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Reading (Epp’s textbook) 
8.1-8.3. 



Cartesian Products 
 The symbol (a, b) denotes the ordered pair (ordered two-tuple) 

consisting of a and b together with the specification that 

 a is the first element of the pair 

 b is the second element of the pair. 

 (𝑎, 𝑏) = (𝑐, 𝑑) means that 𝑎 = 𝑐 and 𝑏 = 𝑑.  

 In general two ordered n-tuples (𝑥1,  𝑥2 , … , 𝑥𝑛 ) and (𝑦1,  𝑦2 , … , 𝑦𝑛 ) 
are equal if, and only if, 𝑥1 = 𝑦1, 𝑥2 = 𝑦2, … , 𝑥𝑛 = 𝑦𝑛.  

 Cartesian product of two sets A and B: 
𝐴 × 𝐵 = 𝑎, 𝑏   𝑎 ∈ 𝐴 𝑎𝑛𝑑 𝑏 ∈ 𝐵+. 

 Example: A = {good, bad}, B = {student, prof} 

𝐴 × 𝐵 = * 𝑔𝑜𝑜𝑑, 𝑠𝑡𝑢𝑑𝑒𝑛𝑡 , 𝑔𝑜𝑜𝑑, 𝑝𝑟𝑜𝑓 , 𝑏𝑎𝑑, 𝑠𝑡𝑢𝑑𝑒𝑛𝑡 , 𝑏𝑎𝑑, 𝑝𝑟𝑜𝑓 +. 
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Is 𝐴 × 𝐵 = B × 𝐴 ?  
 
Is 𝐴 × 𝐵 = B × 𝐴 ?  
 



Cartesian Products 

Note that: 

• A =  

• A =  

• For non-empty sets A and B: AB  AB  BA 

• If |A| = n and |B| = m, |A × B| is 𝑛 × 𝑚 

 

 Cartesian product of two or more sets is defined as: 
𝐴1 × 𝐴2 × ⋯ × 𝐴𝑛 = 𝑎1, 𝑎2 … 𝑎𝑛   𝑎1 ∈ 𝐴1, 𝑎2 ∈ 𝐴2, … , 𝑎𝑛 ∈ 𝐴𝑛+. 
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Relations 

 Let 𝐴 and 𝐵 be sets. A relation 𝑹 from 𝑨 to 𝑩 is a subset of 
𝐴 𝑥 𝐵. Given and ordered pair (𝑥, 𝑦) in 𝐴 𝑥 𝐵, 𝒙 is related to 
𝒚 by 𝑹, written 𝑥 𝑅 𝑦, if, and only if, (𝑥, 𝑦) is in 𝑅. 

 

 The set 𝐴 is called the domain of 𝑅 and the set 𝐵 is called its 
co-domain. 

 

 A relation that is a subset of a Cartesian product of two sets is  
called a binary relation. 
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The Inverse of a Relation 

Let R be a relation from A to B. Define the inverse relation 𝑅−1 
from B to A as follows: 

𝑅−1 =  *(𝑦, 𝑥)  ∈  𝐵 ×  𝐴 | (𝑥, 𝑦)  ∈  𝑅+. 

Example:  

Let 𝐴 =  *2, 4, 6+  and 𝐵 =  *2, 3+. Given any 𝑥, 𝑦 ∈ 𝐴 × 𝐵,  

 a relation R from A to B is defined as follows: 

𝑥, 𝑦 ∈ 𝑅 means that 
𝑥

𝑦
 is an integer. 

• Which ordered pairs are in R? 

 

 

• Which ordered pairs are in 𝑅−1? 
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R = {(2, 2), (4, 2), (6, 2), (6, 3)}  

R = {(2, 2), (2, 4), (2, 6), (3, 6)}  

𝑅−1 can be described in words 
as follows: For all (y, x) ∈ B × A, 
y 𝑅−1 x  ⇔  y is a multiple of x. 

𝑅−1 can be described in words 
as follows: For all (y, x) ∈ B × A, 
y 𝑅−1 x  ⇔  y is a multiple of x. 



Arrow Diagram of a Relation 

 Let 𝐴 =  *1, 2, 4+  and 𝐵 =  1, 2, 3, 5  and define relation 𝑆 
from A to B as follows: 

 For all 𝑥, 𝑦 ∈ 𝐴 × 𝐵,  
𝑥, 𝑦 ∈ 𝑆 means that x < y  
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S Is relation S a function? Is relation S a function? 

