Relations

- Relations of Sets
- N-ary Relations
- Relational Databases
- Binary Relation Properties
- Equivalence Relations

Reading (Epp's textbook) 8.1-8.3.

Cartesian Products

The symbol (a, b) denotes the ordered pair (ordered two-tuple) consisting of a and b together with the specification that

- a is the first element of the pair
- b is the second element of the pair.

$$\succ$$
 (*a*, *b*) = (*c*, *d*) means that *a* = *c* and *b* = *d*.

- In general two ordered n-tuples $(x_1, x_2, ..., x_n)$ and $(y_1, y_2, ..., y_n)$ are equal if, and only if, $x_1 = y_1, x_2 = y_2, ..., x_n = y_n$.
- ➤ Cartesian product of two sets A and B: $A \times B = \{(a, b) \mid a \in A \text{ and } b \in B\}.$

Example: A = {good, bad}, B = {student, prof}

 $A \times B = \{(good, student), (good, prof), (bad, student), (bad, prof)\}.$

Is $A \times B = B \times A$?

Cartesian Products

Note that:

- A×∅ = ∅
- Ø×A = Ø
- For non-empty sets A and B: $A \neq B \Leftrightarrow A \times B \neq B \times A$
- If |A| = n and |B| = m, $|A \times B|$ is $n \times m$

➤ Cartesian product of two or more sets is defined as: $A_1 \times A_2 \times \cdots \times A_n = \{(a_1, a_2 \dots a_n) \mid a_1 \in A_1, a_2 \in A_2, \dots, a_n \in A_n\}.$

Relations

- Let A and B be sets. A relation R from A to B is a subset of A x B. Given and ordered pair (x, y) in A x B, x is related to y by R, written x R y, if, and only if, (x, y) is in R.
- The set A is called the **domain** of R and the set B is called its **co-domain**.
- A relation that is a subset of a Cartesian product of two sets is called a binary relation.

The Inverse of a Relation

Let *R* be a relation from *A* to *B*. Define the **inverse relation** R^{-1} from *B* to *A* as follows:

 $R^{-1} = \{(y, x) \in B \times A \mid (x, y) \in R\}.$

Example:

Let $A = \{2, 4, 6\}$ and $B = \{2, 3\}$. Given any $(x, y) \in A \times B$,

a relation R from A to B is defined as follows:

 $(x, y) \in R$ means that $\frac{x}{y}$ is an integer.

- Which ordered pairs are in R?
 R = {(2, 2), (4, 2), (6, 2), (6, 3)}
- Which ordered pairs are in R⁻¹?
 R = {(2, 2), (2, 4), (2, 6), (3, 6)}

 R^{-1} can be described in words as follows: For all $(y, x) \in B \times A$, $y R^{-1} x \Leftrightarrow y$ is a multiple of x.

Arrow Diagram of a Relation

- > Let $A = \{1, 2, 4\}$ and $B = \{1, 2, 3, 5\}$ and define relation S from A to B as follows:
 - For all $(x, y) \in A \times B$, $(x, y) \in S$ means that x < y

Is relation *S* a function?

A **function** *f* from a set A to a set B assigns a unique element of B to each element of A.

All functions are relations! **Not every** relation is a function!!!

Relation on a Set

> A relation on a set A is a relation from A to A.

When a relation R is defined on a set A, the arrow diagram of the relation can be modified so that it becomes a directed graph (digraph).

 \succ For all points x and y in A,

there is an arrow from x to $y \Leftrightarrow x R y \Leftrightarrow (x, y) \in R$.

Relation on a Set

Example:

Let A = {1, 2, 3, 4}. Which ordered pairs are in the relation R = {(a, b) | a < b ?

Solution:

 $R = \{(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)\}$

Representing Relations Using Matrices

➢ If R is a relation from A = {a₁, a₂, ..., a_m} to B = {b₁, b₂, ..., b_n}, then R can be represented by the zero-one matrix M_R = [m_{ij}] with

> $m_{ij} = 1$, if $(a_i, b_j) \in R$, and $m_{ij} = 0$, if $(a_i, b_j) \notin R$.

