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Reading (Epp’s textbook) 
10.1- 10.3 



Introduction to Graphs 
 Graph is a fundamental mathematical structure in computer 

science  

 A graph G = (V, E) consists of V, a nonempty set of vertices, 
and E, a set of edges. 

 Lots of applications in many areas: web search, networking, 
databases,  . . .  
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V = { A, B, C, D, E } 
 
E = { {A, B}, {A,E}, {B,C}, 
{B,E}, {C,D}, {E,D} } 



Introduction to Graphs 
 For each edge e ∈ E, e = {u, v} where u, v ∈ V. The vertices u, v 

called endpoints of edge e. 

 An edge e ∈ E, e = {v, v} for some v ∈ V, is called a loop. 

 Two or more distinct edges with the same set of endpoints are said 
to be parallel.  
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Parallel 

Loop 



Graph Models Example 
 A simple graph is a graph that does not have any loops or parallel edges, 

and no specified direction on its edges. 
How can we represent a network of (bi-directional) railways connecting a set 
of cities? 
 We should use a simple graph with an edge {a, b} indicating a train 

connection between cities a and b. 
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Graph Terminology 
 Two vertices u and v in an undirected graph G are called 

adjacent (or neighbors) in G if {u, v} is an edge in G. 

 Neighborhood of a vertex is the set of vertices adjacent to it.  

 If e = {u, v}, the edge e is called incident with the vertices u 
and v. The edge e is also said to connect u and v. 

 A vertex with no neighbors is called isolated, since it is not 
adjacent to any vertex.  

 Note: A vertex with a loop is not isolated, even if it is not 
adjacent to any other vertex. 
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Graph Terminology 
 The degree of a vertex in an undirected graph is the number 

of edges incident with it, except that a loop at a vertex 
contributes twice to the degree of that vertex. 

 The degree of the vertex v is denoted by deg(v). 

 The total degree of G is the sum of the degrees of all the 
vertices in G. 
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deg(A) = 4 
deg(C) = 3 
Total degree of G = 12 



Question 
Consider a simple graph G where two vertices A and B have the 
same neighborhood. Which of the following statements must be 
true about G?  

 

A. The degree of each vertex must be even.  

 

B. Both A and B have a degree of 0.  

 

C. There cannot be an edge between A and B.  
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The Handshaking Theorem 
 Let G = (V ,E) be an undirected graph with e edges. Then 

 ∑ deg 𝑣𝑣 = 2𝑒𝑒𝑣𝑣∈𝑉𝑉  

 

Intuition: Each edge contributes two to the sum of the degrees! 

 

Example: How many edges are there in a graph with 10 vertices, 
each of degree 6? 

Solution: The sum of the degrees of the vertices is 6⋅10 = 60. 
According to the Handshaking Theorem, it follows that 2e = 60, 
so there are 30 edges. 
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Questions in class 
• Is it possible to construct a graph with 5 vertices where each 

vertex has degree 3?  
 
 

• Is it possible to construct a simple graph with four vertices of 
degrees 1, 1, 3, and 3? 
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Directed Graphs 
Definitions:  

 A directed graph G = (V, E) consists of a set V of vertices and a 
set E of edges that are ordered pairs of elements in V. 

• For each e ∈ E, e = (u, v) where u, v ∈ V. 
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V = { A, B, D } 
 
E = { (A, B), (B, A), (B, D), (D, A) } 



Directed Graph Terminology 
 When (u, v) is an edge of the directed graph, u is said to be 

adjacent to v, and v is said to be adjacent from u.  

 The vertex u is called the initial vertex of (u, v), and v is called 
the terminal vertex of (u, v). 

 The initial vertex and terminal vertex of a loop are the same! 

 In a directed graph, the in-degree of a vertex v, denoted by 
𝒅𝒅𝒅𝒅𝒅𝒅−(𝒗𝒗) , is the number of edges with v as their terminal 
vertex. 