A function f from a set A to a 
set B assigns a unique element 
of B to each element of A. 

A function f from a set A to a 
set B assigns a unique element 
of B to each element of A. 

All functions are relations! 
Not every relation is a function!!! 
All functions are relations! 
Not every relation is a function!!! 



Relation on a Set 

 A relation on a set 𝑨 is a relation from A to A.  

 

 When a relation R is defined on a set A, the arrow diagram of 
the relation can be modified so that it becomes a directed 
graph (digraph). 

 

 For all points x and y in A, 

 there is an arrow from x to y ⇔ x R y ⇔ (x, y) ∈ R. 
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Relation on a Set 

Example:  

Let A = {1, 2, 3, 4}. Which ordered pairs are in the relation R = {(a, 
b) | a < b} ? 

 

Solution: 
R = 1, 2 , 1, 3 , 1, 4 , 2, 3 , 2, 4 , (3, 4)  
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Representing Relations Using Matrices 
 

 If 𝑅 is a relation from A = {a1, a2, …, am} to B = {b1, b2, …, bn}, 
then 𝑅 can be represented by the zero-one matrix MR = [mij] 
with 

mij = 1,   if (ai, bj)R, and 

mij = 0,  if (ai, bj)R. 

 

Example:  How can we represent the relation R from A = {1, 2, 3} 
to B = { 1,  2}  where  R = {(2, 1), (3, 1), (3, 2)} as a zero-one 
matrix? 

Solution: The matrix MR is given by  
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11

01

00

RM



Relation on a Set 
How many different relations can we define on a set A with n 
elements? 

A relation on a set A is a subset of 𝐴𝐴. 

How many elements are in 𝐴𝐴 ? 

There are n2 elements in 𝐴𝐴, so how many subsets (= relations 
on 𝐴) does 𝐴𝐴 have? 

The number of subsets that we can form out of a set with m 
elements is 2m  (Power Set).  

Therefore, 2n2
 subsets can be formed out of 𝐴𝐴. 

Answer:  We can define 2n2
 different relations on A. 
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N-ary Relations 

Definition: Given sets A1, A2, …, An an n-ary relation R on these 
sets is a subset of 𝐴1𝐴2…𝐴𝑛. 

 The sets 𝐴1, 𝐴2, … , 𝐴𝑛 are called the domains of the relation, 
and n is called its degree. 

 
Example:  

Let R = {(a, b, c) | 𝑎 =  2𝑏𝑏 = 2c with a, b, c  N} 

What is the degree of R? 

 The degree of R is 3, so its elements are triples. 

What are its domains? 

 Its domains are all equal to the set of positive integers. 
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Is (2, 4, 8) in R? Is (8, 2, 4) in R? 



Databases & Relations 

 

 N-ary relations form the mathematical foundation for 
relational database theory. 

 
 A database consists of n-tuples called records, which are 

made up of fields. 

 

 Relations that represent databases are also called tables, 
since they are often displayed as tables. 
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Databases & Relations 

Example:  

Consider a database S of students, whose records are represented 
as 4-tuples with the fields Student Name, ID Number, Major, and 
GPA: 

R = {(Ackermann, 231455, CS, 3.88), (Adams, 888323, Physics, 3.45), (Chou, 
102147, CS, 3.79), (Rao, 678543, Math, 3.90), (Stevens, 786576, Psych, 3.45)} 
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Student Name ID number Major GPA 

Ackermann 231455 CS 3.88 

Adams 888323 Physics 3.45 

Chou 102147 CS 3.79 

Rao 678543 Math 3.9 

Stevens 786576 Psych 3.45 

Record 



Databases & Relations 
A domain of an n-ary relation is called a primary key if the n-
tuples are uniquely determined by their values from this domain. 
 
 This means that no two records have the same value from the 

same primary key. 
 
In our example, which of the fields Student Name, ID Number, 
Major, and GPA are primary keys? 
 
Student Name and ID Number are primary keys, because no two 
records have equal values in these fields. 

 
 In a real student database, only ID Number would be a 

primary key. 
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Databases & Relations 

 In a database, a primary key should remain one, even if new 
records are added. 