Example: How can we represent the relation *R* from A = $\{1, 2, 3\}$ to B = $\{1, 2\}$ where R = $\{(2, 1), (3, 1), (3, 2)\}$ as a zero-one matrix?

Solution: The matrix M_R is given by

$$M_R = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 1 & 1 \end{bmatrix}$$

Relation on a Set

How many different relations can we define on a set A with *n* elements?

A relation on a set A is a subset of $A \times A$.

How many elements are in $A \times A$?

There are n^2 elements in $A \times A$, so how many subsets (= relations on A) does $A \times A$ have?

The number of subsets that we can form out of a set with m elements is 2^m (Power Set).

Therefore, 2^{n^2} subsets can be formed out of $A \times A$.

Answer: We can define 2^{n^2} different relations on A.

N-ary Relations

Definition: Given sets A_1 , A_2 , ..., A_n an **n-ary relation** R on these sets is a subset of $A_1 \times A_2 \times ... \times An$.

The sets A₁, A₂, ..., An are called the **domains** of the relation, and n is called its **degree**.

Example:

Let R = {(a, b, c) |
$$a = 2b^b$$
 = 2c with a, b, c \in N}

What is the degree of R?

 \checkmark The degree of R is 3, so its elements are triples.

What are its domains?

 \checkmark Its domains are all equal to the set of positive integers.

Is (2, 4, 8) in R? Is (8, 2, 4) in R?

N-ary relations form the mathematical foundation for relational database theory.

- A database consists of n-tuples called records, which are made up of fields.
- Relations that represent databases are also called tables, since they are often displayed as tables.

Example:

Consider a database *S* of students, whose records are represented as 4-tuples with the fields **Student Name**, **ID Number**, **Major**, and **GPA**:

R = {(Ackermann, 231455, CS, 3.88), (Adams, 888323, Physics, 3.45), (Chou, 102147, CS, 3.79), (Rao, 678543, Math, 3.90), (Stevens, 786576, Psych, 3.45)}

Student Name	ID number	Major	GPA	
Ackermann	231455	CS	3.88	
Adams	888323	Physics	3.45	Record
Chou	102147	CS	3.79	
Rao	678543	Math	3.9	
Stevens	786576	Psych	3.45	

A domain of an n-ary relation is called a **primary key** if the ntuples are uniquely determined by their values from this domain.

✓ This means that no two records have the same value from the same primary key.

In our example, which of the fields **Student Name**, **ID Number**, **Major**, and **GPA** are primary keys?

Student Name and ID Number are primary keys, because no two records have equal values in these fields.

In a real student database, only ID Number would be a primary key.

- In a database, a primary key should remain one, even if new records are added.
- Combinations of domains can also uniquely identify n-tuples in an n-ary relation.
- When the values of a set of domains determine an n-tuple in a relation, the Cartesian product of these domains is called a composite key.
- We can apply a variety of operations on n-ary relations to form new relations.

Example:

In the database language SQL, if the previous student database is denoted *S*, the result of the query

SELECT Student Name, ID number FROM S WHERE

Major = CS

would be a list of the Student names and ID numbers of all CS's students:

Ackermann, 231455,

Chou, 102147.

This is obtained by taking the intersection of the set $A1 \times A2 \times \{CS\} \times A4$ with the database and then projecting onto the first two coordinates.

We will now look at some useful ways to classify relations. **Definition:** A relation R on a set A is called **reflexive** if $(a, a) \in R$ for every element $a \in A$.

Example: Are the following relations on {1, 2, 3, 4} reflexive?

- $R = \{(1, 1), (2, 2), (2, 3), (3, 3), (4, 4)\}$ **YES**
- R = {(1, 1), (2, 2), (3, 3)} NO
- R = {(1, 1), (1, 2), (2, 3), (3, 3), (4, 4)} NO

Definition: A relation on a set A is called **irreflexive** if $(a, a) \notin R$ for every element $a \in A$.

Definition: A relation R on a set A is called **symmetric** if $(b, a) \in R$ whenever $(a, b) \in R$ for all $a, b \in A$.

Example: Are the following relations on {1, 2, 3, 4} symmetric?