 The out-degree of v, denoted by 𝑑𝑑𝑒𝑒𝑑𝑑+(𝑣𝑣), is the number of 
edges with v as their initial vertex. 
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Directed Graph Example 
What are the in-degrees and out-degrees of the vertices a, b, c, d 
in this graph: 
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a 
b 

c d 

deg-(a) = 1 
deg+(a) = 2 

deg-(b) = 4 
deg+(b) = 2 

deg-(d) = 2 
deg+(d) = 1 

deg-(c) = 0 
deg+(c) = 2 



Handsh. Theorem for Directed Graphs 
Theorem: Let G = (V, E) be a graph with directed edges. Then: 

 
∑𝑣𝑣∈𝑉𝑉 deg − (𝑣𝑣)  =  ∑𝑣𝑣∈𝑉𝑉 deg + (𝑣𝑣)  =  |𝐸𝐸| 
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� 𝑑𝑑𝑒𝑒𝑑𝑑− 𝑣𝑣 = ?
𝑣𝑣∈𝑉𝑉

 

� 𝑑𝑑𝑒𝑒𝑑𝑑+ 𝑣𝑣 = ?
𝑣𝑣∈𝑉𝑉

 



Special Graphs 
Definition: The complete graph on n vertices, denoted by Kn, is 
the simple graph that contains exactly one edge between each 
pair of distinct vertices. 
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K1 K2 K3 K4 K5 



Special Graphs 
Definition: The cycle Cn, n ≥ 3, consists of n vertices v1, v2, …, vn 
and edges {v1, v2}, {v2, v3}, …, {vn-1, vn}, {vn, v1}. 
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C3 C4 C5 C6 



Special Graphs 
Definition: A simple graph is called bipartite if its vertex set V 
can be partitioned into two disjoint nonempty sets V1 and V2 
such that every edge in the graph connects a vertex in V1 with a 
vertex in V2 (so that no edge in G connects either two vertices in 
V1 or two vertices in V2). 
 For example, consider a graph that represents each person in 

a village by a vertex and each marriage by an edge. 
 This graph is bipartite, because each edge connects a vertex 

in the subset of males with a vertex in the subset of females 
(if we think of traditional marriages). 
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Special Graphs 
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Example I: Is C3 bipartite? 

v1 

v2 v3 

No, because there is no way to partition the vertices into two 
sets so that there are no edges with both endpoints in the same 
set. 

Example II: Is C6 bipartite? 

v5 

v1 

v2 

v3 v4 

v6 
v1 v6 

v2 v5 

v3 
v4 

Yes, because we can 
display C6 like this: 



Subgraphs 
Definition: A subgraph of a graph G = (V, E) is a graph H = (W, F) 
where W ⊆ V and F ⊆ E. 

 Graph H is a proper subgraph of G, if H ≠ G .  

 Note: Of course, H is a valid graph, so we cannot remove any 
endpoints of remaining edges when creating H. 

Example: 
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K5 subgraph of K5 



Graph Coloring 
 A coloring of a graph is the assignment of a color to each 

vertex so that no two adjacent vertices are assigned the same 
color.  

 A graph is k-colorable if it is possible to color it using k colors.  
 

• e.g., graph on right is 3-colorable  
• Is it also 2-colorable?  
 
 The chromatic number of a graph is the least number of 

colors needed to color it.  
 What is the chromatic number of the above graph?  
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Question in class 
Consider a graph G with vertices {v1, v2, v3, v4} and edges {v1, 
v2}, {v1, v3}, {v2, v3}, {v2, v4}. Which of the following are valid 
colorings for G?  
 

1. v1 = red, v2 = green, v3 = blue  
 

2. v1 = red, v2= green, v3 = blue, v4 = red  
 

3. v1 = red, v2= green, v3 = red, v4 = blue  
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Applications of Graph Coloring  
 Graph coloring has lots of applications, particularly in 

scheduling.  
Example: The math department has 6 committees C1, . . . , C6 
that meet once a month.  
The committee members are:  

C1 = {Allen, Brooks, Marg}  
C2 = {Brooks, Jones, Morton}  
C3 = {Allen, Marg, Morton}  

 
How many different meeting times must be used to guarantee 
that no one has conflicting meetings?  
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C4 = {Jones, Marg, Morton}  
C5 = {Allen, Brooks}  
C6 = {Brooks, Marg, Morton}  

 



Graphs and Colorability 
 

 A graph G = (V ,E) is bipartite if and only if it is 2-colorable!! 
 

 Any complete graph 𝐾𝐾𝑛𝑛 has chromatic number n. 
 

