For example, if we want to find gcd(287, 91), we divide 287 by 91: 
 

• 287 = 91⋅3 + 14 
 
 

• Apply the Lemma  , gcd(287, 91) = gcd(91, 14). 
 

• In the next step, we divide 91 by 14: 
 

• 91 = 14⋅6 + 7 
 

• This means that gcd(91,14) = gcd(14, 7). 
 

• So we divide 14 by 7: 
 

• 14 = 7⋅2 + 0 
 

• We find that 7 | 14, and thus gcd(14, 7) = 7. 
 

Therefore, gcd(287, 91) = 7. 
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The Euclidean Algorithm  
In pseu-docode, the algorithm can be implemented as 
follows:  
 

procedure gcd(a, b: positive integers) 
x := a 
y := b 
while y ≠ 0 
begin 

 r := x mod y 
 x := y 
 y := r 

end {x is gcd(a, b)}  
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