Graphs

- Introduction to Graphs
- Graph Terminology
- Directed Graphs
- Special Graphs
- Graph Coloring
- Representing Graphs
- Connected Graphs
- Connected Component

Reading (Epp's textbook) 10.1-10.3

Introduction to Graphs

- Graph is a fundamental mathematical structure in computer science
- A graph G = (V, E) consists of V, a nonempty set of vertices, and E, a set of edges.
- Lots of applications in many areas: web search, networking, databases, ...

Introduction to Graphs

- For each edge e ∈ E, e = {u, v} where u, v ∈ V. The vertices u, v called endpoints of edge e.
- > An edge $e \in E$, $e = \{v, v\}$ for some $v \in V$, is called a loop.
- Two or more distinct edges with the same set of endpoints are said to be parallel.

Graph Models Example

A simple graph is a graph that does not have any loops or parallel edges, and no specified direction on its edges.

How can we represent a network of (bi-directional) railways connecting a set of cities?

We should use a simple graph with an edge {a, b} indicating a train connection between cities a and b.

Graph Terminology

- Two vertices u and v in an undirected graph G are called adjacent (or neighbors) in G if {u, v} is an edge in G.
- > Neighborhood of a vertex is the set of vertices adjacent to it.
- If e = {u, v}, the edge e is called incident with the vertices u and v. The edge e is also said to connect u and v.
- A vertex with no neighbors is called isolated, since it is not adjacent to any vertex.
- Note: A vertex with a loop is not isolated, even if it is not adjacent to any other vertex.

Graph Terminology

- The degree of a vertex in an undirected graph is the number of edges incident with it, except that a loop at a vertex contributes twice to the degree of that vertex.
- > The degree of the vertex v is denoted by deg(v).
- The total degree of G is the sum of the degrees of all the vertices in G.

Question

Consider a simple graph G where two vertices A and B have the **same neighborhood**. Which of the following statements must be true about G?

A. The degree of each vertex must be even.

B. Both A and B have a degree of 0.

C. There cannot be an edge between A and B.

The Handshaking Theorem

➤ Let G = (V, E) be an undirected graph with *e* edges. Then $\sum_{v \in V} \deg(v) = 2e$

Intuition: Each edge contributes two to the sum of the degrees!

Example: How many edges are there in a graph with 10 vertices, each of degree 6?

Solution: The sum of the degrees of the vertices is $6 \cdot 10 = 60$. According to the Handshaking Theorem, it follows that 2e = 60, so there are 30 edges.

Questions in class

 Is it possible to construct a graph with 5 vertices where each vertex has degree 3?

• Is it possible to construct a simple graph with four vertices of degrees 1, 1, 3, and 3?

Directed Graphs

Definitions:

- A directed graph G = (V, E) consists of a set V of vertices and a set E of edges that are ordered pairs of elements in V.
 - For each $e \in E$, e = (u, v) where $u, v \in V$.

Directed Graph Terminology

- When (u, v) is an edge of the directed graph, u is said to be adjacent to v, and v is said to be adjacent from u.
- The vertex u is called the initial vertex of (u, v), and v is called the terminal vertex of (u, v).
- > The initial vertex and terminal vertex of a loop are the same!
- In a directed graph, the in-degree of a vertex v, denoted by deg⁻(v), is the number of edges with v as their terminal vertex.
- The out-degree of v, denoted by deg⁺(v), is the number of edges with v as their initial vertex.

Directed Graph Example

What are the in-degrees and out-degrees of the vertices a, b, c, d in this graph:

Handsh. Theorem for Directed Graphs

Theorem: Let G = (V, E) be a graph with directed edges. Then:

$$\sum_{\nu \in V} \deg^{-}(\nu) = \sum_{\nu \in V} \deg^{+}(\nu) = |E|$$

$$\sum_{v \in V} deg^{-}(v) = ?$$

$$\sum_{v \in V} deg^+(v) = ?$$

Definition: The **complete graph** on *n* vertices, denoted by K_n , is the simple graph that contains exactly one edge between each pair of distinct vertices.

Definition: The cycle C_n , $n \ge 3$, consists of n vertices $v_1, v_2, ..., v_n$ and edges $\{v_1, v_2\}, \{v_2, v_3\}, ..., \{v_{n-1}, v_n\}, \{v_n, v_1\}$.

Definition: A simple graph is called **bipartite** if its vertex set V can be partitioned into two disjoint **nonempty** sets V_1 and V_2 such that **every edge** in the graph connects a vertex in V_1 with a vertex in V_2 (so that no edge in G connects either two vertices in V_1 or two vertices in V_2).

- For example, consider a graph that represents each person in a village by a vertex and each marriage by an edge.
- This graph is bipartite, because each edge connects a vertex in the subset of males with a vertex in the subset of females (if we think of traditional marriages).

Example I: Is C₃ bipartite?

No, because there is no way to partition the vertices into two sets so that there are no edges with both endpoints in the same set.

Example II: Is C₆ bipartite?

