
Proofs 
 Methods of Proof 
 Divisibility 
 Floor and Ceiling 
 Contradiction & Contrapositive 
 Euclidean Algorithm 
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Reading (Epp’s textbook) 
4.3 – 4.8 



Divisibility 
 The notation d | n is read “d divides n.” Symbolically, if n and 

d are integers and d ≠ 0: 
d | n ⇔ ∃ an integer k such that n = dk. 

 
 When “d divides n” we say that d is a factor of n and that n is 

a multiple of d. 
 
 We write 𝑑𝑑 ∤ 𝑛𝑛 when d does not divide n. 
 

 For all integers n and d, 𝑑𝑑 ∤ 𝑛𝑛  ⇔  
𝑛𝑛
𝑑𝑑

  is not an integer. 
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Divisibility Theorems 
For integers a, b, and c it is true that 
 
 If a | b and a | c, then a | (b + c) 

Example: 3 | 6 and 3 | 9, so 3 | 15. 
 
 If a | b, then a | bc for all integers c 

Example: 5 | 10, so 5 | 20, 5 | 30, 5 | 40, … 
 
 If a | b and b | c, then a | c  (Transitivity) 

Example: 4 | 8 and 8 | 24, so 4 | 24.  

 
 
 

 
 

 
3 CMSC 203 - Discrete Structures Spring 2018 



Primes and Divisibility 
 A positive integer p greater than 1 is called prime if the only 

positive factors of p are 1 and p. 
 

 A positive integer that is greater than 1 and is not prime is 
called composite. 
 

 Any integer n > 1 is divisible by a prime number. 
 

The fundamental theorem of arithmetic: 
 

 Every positive integer can be written uniquely as a product of 
primes (p1, p2, . . . , pk), and positive integers e1, e2, . . . , ek 
such that: 

𝑛𝑛 =  𝑝𝑝𝑝𝑒𝑒𝑒𝑝𝑝𝑝𝑒𝑒𝑒𝑝𝑝𝑝𝑒𝑒𝑒 … 𝑝𝑝𝑝𝑝𝑒𝑒𝑒𝑒 
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Fundamental Theorem of Arithmetic: 
Examples 

• 75 =  3 × 5 × 5 = 3 × 52 
• 100 = 2 × 2 × 5 × 5 = 22 × 52 
• 15 =  3 × 5 
• 33 =  3 × 11 
• 12 =  2 × 2 × 3 = 22 × 3 
• 28 =  2 × 2 × 7 = 22 × 7 
• 512 =  2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 = 29 
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Quotient – Remainder Theorem 
 Given any integer n and positive integer d, there exist unique 

integers q and r such that: 

n = dq + r and 0 ≤ r < d. 

 In the above equation,  
  d is called the divisor,  
  n is called the dividend,  
  q is called the quotient, and  
  r is called the remainder.   

 Note that the remainder cannot be negative! 
 Examples where d = 5 

 17 = 5 x 3 + 2.   -13 = 5 x (-3) + 2.  
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div , mod and Parity property 
 Symbolically, if n and d are integers and d > 0, then 

n div d = q and n mod d = r ⇔ n = dq + r 

where q and r are integers and 0 ≤ r < d. 
 Thus n = d ·(n div d) + n mod d, and so 

n mod d = n − d · (n div d). 
 By the quotient-remainder theorem (with d = 2), there exist 

unique integers q and r such that 
n = 2q + r and 0 ≤ r < 2. 

n = 2q + 0 (even) or n = 2q + 1 (odd). 
 Any two consecutive integers have opposite parity. 
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Proof by Division into Cases 
 To prove a statement of the form “If A1 or A2 or . . . or An, 

then C,” prove all of the following: 
If A1, then C, 
If A2, then C, 

... 
If An, then C. 

This process shows that C is true regardless of which of A1, 
A2, . . . , An happens to be the case. 
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Floor and Ceiling 
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 Given any real number x, the floor of x, denoted 𝑥𝑥 , is 
defined as follows: 

𝑥𝑥  = that unique integer n such that n ≤ x < n + 1. 

 Given any real number x, the ceiling of x, denoted 𝑥𝑥 , is 
defined as follows: 

𝑥𝑥  = that unique integer n such that n − 1 < x ≤ n. 



Proving/Disproving a property of floor 
Is the following statement true or false? 
• ∀ 𝑥𝑥, 𝑦𝑦 ∈ 𝑅𝑅, 𝑥𝑥 + 𝑦𝑦 =  𝑥𝑥 + 𝑦𝑦  

 
 
 

Is the following statement true or false? 
• ∀ 𝑥𝑥 ∈ 𝑅𝑅 𝑎𝑎𝑎𝑎𝑎𝑎 ∀ 𝑚𝑚 ∈ 𝑍𝑍, 𝑥𝑥 + 𝑚𝑚 =  𝑥𝑥 + 𝑚𝑚. 
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Counterexample 

Let n = 𝑥𝑥   and direct proof … 



Proof by Contradiction 
1. Suppose the statement to be proved is false.  

 That is, suppose that the negation of the statement is true. 