 

 Combinations of domains can also uniquely identify n-tuples 
in an n-ary relation. 

 

 When the values of a set of domains determine an n-tuple in 
a relation, the Cartesian product of these domains is called a 
composite key. 

 

 We can apply a variety of operations on n-ary relations to 
form new relations. 
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Databases & Relations 

Example:  

In the database language SQL, if the previous student database is 
denoted S, the result of the query 

SELECT Student Name, ID number FROM S WHERE 

Major = CS 

would be a list of the Student names and ID numbers of all CS’s 
students: 

Ackermann, 231455, 

Chou, 102147. 

This is obtained by taking the intersection of the set A1 × A2 × 
{CS} × A4 with the  database and then projecting onto the first 
two coordinates. 
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Properties of Binary Relations 

We will now look at some useful ways to classify relations. 

Definition: A relation R on a set A is called reflexive if (a, a)R 
for every element aA. 

 

Example: Are the following relations on {1, 2, 3, 4} reflexive? 

• R = {(1, 1), (2, 2), (2, 3), (3, 3), (4, 4)} 

• R = {(1, 1), (2, 2), (3, 3)} 

• R = {(1, 1), (1, 2), (2, 3), (3, 3), (4, 4)} 

 

Definition: A relation on a set A is called irreflexive if (a, a)R for 
every element aA. 

 
17 CMSC 203 - Discrete Structures Spring 2018 

NO 

NO 

YES 



Properties of Binary Relations 

Definition: A relation R on a set A is called symmetric if (b, a)R 
whenever (a, b)R for all a, bA.  

 

Example:  Are the following relations on {1, 2, 3, 4} symmetric? 

• R = {(1, 1), (1, 2), (2, 3), (3, 4), (4, 4)} 

• R = {(1, 2), (2, 2), (3, 1)} 

• R = {(1, 2), (2, 1), (2, 3), (3, 2), (4, 4)} 

 

Definition: A relation R on a set A is called asymmetric if  (a, b)R 
implies that (b, a)R for all a, bA.  
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NO 

NO 

YES 



Properties of Binary Relations 
What do we know about the matrices representing a relation on a 
set (a relation from A to A) ? 

 They are square matrices. 

What do we know about matrices representing reflexive relations? 

 All the elements on the diagonal of such matrices Mref must be 
1s. 
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Properties of Binary Relations 

What do we know about the matrices representing symmetric 
relations? 

 These matrices are symmetric, that is, MR = (MR)t. 
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1101

1001

0010

1101

RM

symmetric matrix, 
symmetric relation. 





















0011

0011

0011

0011

RM

non-symmetric matrix, 
non-symmetric relation. 



Properties of Binary Relations 

Definition: A relation R on a set A is called transitive if whenever 
(a, b)R and (b, c)R, then (a, c)R for a, b, cA.  

 

Example:  Are the following relations on {1, 2, 3, 4} transitive? 

• R = {(1, 1), (1, 2), (2, 3), (3, 4), (4, 4)} 

• R = {(1, 2), (2, 3), (3, 1)} 

• R = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (4, 4)} 
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NO 

NO 

YES 



Properties of Binary Relations 

Definition: A relation R on a set A is called antisymmetric if  
a = b whenever (a, b)R and (b, a)R. 

 

Example: Are the following relations on {1, 2, 3} antisymmetric? 

• R = {(1, 1), (1, 2), (2, 3)} 

• R = {(1, 3), (1, 2), (3, 1)} 

• R = {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3)} 
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NO 

YES 

YES 



Properties of Binary Relations 

  ≤ and = are reflexive, but < is not. 

 = is symmetric, but ≤ is not. 

  ≤ is antisymmetric. 

• However, 𝑅 = 𝑥, 𝑦  𝑥 + 𝑦 ≤ 3+  is not antisymmetric, since 

(1, 2), (2, 1) ∊ R. 

• Note:  = is also antisymmetric, i.e., = is symmetric and 

antisymmetric. 

 < is also antisymmetric, since the precondition of the 
implication is always false. 

 All three ≤, =,  and < are transitive. 

