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Introduction to Graphs

» Graph is a fundamental mathematical structure in computer
science

» A graph G = (V, E) consists of V, a nonempty set of vertices,
and E, a set of edges.

» Lots of applications in many areas: web search, networking,
databases, ...

B V={AIBIC)D)E}

D  E={{A, B}, {AE}, {B,C},
{B,E}, {C,D}, {E,D} }
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Introduction to Graphs

» Foreachedgee € E, e ={u, vlwhere u, v € V. The vertices u, v
called endpoints of edge e.

» Anedgee € E,e={v,v}forsomev eV, is called a loop.

» Two or more distinct edges with the same set of endpoints are said
to be parallel.
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Graph Models Example

s Asimple graph is a graph that does not have any loops or parallel edges,
and no specified direction on its edges.

How can we represent a network of (bi-directional) railways connecting a set
of cities?

» We should use a simple graph with an edge {a, b} indicating a train
connection between cities a and b.
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Graph Terminology

» Two vertices u and v in an undirected graph G are called
adjacent (or neighbors) in G if {u, v} is an edge in G.

» Neighborhood of a vertex is the set of vertices adjacent to it.

» If e ={u, v}, the edge e is called incident with the vertices u
and v. The edge e is also said to connect u and v.

» A vertex with no neighbors is called isolated, since it is not
adjacent to any vertex.

» Note: A vertex with a loop is not isolated, even if it is not
adjacent to any other vertex.
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Graph Terminology

» The degree of a vertex in an undirected graph is the number
of edges incident with it, except that a loop at a vertex
contributes twice to the degree of that vertex.

» The degree of the vertex v is denoted by deg(v).

» The total degree of G is the sum of the degrees of all the
vertices in G.
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Question

Consider a simple graph G where two vertices A and B have the
same neighborhood. Which of the following statements must be
true about G?

A. The degree of each vertex must be even.
B. Both A and B have a degree of 0.

C. There cannot be an edge between A and B.
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The Handshaking Theorem

» Let G =(V,E) be an undirected graph with e edges. Then
ZvEV deg(v) = 2Ze

Intuition: Each edge contributes two to the sum of the degrees!

Example: How many edges are there in a graph with 10 vertices,
each of degree 6°?

Solution: The sum of the degrees of the vertices is 6:10 = 60.
According to the Handshaking Theorem, it follows that 2e = 60,
so there are 30 edges.
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Questions in class

e |s it possible to construct a graph with 5 vertices where each
vertex has degree 3?

e |s it possible to construct a simple graph with four vertices of
degrees 1, 1, 3, and 3?
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Directed Graphs

Definitions:

» A directed graph G = (V, E) consists of a set V of vertices and a
set E of edges that are ordered pairs of elements in V.

e Foreache € E,e=(u,v)whereu,veV.
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Directed Graph Terminology

» When (u, v) is an edge of the directed graph, u is said to be
adjacent to v, and v is said to be adjacent from u.

» The vertex u is called the initial vertex of (u, v), and v is called
the terminal vertex of (u, v).

» The initial vertex and terminal vertex of a loop are the same!

» In a directed graph, the in-degree of a vertex v, denoted by
deg (v),is the number of edges with v as their terminal
vertex.

> The out-degree of v, denoted by deg™ (v), is the number of
edges with v as their initial vertex.
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Directed Graph Example

What are the in-degrees and out-degrees of the vertices a, b, ¢, d
in this graph:

deg(a)=1 deg(b) = 4
deg*(a) =2 T @) b deg*(b) =2
deg(d) =2 deg(c)=0
deg*(d) = 1 I ¢ ®@°¢  degi(c)=2
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Handsh. Theorem for Directed Graphs

Theorem: Let G = (V, E) be a graph with directed edges. Then:

Y,pdeg” (v) = X, deg’ (v) = |E]|
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Special Graphs

Definition: The complete graph on n vertices, denoted by K, is
the simple graph that contains exactly one edge between each
pair of distinct vertices.

O
O O O 0
O O
O O O O O O O O
K, K, K, K, Ks
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Special Graphs

Definition: The cycle C_, n > 3, consists of n vertices v, v,, ..., v,
and edges {v,, V,}, {V,, V3}, ..., {V,1, Vo1 {V,, V1)
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Special Graphs

Definition: A simple graph is called bipartite if its vertex set V
can be partitioned into two disjoint nonempty sets V, and V,
such that every edge in the graph connects a vertex in V, with a
vertex in V, (so that no edge in G connects either two vertices in
V, or two vertices in V,).

» For example, consider a graph that represents each person in
a village by a vertex and each marriage by an edge.

» This graph is bipartite, because each edge connects a vertex
in the subset of males with a vertex in the subset of females
(if we think of traditional marriages).
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Special Graphs
Example I: Is C; bipartite?

No, because there is no way to partition the vertices into two
sets so that there are no edges with both endpoints in the same
set.

oV

Example ll: Is C, bipartite?

'A ']
@ @ Vs 1 @ @ Vg
because we can
display C. like this:
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Subgraphs

Definition: A subgraph of a graph G = (V, E) is a graph H = (W, F)
where W c V and F c E.

¢ Graph H is a proper subgraph of G, if H# G .

v Note: Of course, H is a valid graph, so we cannot remove any
endpoints of remaining edges when creating H.