- R = {(1, 1), (1, 2), (2, 3), (3, 4), (4, 4)} NO
- R = {(1, 2), (2, 2), (3, 1)} NO
- $R = \{(1, 2), (2, 1), (2, 3), (3, 2), (4, 4)\}$ **YES**

Definition: A relation R on a set A is called **asymmetric** if $(a, b) \in R$ implies that $(b, a) \notin R$ for all $a, b \in A$.

What do we know about the matrices representing a **relation on a set** (a relation from A to A) ?

✓ They are square matrices.

What do we know about matrices representing **reflexive** relations?

All the elements on the diagonal of such matrices M_{ref} must be 1s.

What do we know about the matrices representing symmetric relations?

✓ These matrices are symmetric, that is, $M_R = (M_R)^t$.

$$M_{R} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix}$$

symmetric matrix, symmetric relation.

$$M_{R} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}$$

non-symmetric matrix, non-symmetric relation.

Definition: A relation R on a set A is called **transitive** if whenever $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$ for $a, b, c \in A$.

Example: Are the following relations on {1, 2, 3, 4} transitive?

- R = {(1, 1), (1, 2), (2, 3), (3, 4), (4, 4)} NO
- R = {(1, 2), (2, 3), (3, 1)} NO
- $R = \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (4, 4)\}$ YES

Definition: A relation R on a set A is called **antisymmetric** if a = b whenever $(a, b) \in R$ and $(b, a) \in R$.

Example: Are the following relations on {1, 2, 3} antisymmetric?

- $R = \{(1, 1), (1, 2), (2, 3)\}$ YES
- R = {(1, 3), (1, 2), (3, 1)} NO
- $R = \{(1, 1), (1, 2), (1, 3), (2, 2), (2, 3)\}$ YES

- \checkmark \leq and = are reflexive, but < is not.
- ✓ = is symmetric, but \leq is not.
- ✓ \leq is antisymmetric.
- However, $R = \{(x, y) | x + y \le 3\}$ is not antisymmetric, since (1, 2), (2, 1) $\in \mathbb{R}$.
- Note: = is also antisymmetric, i.e., = is symmetric and antisymmetric.
- ✓ < is also antisymmetric, since the precondition of the implication is always false.
- ✓ All three \leq , =, and < are transitive.
- However, $R = \{(x, y) | y = 2x\}$ is not transitive.

Question: Which of the following relations are reflexive, symmetric, antisymmetric, and/or transitive?

 $\begin{array}{ll} R_1 = \{(a,b) \mid a \leq b\} & R_2 = \{(a,b) \mid a > b\} \\ R_3 = \{(a,b) \mid a = b \text{ or } a = -b\} & R_4 = \{(a,b) \mid a = b\} \\ R_5 = \{(a,b) \mid a = b + 1\} & R_6 = \{(a,b) \mid a + b \leq 3\} \end{array}$

	Reflexive	Symmetric	Antisymmetric	Transitive
R_1	Yes	No	Yes	Yes
R_2	No	No	Yes	Yes
R ₃	Yes	Yes	No	Yes
R ₄	Yes	Yes	Yes	Yes
R_5	No	No	Yes	No
R ₆	No	Yes	No	No

Properties of Relations Using Graphs

What do we could derive about the graphs representing a **relation on a set** (a relation from A to A)?

Transitive Closure of a Relation

Let A be a set and R a relation on A. The **transitive closure** of R is the relation R^t on A that satisfies the following three properties:

- 1. R^t is transitive.
- 2. $R \subseteq R^t$.
- 3. If S is any other transitive relation that contains R, then $R^t \subseteq S$. Example:

Let $A = \{0, 1, 2, 3\}$ and consider the relation R defined on A as $R = \{(0, 1), (1, 2), (2, 3)\}$. Find the transitive closure of R.

CMSC 203 - Discrete Structures

- Relations are sets, and therefore, we can apply the usual set operations to them.
- ➢ If we have two relations R₁ and R₂, and both of them are from a set A to a set B, then we can combine them to R₁ ∪ R₂, R₁ ∩ R₂, or R₁ − R₂.
- > In each case, the result will be **another relation from A to B**.