 A a simple graph G is always (max_degree(G) + 1)-colorable..  
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Representing Graphs 
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a 

b 

c 

d 

a 

b 

c 

d 

a, d b 

a, d c 

a, b, c d 

b, c, d a 

Adjacent Vertices Vertex 

a b 

c 

a, b, c d 

c a 

Terminal Vertices Initial Vertex 



Representing Graphs 
Definition: Let G = (V, E) be a directed graph with |V| = n. 
Suppose that the vertices of G are listed in order as v1, v2, …, vn.  

 

 The adjacency matrix A (or AG) of G, with respect to this 
listing of the vertices, is the n × n matrix A = [aij] such that: 

 

• aij = the number of arrows from 𝑣𝑣𝑖𝑖 𝑡𝑡𝑡𝑡 𝑣𝑣𝑗𝑗 for all i,j = 1, 2, .., n. 
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Representing Graphs 
Example: What is the adjacency matrix AG for the following 
directed graph G based on the order of vertices a, b, c, d ? 
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

















=

0010
1000
0000
1120

GA



Representing Graphs 
Definition: Let G = (V, E) be an undirected graph with |V| = n. 
Suppose that the vertices of G are listed in order as v1, v2, …, vn.  

 

 The adjacency matrix A (or AG) of G, with respect to this 
listing of the vertices, is the n × n matrix A = [aij] such that: 

 

• aij = the number of edges connecting  𝑣𝑣𝑖𝑖 𝑎𝑎𝑎𝑎𝑑𝑑 𝑣𝑣𝑗𝑗 for all i,j = 1, 
2, .., n. 
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Representing Graphs 
Example: What is the adjacency matrix AG for the following 
undirected graph G based on the order of vertices a, b, c, d ? 
 
 
 
 
 
 
 
Note: Adjacency matrices of undirected graphs are always 
symmetric. 
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

















=

0111
1001
1002
1120

GA



Connectivity 
Definition: A path of length n from u to v, where n is a positive 
integer, in an undirected graph is a sequence of edges e1, e2, …, 
en of the graph such that e1 = {x0, x1}, e2 = {x1, x2}, …, en = {xn-1, 
xn}, where x0 = u and xn = v. 

 

 When the graph is simple, we denote this path by its vertex 
sequence x0, x1, …, xn, since it uniquely determines the path. 

 

 The path is a circuit if it begins and ends at the same vertex, 
that is, if u = v.  
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Connectivity 
Definition (continued): The path or circuit is said to pass 
through or traverse x1, x2, …, xn-1.  

• A path or circuit is simple if it does not contain the same edge 
more than once. 
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 u, x , y, x , u and u, x , 
y, u are both circuits  

 u, x , y, u is a simple 
circuit, but u, x , y, x , 
u is not  

 Length of a circuit is 
the number of edges 
it contains, e.g., 
length of u, x , y, u is 3  

 



Connectivity 
Definition: An undirected graph is called connected if there is a 
path between every pair of distinct vertices in the graph. 

 

 For example, any two computers in a network can 
communicate if and only if the graph of this network is 
connected. 

 

Note: A graph consisting of only one vertex is always connected, 
because it does not contain any pair of distinct vertices. 
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Connectivity Examples 
Are the following graphs connected? 
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d 

a 

b 

c 

e 

Yes. 

d 

a b 

c 

e 

No. 

d 

a 

b 

c 

e 

Yes. 

d 

a b 

c 

e 

f 

No. 



Connectivity 
Definition: A directed graph is strongly connected if there is a 
path from a to b and from b to a whenever a and b are vertices in 
the graph.  

 

Definition: A directed graph is weakly connected if there is a 
path between any two vertices in the underlying undirected 
graph.  
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Connectivity 
Example: Are the following directed graphs strongly or weakly 
connected? 
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a 

b 

c 

d 

Weakly connected, because, for example, there is 
no path from b to d.  

a 

b 

c 

d 

Strongly connected, because there are paths 
between all possible pairs of vertices. 



Connected Components 
Definition: A graph that is not connected is the union of two or 
more connected sub-graphs, each pair of which has no vertex in 
common. These disjoint connected sub-graphs are called the 
connected components of the graph. 
Example: What are the connected components in the following 
graph? 
 
 
 
 
Solution: The connected components are the graphs with 
vertices {a, b, c, d}, {e}, {f, g, h, j}. 
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b c 
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