Example:

@ @ () @
Ks subgraph of K
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Graph Coloring

» A coloring of a graph is the assignment of a color to each
vertex so that no two adjacent vertices are assigned the same
color.

» A graph is k-colorable if it is possible to color it using k colors.

e e.g., graph onrightis 3-colorable

e |sitalso 2-colorable?

» The chromatic number of a graph is the least number of
colors needed to color it.

» What is the chromatic number of the above graph?

Spring 2018 CMSC 203 - Discrete Structures 19



Question in class

Consider a graph G with vertices {v1, v2, v3, v4} and edges {v1,
v2}, {v1, v3}, {v2, v3}, {v2, v4}. Which of the following are valid
colorings for G?

1. vl =red, v2 = green, v3 = blue
2. vl =red, v2=green, v3 = blue, v4 = red

3. vl =red, v2=green, v3 =red, v4 = blue
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Applications of Graph Coloring

v’ Graph coloring has lots of applications, particularly in
scheduling.

Example: The math department has 6 committees C1, . . ., C6
that meet once a month.

The committee members are:

C1 = {Allen, Brooks, Marg} C4 = {Jones, Marg, Morton}
C2 = {Brooks, Jones, Morton} C5 = {Allen, Brooks}
C3 ={Allen, Marg, Morton} C6 = {Brooks, Marg, Morton}

How many different meeting times must be used to guarantee
that no one has conflicting meetings?
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Graphs and Colorability

» A graph G = (V ,E) is bipartite if and only if it is 2-colorable!!

» Any complete graph K, has chromatic number n.

» A asimple graph G is always (max_degree(G) + 1)-colorable..

Spring 2018 CMSC 203 - Discrete Structures
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Representing Graphs
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d a,b,c

Spring 2018

d @
® o °
(O
Initial Vertex | Terminal Vertices

a C

b a

C

d a,b,c

CMSC 203 - Discrete Structures

23



Representing Graphs

Definition: Let G = (V, E) be a directed graph with |V| =n.
Suppose that the vertices of G are listed in order asv,, v,, ..., v,.

“* The adjacency matrix A (or A;) of G, with respect to this
listing of the vertices, is the n x n matrix A = [a;] such that:

* ;= the number of arrows from v; to v; forallij=1, 2, .., n.
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Representing Graphs

Example: What is the adjacency matrix A; for the following
directed graph G based on the order of vertices a, b, ¢, d ?
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Representing Graphs

Definition: Let G = (V, E) be an undirected graph with |V| =n.

Suppose that the vertices of G are listed in orderasv,, v,, ...,

“* The adjacency matrix A (or A;) of G, with respect to this
listing of the vertices, is the n x n matrix A = [a;] such that:

* g; =the number of edges connecting v; and v; for alli,j =

Spring 2018 CMSC 203 - Discrete Structures
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Representing Graphs

Example: What is the adjacency matrix A; for the following
undirected graph G based on the order of verticesa, b, c,d ?
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Note: Adjacency matrices of undirected graphs are always
symmetric.
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Connectivity

Definition: A path of length n from u to v, where n is a positive
integer, in an undirected graph is a sequence of edges e, e,, ...,
e, of the graph such that e, = {x,, X}, €, = {X{, X,}, ..., €, = {X,,.1,
X.}, Where x,=u and x_ = v.

v' When the graph is simple, we denote this path by its vertex
sequence X,, Xy, ..., X,, since it uniquely determines the path.

v’ The path is a circuit if it begins and ends at the same vertex,
thatis, if u =v.
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Connectivity

Definition (continued): The path or circuit is said to pass
through or traverse x,, X, ..., X, ;.

e A path or circuit is simple if it does not contain the same edge

more than once.
v u,Xx,y,x,uandu, x,

(=) y, u are both circuits

(5) v u, X,V uisasimple

(=) o circuit, butu, x, v, X,

‘ u is not
O (v v’ Length of a circuit is
& (a) the number of edges
it contains, e.g.,
(=) length of u, x,y,uis 3
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Connectivity

Definition: An undirected graph is called connected if there is a
path between every pair of distinct vertices in the graph.

» For example, any two computers in a network can
communicate if and only if the graph of this network is
connected.

Note: A graph consisting of only one vertex is always connected,
because it does not contain any pair of distinct vertices.
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Connectivity Examples

Are the following graphs connected?

b a
b
@ ° * ®
e ° e
o —©® O d ®
@ d c
C
Yes. No.
b a
a o ®
b O
@ e O 4 e
@ Q@
o © c <
@ d f
(o Yes.
No.
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Connectivity

Definition: A directed graph is strongly connected if there is a
path from a to b and from b to a whenever a and b are vertices in

the graph.

Definition: A directed graph is weakly connected if there is a
path between any two vertices in the underlying undirected
graph.
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Connectivity

Example: Are the following directed graphs strongly or weakly
connected?

a
@ Weakly connected, because, for example, there is
® b no path from b to d.
d @
@ ¢
a
@ Strongly connected, because there are paths
® b between all possible pairs of vertices.
d @
@ C
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Connected Components

Definition: A graph that is not connected is the union of two or
more connected sub-graphs, each pair of which has no vertex in
common. These disjoint connected sub-graphs are called the
connected components of the graph.

Example: What are the connected components in the following

raph?
grap ¢ h

d ®

. .
b c o’

Solution: The connected components are the graphs with
vertices {a, b, c, d}, {e}, {f, g, h, j}.
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