Example:

Let the relations R and S be represented by the matrices

$$M_{R} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \qquad \qquad M_{S} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

What are the matrices representing $R \cup S$ and $R \cap S$? Solution: These matrices are given by

$$M_{R\cup S} = M_R \lor M_S = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix} \qquad \qquad M_{R\cap S} = M_R \land M_S = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Spring 2018

CMSC 203 - Discrete Structures

Let R_1 and R_2 be transitive relations on a set A. Does it follow that $R_1 \cup R2$ is transitive?

Solution:

No. Here is a counterexample:

$$A = \{1, 2\}, \qquad R_1 = \{(1, 2)\}, \qquad R_2 = \{(2, 1)\}$$

- Therefore, $R_1 \cup R_2 = \{(1, 2), (2, 1)\}$
- Notice that R_1 and R_2 are both transitive (vacuously, since there are no two elements satisfying the conditions of the property). However $R_1 \cup R_2$ is not transitive.
- If it were it would have to have (1, 1) and (2, 2) in $R_1 \cup R_2$.

... and there is another important way to combine relations.

- Definition: Let R be a relation from a set A to a set B and S a relation from B to a set C. The composite of R and S is the relation consisting of ordered pairs (a, c), where a∈A, c∈C, and for which there exists an element b∈B such that (a, b)∈R and (b, c)∈S. We denote the composite of R and S by S°R.
- In other words, if relation R contains a pair (a, b) and relation S contains a pair (b, c), then S^oR contains a pair (a, c).

Example:

Let D and S be relations on $A = \{1, 2, 3, 4\}$.

D =
$$\{(a, b) | b = 5 - a\}$$
 "b equals $(5 - a)$ "
S = $\{(a, b) | a < b\}$ "a is smaller than b"

$$D = \{(1, 4), (2, 3), (3, 2), (4, 1)\}$$

$$S = \{(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)\}$$

$$S^{\circ}D = \{(2, 4), (3, 3), (3, 4), (4, 2), (4, 3), (4, 4)\}$$

✓ D maps an element a to the element (5 – a), and afterwards S maps (5 – a) to all elements larger than (5 – a), resulting in S∘D = {(a,b) | b > 5 – a} or S∘D = {(a,b) | a + b > 5}.

Powers of a Relation

Definition: Let R be a relation on the set A. The powers R^n , n = 1, 2, 3, ..., are defined inductively by • $R^1 = R$

• $\mathbf{R}^{n+1} = \mathbf{R}^{n}$ • \mathbf{R}

In other words:

•Rⁿ = R°R° ... °R (n times the letter R)

Powers of a Relation

Theorem: The relation R on a set A is transitive if and only if $R^n \subseteq R$ for all positive integers n.

Remember the definition of transitivity:

Definition: A relation R on a set A is called transitive if whenever $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$ for $a, b, c \in A$.

- The composite of R with itself contains exactly these pairs (a, c).
- ✓ Therefore, for a transitive relation R, R∘R does not contain any pairs that are not in R, so R∘R ⊆ R.
- ✓ Since R∘R does not introduce any pairs that are not already in R, it must also be true that $(R∘R)∘R \subseteq R$, and so on, so that $R^n \subseteq R$.

Equivalence relations are used to relate objects that are similar in some way.

Definition: A relation on a set A is called an **equivalence relation** if it is reflexive, symmetric, and transitive.

✓ Two elements that are related by an equivalence relation R are called equivalent.

- Since R is symmetric, a is equivalent to b whenever b is equivalent to a.
- Since R is **reflexive**, every element is equivalent to itself.
- Since R is transitive, if a and b are equivalent and b and c are equivalent, then a and c are equivalent.

Obviously, these three properties are necessary for a reasonable definition of equivalence.

Example:

Let
$$R = \{(a, b) \in Z^+ \times Z^+ | a \text{ divides } b\}.$$

Solution:

To be an equivalence relation, R should be reflexive, transitive, and symmetric.

Is it reflexive?

Example: Suppose that R is the relation on the set of strings that consist of English letters such that aRb if and only if I(a) = I(b), where I(x) is the length of the string x. Is R an equivalence relation?