• However, 𝑅 = 𝑥, 𝑦  𝑦 = 2𝑥+ is not transitive. 
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Properties of Binary Relations 

Question: Which of the following relations are reflexive, symmetric, 
antisymmetric, and/or transitive? 

𝑅1 = {(a,b) | a ≤ b}   𝑅2 = {(a,b) | a > b}  

𝑅3 = {(a,b) | a = b or a = -b}   𝑅4 = {(a,b) | a = b}  

𝑅5 = {(a,b) | a = b + 1}   𝑅6 = {(a,b) | a + b ≤ 3} 

 

24 CMSC 203 - Discrete Structures Spring 2018 

Reflexive Symmetric Antisymmetric Transitive 

𝑹𝟏 Yes No Yes Yes 

𝑹𝟐 No No Yes Yes 

𝑹𝟑 Yes Yes No Yes 

𝑹𝟒 Yes Yes Yes Yes 

𝑹𝟓 No No Yes No 

𝑹𝟔 No Yes No No 



Properties of Relations Using Graphs 

What do we could derive about the graphs representing a relation 
on a set (a relation from A to A)? 
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A relation is reflexive 
if for each point x …  

x 
… there is a loop at x:  

x 

A relation is symmetric 
if whenever there is an 
arrow from x to y …  

… there is also an arrow 
from y back to x:  

x 

y 

x 

y 

A relation is transitive if 
whenever there are arrows 
from x to y and y to z ... 

...there is also an arrow 
from x to z:  

x 

y z 

x 

y 



Transitive Closure of a Relation 

Let 𝐴 be a set and 𝑅 a relation on 𝐴. The transitive closure of R is 
the relation 𝑅𝑡 on A that satisfies the following three properties: 

1. 𝑅𝑡 is transitive. 

2. R ⊆ 𝑅𝑡 .  

3. If S is any other transitive relation that contains R, then 𝑅𝑡 ⊆ S. 

Example:  

Let A = {0, 1, 2, 3} and consider the relation R defined on A as R = 
{(0, 1), (1, 2), (2, 3)}. Find the transitive closure of R. 
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0 

2 

1 

3 

𝑅𝑡 ={(0, 1), (0, 2), (0, 
3), (1, 2), (1, 3), (2, 3)}. 
𝑅𝑡 ={(0, 1), (0, 2), (0, 
3), (1, 2), (1, 3), (2, 3)}. 



Combining Relations 

 Relations are sets, and therefore, we can apply the usual set 
operations to them. 

 

 If we have two relations R1 and R2, and both of them are from 
a set A to a set B, then we can combine them to R1  R2, R1  
R2, or R1 – R2. 

 

 In each case, the result will be another relation from A to B. 
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Combining Relations 
Example: 
Let the relations R and S be represented by the matrices 
 
 
 
 
 
 
What are the matrices representing RS and RS? 
Solution: These matrices are given by 
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010

001

101

RM



















001

110

101

SM



















011

111

101

SRSR MMM



















000

000

101

SRSR MMM



Combining Relations 

Let 𝑅1 and 𝑅2 be transitive relations on a set A. Does it follow 
that 𝑅1 ∪ 𝑅2 is transitive? 

 

Solution: 

No. Here is a counterexample: 
𝐴 = 1, 2 ,  𝑅1  = 1, 2 ,  𝑅2  = * 2, 1 + 

• Therefore, 𝑅1 ∪ 𝑅2  = * 1, 2 , 2, 1 + 

• Notice that 𝑅1 and 𝑅2 are both transitive (vacuously, since 
there are no two elements satisfying the conditions of the 
property). However 𝑅1 ∪ 𝑅2 is not transitive.  

• If it were it would have to have (1, 1) and (2, 2) in 𝑅1 ∪ 𝑅2. 
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Combining Relations 
… and there is another important way to combine relations. 

 

 Definition: Let R be a relation from a set A to a set B and S a 
relation from B to a set C. The composite of R and S is the 
relation consisting of ordered pairs (a, c), where aA, cC, 
and for which there exists an element bB such that (a, b)R 
and (b, c)S. We denote the composite of R and S by SR. 

 

 In other words, if relation R contains a pair (a, b) and relation 
S contains a pair (b, c), then SR contains a pair (a, c). 
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Combining Relations 
Example:  

Let D and S be relations on A = {1, 2, 3, 4}. 