Yes, because we can display C_6 like this:

Subgraphs

Definition: A subgraph of a graph G = (V, E) is a graph H = (W, F) where W \subseteq V and F \subseteq E.

- **♦** Graph H is a **proper subgraph** of G, if $H \neq G$.
- Note: Of course, H is a valid graph, so we cannot remove any endpoints of remaining edges when creating H.
- **Example:**

Graph Coloring

- A coloring of a graph is the assignment of a color to each vertex so that no two adjacent vertices are assigned the same color.
- \succ A graph is **k-colorable** if it is possible to color it using k colors.
- e.g., graph on right is 3-colorable
- Is it also 2-colorable?

- The chromatic number of a graph is the least number of colors needed to color it.
- > What is the chromatic number of the above graph?

Question in class

Consider a graph G with vertices {v1, v2, v3, v4} and edges {v1, v2}, {v1, v3}, {v2, v3}, {v2, v4}. Which of the following are valid colorings for G?

1.
$$v1 = red$$
, $v2 = green$, $v3 = blue$

Applications of Graph Coloring

✓ Graph coloring has lots of applications, particularly in scheduling.

Example: The math department has 6 committees C1, . . , C6 that meet once a month.

The committee members are:

- C1 = {Allen, Brooks, Marg}
- C2 = {Brooks, Jones, Morton}
- C3 = {Allen, Marg, Morton}

- C4 = {Jones, Marg, Morton}
- C5 = {Allen, Brooks}
- C6 = {Brooks, Marg, Morton}

How many different meeting times must be used to guarantee that no one has conflicting meetings?

Graphs and Colorability

A graph G = (V, E) is bipartite if and only if it is 2-colorable!!

> Any complete graph K_n has chromatic number n.

A a simple graph G is always (max_degree(G) + 1)-colorable..

Vertex	Adjacent Vertices
а	b, c, d
b	a, d
С	a, d
d	a, b, c

Initial Vertex	Terminal Vertices
а	С
b	а
С	
d	a, b, c

Definition: Let G = (V, E) be a **directed** graph with |V| = n. Suppose that the vertices of G are listed in order as $v_1, v_2, ..., v_n$.

- The adjacency matrix A (or A_G) of G, with respect to this listing of the vertices, is the n × n matrix A = [a_{ii}] such that:
- a_{ij} = the number of arrows from v_i to v_j for all i, j = 1, 2, ..., n.

Example: What is the adjacency matrix A_G for the following directed graph G based on the order of vertices a, b, c, d ?

Definition: Let G = (V, E) be an **undirected** graph with |V| = n. Suppose that the vertices of G are listed in order as v_1 , v_2 , ..., v_n .

- The adjacency matrix A (or A_G) of G, with respect to this listing of the vertices, is the n × n matrix A = [a_{ii}] such that:
- a_{ij} = the number of edges connecting v_i and v_j for all i,j = 1,
 2, .., n.

Example: What is the adjacency matrix A_G for the following undirected graph G based on the order of vertices a, b, c, d?

Note: Adjacency matrices of undirected graphs are always symmetric.

Definition: A path of length n from u to v, where n is a positive integer, in an **undirected graph** is a sequence of edges e_1 , e_2 , ..., e_n of the graph such that $e_1 = \{x_0, x_1\}, e_2 = \{x_1, x_2\}, ..., e_n = \{x_{n-1}, x_n\}$, where $x_0 = u$ and $x_n = v$.

✓ When the graph is simple, we denote this path by its vertex sequence x₀, x₁, ..., x_n, since it uniquely determines the path.

✓ The path is a circuit if it begins and ends at the same vertex, that is, if u = v.

Definition (continued): The path or circuit is said to **pass through** or traverse $x_1, x_2, ..., x_{n-1}$.

• A path or circuit is **simple** if it does not contain the same edge more than once.

- ✓ u, x , y, x , u and u, x ,
 y, u are both circuits
- u, x, y, u is a simple circuit, but u, x, y, x, u is not
- Length of a circuit is the number of edges it contains, e.g., length of u, x , y, u is 3

Definition: An undirected graph is called **connected** if there is a path between every pair of distinct vertices in the graph.

For example, any two computers in a network can communicate if and only if the graph of this network is connected.

Note: A graph consisting of only one vertex is always connected, because it does not contain any pair of distinct vertices.

Connectivity Examples

CMSC 203 - Discrete Structures

Definition: A **directed** graph is **strongly connected** if there is a path from a to b and from b to a whenever a and b are vertices in the graph.

Definition: A **directed** graph is **weakly connected** if there is a path between any two vertices in the underlying undirected graph.

Example: Are the following directed graphs strongly or weakly connected?

Weakly connected, because, for example, there is no path from b to d.

Strongly connected, because there are paths between all possible pairs of vertices.

Connected Components

Definition: A graph that is not connected is the union of two or more connected sub-graphs, each pair of which has no vertex in common. These disjoint connected sub-graphs are called the **connected components** of the graph.

Example: What are the connected components in the following graph?

Solution: The connected components are the graphs with vertices {a, b, c, d}, {e}, {f, g, h, j}.