2. Show that this supposition leads logically to a contradiction. 

3. Conclude that the statement to be proved is true. 

Theorem 
There is no integer that is both even and odd. 
Proof by Contradiction: 1) Suppose not. Assume that there is at 
least one integer n that is both even and odd.  
2) By definition:  n = 2b + 1 and n = 2a, for some integers a and b. 
Then 2b + 1 = 2a  1 = 2a – 2b   (a – b) = 1/2. (Contradiction?) 
3) The supposition is false and, hence, the theorem is true. 
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Proof by Contraposition 
 Express the statement to be proved in the form 

∀x in D, if P(x) then Q(x). 
 Rewrite this statement in the contrapositive form 

∀x in D, if Q(x) is false then P(x) is false. 
 Prove the contrapositive by a direct proof. 

a. Suppose x is a (particular but arbitrarily chosen) element 
of D such that Q(x) is false. 

b. Show that P(x) is false. 
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Relation between Contradiction & 
Contraposition 

 Express the statement to be proved in the form 
∀x in D, if P(x) then Q(x). 
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Suppose x is arbitrary 
element of D such that ~Q(x). 

Sequence of steps 
~P(x) 

Suppose ∃x in D such that 
P(x) and ~Q(x). 

Same sequence of steps 
Contradiction:
P(x) and ~P(x) 

Proof by Contraposition 

Proof by Contradiction 



Example 
 For all integers n, if 𝑛𝑛2 is even then n is even. 
Proof by Contraposition: Suppose n is any odd integer. By 
definition of odd  

n = 2k + 1 for some integer k.  
𝑛𝑛2 =  (2𝑘𝑘 + 1)2= 4𝑘𝑘2 + 4𝑘𝑘 + 1 = 2 2𝑘𝑘2 + 2𝑘𝑘 + 1.  

• But 2𝑘𝑘2 + 2𝑘𝑘 is an integer because products and sums of 
integers are integers. 

• So 𝑛𝑛2 = 2·(an integer) + 1, and thus, by definition of odd, 
𝑛𝑛2 is odd. 

Proof by Contradiction: Suppose not. That is, suppose there is 
an integer n such that 𝑛𝑛2 is even and n is not even. Hence, n is 
odd, and thus, by definition  

n = 2k + 1 for some integer k. (Same sequence of steps) 
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Greatest Common Divisors 
Let a and b be integers, not both zero. 
• The largest integer d such that d | a and d | b is called 

the greatest common divisor of a and b. 
 

• The greatest common divisor of a and b is denoted by 
gcd(a, b). 

 

Example 1: What is gcd(48, 72) ? 
 

 The positive common divisors of 48 and 72 are  
1, 2, 3, 4, 6, 8, 12, 16, and 24, so gcd(48, 72) = 24.  

 

Example 2: What is gcd(19, 72) ? 
 

 The only positive common divisor of 19 and 72 is 
1, so gcd(19, 72) = 1.  
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Greatest Common Divisors 
Theorem of arithmetic: 
 

x = p1
a1  p2

a2 … pn
an ,  y = p1

b1  p2
b2 … pn

bn , 
where p1 < p2 < … < pn are primes and ai, bi ∈ N for 1 ≤ i ≤ n 

 

 gcd(x, y) = p1
min(a1, b1 ) p2

min(a2, b2 ) … pn
min(an, bn )  

 

Example: 

a = 60 =  22 31 51  

b = 54 =  21 33 50  

gcd(a, b) =  21 31 50  = 6 
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Least Common Multiples 
 

The least common multiple of the positive integers a and 
b is the smallest positive integer that is divisible by both a 
and b. 
 

We denote the least common multiple of a and b by 
lcm(a, b). 

 

Examples: 
lcm(3, 7) = 21 

lcm(4, 6) = 12 

lcm(5, 10) = 10 
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Least Common Multiples 
Theorem of arithmetic: 
 

a = p1
a1  p2

a2 … pn
an ,  b = p1

b1  p2
b2 … pn

bn , 
where p1 < p2 < … < pn are primes and ai, bi ∈ N for 1 ≤ i ≤ n 

 

 lcm(a, b) = p1
max(a1, b1 ) p2

max(a2, b2 ) … pn
max(an, bn )  

 

Example: 

a = 60 =  22 31 51  

b = 54 =  21 33 50  

lcm(a, b) =  22 33 51  = 4 x 27 x 5 = 540 
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GCD and LCM 

a = 60 =  22   31   51  

b = 54 =  21   33   50  

lcm(a, b) =  22 33 51      = 540 

gcd(a, b) =  21 31 50      = 6 

Theorem:  a×b = gcd(a,b)×lcm(a,b) 
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The Euclidean Algorithm  
Lemma:  

If a and b are any integers not both zero, and if q and r are any 
integers such that a = bq + r, then 

gcd(a, b) = gcd(b, r ). 
The Euclidean Algorithm finds the greatest common divisor of two 
integers a and b.  
1. Let A and B be integers with A > B ≥ 0. 
2. Repeatedly apply the Lemma since the pair (B, r) is smaller than 

(A, B) until r = 0. 
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The Euclidean Algorithm  
For example, if we want to find gcd(287, 91), we divide 287 by 91: 
 

• 287 = 91⋅3 + 14 
 
 

• Apply the Lemma  , gcd(287, 91) = gcd(91, 14). 
 

• In the next step, we divide 91 by 14: 
 

• 91 = 14⋅6 + 7 
 

• This means that gcd(91,14) = gcd(14, 7). 
 

• So we divide 14 by 7: 
 

• 14 = 7⋅2 + 0 
 

• We find that 7 | 14, and thus gcd(14, 7) = 7. 
 

Therefore, gcd(287, 91) = 7. 
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The Euclidean Algorithm  
In pseu-docode, the algorithm can be implemented as 
follows:  
 

procedure gcd(a, b: positive integers) 
x := a 
y := b 
while y ≠ 0 
begin 

 r := x mod y 
 x := y 
 y := r 

end {x is gcd(a, b)}  
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