D = {(a, b) | b = 5 - a}     “b equals (5 – a)” 

S = {(a, b) | a < b}        “a is smaller than b” 
 

 

D = {(1, 4), (2, 3), (3, 2), (4, 1)} 

S = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)} 

SD = { 
 

 D maps an element a to the element (5 – a), and afterwards S 
maps (5 – a) to all elements larger than (5 – a), resulting in SD 
= {(a,b) | b > 5 – a} or SD = {(a,b) | a + b > 5}. 
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(2, 4), (3, 3), (3, 4), (4, 2), (4, 3), (4, 4)} 



Powers of a Relation 

 

Definition: Let R be a relation on the set A. The powers Rn, n = 1, 
2, 3, …, are defined inductively by 

•R1 = R 

•Rn+1 = RnR 

 

In other words: 

•Rn = RR … R  (n times the letter R) 
 

 

32 CMSC 203 - Discrete Structures Spring 2018 



Powers of a Relation 
Theorem: The relation R on a set A is transitive if and only if Rn  R 
for all positive integers n.  

Remember the definition of transitivity: 

Definition: A relation R on a set A is called transitive if whenever 
(a, b)R and (b, c)R, then (a, c)R for a, b, cA.  

 

• The composite of R with itself contains exactly these pairs (a, c).  

 Therefore, for a transitive relation R, RR does not contain any 
pairs that are not in R, so RR  R. 

 Since RR does not introduce any pairs that are not already in R, 
it must also be true that (RR)R  R, and so on, so that Rn  R. 
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Equivalence Relation 

 Equivalence relations are used to relate objects that are 
similar in some way. 

 

Definition: A relation on a set A is called an equivalence relation 
if it is reflexive, symmetric, and transitive. 

 

 Two elements that are related by an equivalence relation R 
are called equivalent. 
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Equivalence Relation 

 Since R is symmetric, a is equivalent to b whenever b is 
equivalent to a. 

 

 Since R is reflexive, every element is equivalent to itself. 

 

 Since R is transitive, if a and b are equivalent and b and c are 
equivalent, then a and c are equivalent. 

 

Obviously, these three properties are necessary for a reasonable 
definition of equivalence. 
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Equivalence Relation 

Example:  

Let 𝑅 = 𝑎, 𝑏 ∈  𝑍+ ×  𝑍+  𝑎 𝑑𝑖𝑣𝑖𝑑𝑒𝑠 𝑏+.  

Solution: 

To be an equivalence relation, R should be reflexive, transitive, 
and symmetric. 

Is it reflexive?  

 

Is it transitive? 

 

Is it symmetric? 

 

36 CMSC 203 - Discrete Structures Spring 2018 

NO 

YES 

YES 



Equivalence Relation 

Example: Suppose that R is the relation on the set of strings that 
consist of English letters such that aRb if and only if l(a) = l(b), 
where l(x) is the length of the string x. Is R an equivalence 
relation? 

Solution:  

  R is reflexive, because l(a) = l(a) and therefore  
  aRa for any string a. 

  R is symmetric, because if l(a) = l(b) then l(b) =  
  l(a), so if aRb then bRa. 

  R is transitive, because if l(a) = l(b) and l(b) = l(c),  
  then l(a) = l(c), so aRb and bRc implies aRc. 

 R is an equivalence relation. 
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Equivalence Classes 

Definition: Let R be an equivalence relation on a set A. The set of 
all elements that are related to an element 𝑎 of A is called the 
equivalence class of 𝑎.  

 

The equivalence class of 𝑎 with respect to R is denoted by ,𝒂-𝑹. 

 

When only one relation is under consideration, we will delete 
the subscript R and write ,𝒂- for this equivalence class. 

 

If 𝑏,𝑎-𝑅, b is called a representative of this equivalence class. 
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Equivalence Classes 

Example:  

In the previous example (strings of identical length), what is the 
equivalence class of the word mouse, denoted by [mouse]? 

 

Solution: [mouse] is the set of all English words containing five 
letters. 