Solution:

- R is reflexive, because I(a) = I(a) and therefore aRa for any string a.
- R is symmetric, because if l(a) = l(b) then l(b) = l(a), so if aRb then bRa.
- ✓ R is transitive, because if l(a) = l(b) and l(b) = l(c), then l(a) = l(c), so aRb and bRc implies aRc.
- $\checkmark\,$ R is an equivalence relation.

Definition: Let R be an equivalence relation on a set A. The set of all elements that are related to an element *a* of A is called the **equivalence class** of *a*.

The equivalence class of a with respect to R is denoted by $[a]_R$.

When only one relation is under consideration, we will delete the subscript R and write [a] for this equivalence class.

If $b \in [a]_R$, b is called a **representative** of this equivalence class.

Example:

In the previous example (strings of identical length), what is the equivalence class of the word mouse, denoted by [mouse]?

Solution: [mouse] is the set of all English words containing five letters.

For example, 'horse' would be a representative of this equivalence class.

Theorem: Let R be an equivalence relation on a set A. The following statements are equivalent:

```
aRb
[a] = [b]
[a] ∩ [b] ≠ Ø
```

Definition: A **partition** of a set S is a collection of disjoint nonempty subsets of S that have S as their union. In other words, the collection of subsets A_i , $i \in I$, forms a partition of S if and only if

(i)
$$A_i \neq \emptyset$$
 for $i \in I$

(ii)
$$A_i \cap A_i = \emptyset$$
, if $i \neq j$

(iii) $\cup_{i \in I} A_i = S$

Theorem: Let R be an equivalence relation on a set S. Then the **distinct equivalence classes** of R form a **partition** of S. Conversely, given a partition $\{A_i \mid i \in I\}$ of the set S, there is an equivalence relation R that has the sets A_i , $i \in I$, as its equivalence classes.

Example: Let us assume that Frank, Suzanne and George live in Boston, Stephanie and Max live in Lübeck, and Jennifer lives in Sydney.

Let R be the **equivalence relation** {(a, b) | a and b live in the same city} on the set P = {Frank, Suzanne, George, Stephanie, Max, Jennifer}.

Then R = {(Frank, Frank), (Frank, Suzanne), (Frank, George), (Suzanne, Frank), (Suzanne, Suzanne), (Suzanne, George), (George, Frank), (George, Suzanne), (George, George), (Stephanie, Stephanie), (Stephanie, Max), (Max, Stephanie), (Max, Max), (Jennifer, Jennifer)}.

Spring 2018

Then the *distinct* equivalence classes of R are: {{Frank, Suzanne, George}, {Stephanie, Max}, {Jennifer}}.

- > And this is a **partition** of P.
- ✓ The distinct equivalence classes of any equivalence relation R defined on a set S constitute a partition of S, because every element in S is assigned to exactly one of the equivalence classes.

Congruence modulo m

We say that **a** is congruent to **b** modulo **m** and write $a \equiv b \pmod{m}$ iff m (a-b).

Let m > 1 be an integer. Show that the relation $R = \{(a, b) \mid a \equiv b \pmod{m}\}$ is an equivalence on the set of integers. **Proof:**

- ✓ *Reflexivity:* $a \equiv a \pmod{m}$ since a a = 0 is divisible by m.
- ✓ Symmetry: Suppose $(a, b) \in R$. Then m divides a b. Thus there exists some integer k s.t. a b = km. Therefore, b a = (-k)m. So m divides b a and thus $b \equiv a \pmod{m}$, and finally $(b, a) \in R$.
- ✓ *Transitivity:* If $(a, b) \in R$ and $(b, c) \in R$ then $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$. So m divides both a b and b c. Hence there exist integers k, r with a b = km and b c = rm. By adding these two equations we obtain

$$a - c = (a - b) + (b - c) = km + rm = (k + r)m.$$

Therefore, $a \equiv c \pmod{m}$ and $(a, c) \in R.$

Congruence modulo m

Example:

Let R be the relation $\{(a, b) \mid a \equiv b \pmod{3}\}$ on the set of integers.

- Is R an equivalence relation?
- Yes, R is reflexive, symmetric, and transitive.

What are the distinct equivalence classes of R ?

{{..., -6, -3, 0, 3, 6, ...}, {..., -5, -2, 1, 4, 7, ...}, {..., -4, -1, 2, 5, 8, ...}}