 

For example, ‘horse’ would be a representative of this 
equivalence class. 
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Equivalence Classes 

Theorem: Let R be an equivalence relation on a set A. The following 
statements are equivalent: 

aRb 

[a] = [b] 

[a]  [b]    

 

Definition: A partition of a set S is a collection of disjoint nonempty 
subsets of S that have S as their union. In other words, the collection 
of subsets Ai, iI, forms a partition of S if and only if  
(i)   Ai   for iI 

(ii)  Ai  Aj = , if i  j 

(iii)  iI Ai = S 
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Equivalence Classes 
Theorem: Let R be an equivalence relation on a set S. Then the distinct 
equivalence classes of R form a partition of S. Conversely, given a partition 
{Ai | iI} of the set S, there is an equivalence relation R that has the sets Ai, 
iI, as its equivalence classes. 

 

Example: Let us assume that Frank, Suzanne and George live in Boston, 
Stephanie and Max live in Lübeck, and Jennifer lives in Sydney.  

Let R be the equivalence relation {(a, b) | a and b live in the same city} on 
the set P = {Frank, Suzanne, George, Stephanie, Max, Jennifer}. 

Then R = {(Frank, Frank), (Frank, Suzanne),(Frank, George), (Suzanne, 
Frank), (Suzanne, Suzanne), (Suzanne, George), (George, Frank), (George, 
Suzanne), (George, George), (Stephanie, Stephanie), (Stephanie, Max), 
(Max, Stephanie), (Max, Max), (Jennifer, Jennifer)}. 
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Equivalence Classes 

 Then the distinct equivalence classes of R are: 

{{Frank, Suzanne, George}, {Stephanie, Max}, {Jennifer}}. 

  And this is a partition of P. 

 

 The distinct equivalence classes of any equivalence relation R 
defined on a set S constitute a partition of S, because every 
element in S is assigned to exactly one of the equivalence 
classes. 
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Congruence modulo m 
We say that 𝒂 is congruent to 𝒃 𝒎𝒐𝒅𝒖𝒍𝒐 𝒎 and write 𝑎 ≡  𝑏( 𝑚𝑜𝑑 𝑚) iff 
m |(a-b). 
 
Let m > 1 be an integer. Show that the relation 
𝑅 = *(𝑎, 𝑏) | 𝑎 ≡  𝑏( 𝑚𝑜𝑑 𝑚)+ is an equivalence on the set of integers. 
Proof:  
 Reflexivity: 𝑎 ≡ 𝑎( 𝑚𝑜𝑑 𝑚) since 𝑎 −  𝑎 = 0 is divisible by m. 
 Symmetry: Suppose (𝑎, 𝑏)  ∈  𝑅. Then m divides 𝑎 −  𝑏. Thus there 

exists some integer k s.t. 𝑎 −  𝑏 =  𝑘𝑚. Therefore, 𝑏 −  𝑎 =  (−𝑘)𝑚. 
So m divides 𝑏 −  𝑎 and thus 𝑏 ≡ 𝑎(𝑚𝑜𝑑 𝑚), and finally (𝑏, 𝑎)  ∈  𝑅. 

 Transitivity: If (𝑎, 𝑏)  ∈  𝑅 and (𝑏, 𝑐)  ∈  𝑅 then 𝑎 ≡  𝑏( 𝑚𝑜𝑑 𝑚) and 
𝑏 ≡ 𝑐(𝑚𝑜𝑑 𝑚). So m divides both 𝑎 −  𝑏 and 𝑏 −  𝑐. Hence there 
exist integers k, r with 𝑎 −  𝑏 =  𝑘𝑚 and 𝑏 −  𝑐 = 𝑟𝑚. By adding 
these two equations we obtain 

𝑎 −  𝑐 =  (𝑎 −  𝑏)  + (𝑏 −  𝑐)  =  𝑘𝑚 + 𝑟𝑚 =  (𝑘 + 𝑟)𝑚. 
Therefore, 𝑎 ≡ 𝑐( 𝑚𝑜𝑑 𝑚) and (𝑎, 𝑐)  ∈  𝑅. 
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Congruence modulo m 

Example:  

Let R be the relation {(a, b) | a  b (mod 3)} on the set of integers. 

Is R an equivalence relation? 

Yes, R is reflexive, symmetric, and transitive. 

 

What are the distinct equivalence classes of R ? 

{{…, -6, -3, 0, 3, 6, …}, 
 {…, -5, -2, 1, 4, 7, …}, 
 {…, -4, -1, 2, 5, 8, …}} 
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