INFERENCE NETWORKS FOR DOCUMENT RETRIEVAL

A Dissertation Presented

by

HowaARrRD ROBERT TURTLE

Submitted to the Graduate School of the
University of Massachusetts in partial fulfillment
of the requirements for the degree of

DocTor OF PHILOSOPHY

February 1991

Department of Computer and Information Science



(© Copyright Howard Robert Turtle 1990

All Rights Reserved



INFERENCE NETWORKS FOR DOCUMENT RETRIEVAL

A Dissertation Presented
by

HowaARrRD ROBERT TURTLE

Approved as to style and content by:

W. Bruce Croft, Chair of Committee

Michael J. McGill, Member

David W. Stemple, Member

Donald L. Fisher, Outside Member

W. Richards Adrion, Department Chair

Computer and Information Science



ACKNOWLEDGMENTS

I would like to thank Bruce Croft for his insight and his tireless support through-
out this research. I would like to thank the remainder of my dissertation committee,
Don Fisher, Mike McGill, and Dave Stemple for their careful review of manuscripts
in preparation. Their breadth and perspective improved this dissertation in many
ways.

I would like to thank OCLC Online Computer Library Center for supporting
the initial phases of this research. In particular, I would like to thank Rowland

Brown for his willingness to invest in the future of his company.

v



ABSTRACT

INFERENCE NETWORKS FOR DOCUMENT RETRIEVAL
FEBRUARY 1991
HOWARD ROBERT TURTLE, B.A., UNIVERSITY OF WISCONSIN
M.S., UNIVERSITY OF WISCONSIN
Ph.D., UNIVERSITY OF MASSACHUSETTS
Directed by: Professor W. Bruce Croft

Information retrieval is concerned with selecting documents from a collection
that will be of interest to a user with a stated information need or query. Research
aimed at improving the performance of retrieval systems, that is, selecting those
documents most likely to match the user’s information need, remains an area of
considerable theoretical and practical importance.

This dissertation describes a new formal retrieval model that uses probabilistic
inference networks to represent documents and information needs. Retrieval is
viewed as an evidential reasoning process in which multiple sources of evidence
about document and query content are combined to estimate the probability that
a given document matches a query. This model generalizes several current retrieval
models and provides a framework within which disparate information retrieval
research results can be integrated.

To test the effectiveness of the inference network model, a retrieval system

based on the model was implemented. Two test collections were built and used



to compare retrieval performance with that of conventional retrieval models. The
inference network model gives substantial improvements in retrieval performance
with computational costs that are comparable to those associated with conventional
retrieval models and which are feasible for large collections.
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CHAPTER 1

INTRODUCTION

In this chapter we provide a brief introduction to information retrieval in order
to establish a context for the research described here (Section 1.1). We then
introduce four current retrieval models (Section 1.2) that we will compare with
a new retrieval model developed as part of this research (Section 1.3). Finally, we
provide a summary of the research conducted (Section 1.4), review our main con-

tributions (Section 1.5), and provide an outline of the remainder of the dissertation

(Section 1.6).

1.1 Overview

Information retrieval (IR) is concerned with selecting objects from a collection that
may be of interest to a searcher. Objects in the collection may take many forms,
they may be traditional document texts, items in a museum collection, messages in
an electronic mail archive, or any form that we wish to collect for later retrieval.
Objects may also exhibit complex structure in which one object is formed by

combining several others (e.g., chapters may be viewed as objects that make up

a book).



Collections. Information retrieval techniques that facilitate access to docu-
ment collections have a history that dates back to at least the third century B.C.
when the first libraries with large cataloged collections (>100,000 documents) began
to appear [Hesb5]. Our interest, however, is in retrieval techniques that can be
applied under program control to select items from machine-readable collections.
For these machine-readable collections, we generally have descriptions of the objects
in the collection rather than the objects themselves (for objects that exist only in
machine readable form, e.g., electronic mail messages, we may have the actual
objects). These descriptions usually consist of text describing various attributes
of the objects, but may also include descriptors assigned by the creator of the
object or some other indexing agent (e.g., controlled vocabulary terms assigned
by a human indexer or some automatically assigned classification), or used to
describe relationships between objects in the collection (e.g., citations or hypertext
links). Our ability to automatically interpret these descriptions, particularly the
text portions, is, at present, very limited.

In most of what follows, we will assume that the objects of interest are docu-
ments. However, since our knowledge of an object is always based on a description
of that object, the discussion applies to collections of other kinds of objects.

Information needs. The searcher is our most reliable source of information
about whether objects are of interest. We will restrict decisions about “interest” to
the context of a single “information need.” The idea here is that the searcher has
some more or less well defined purpose for seeking items in the collection and will
make decisions about interest based on that purpose rather than in the more general
context of all objects that he might find interesting. If for example, a searcher is
looking for documents that deal with the computational complexity of inference

networks, we expect that a document on experimental aircraft would not be judged



interesting, even if the searcher finds it to be interesting in another context. This
information need is internal to the searcher and we will have only an incomplete
description of the information need. This description (a query) is often expressed
in natural language, but other forms are possible (e.g., sample documents, Boolean
expressions). We also expect that the user’s understanding of the information need
will change during the search.

We will assume that the description of an information need is a description
(albeit imprecise and incomplete) of characteristics that will be found in documents
that match the information need. This is a major assumption that is implicit
in most information retrieval research (indeed, many retrieval models essentially
assume that the description of the information need is a sample document). The
expected query form distinguishes information retrieval from closely related activ-
ities such as database query processing, question answering, or fact retrieval (e.g.,
database queries are similar to IR queries in that they represent a description of the
characteristics of objects that will match the information need, but the description
is entirely in terms of attributes that have a well defined semantics and no true
natural language component).

Matching documents and information needs. Given a text description of
an object and a text description of an information need, a human can generally (but
not always) decide if the object would satisfy the information need. The kind of
understanding that would allow us to make this decision under program control is,
however, well beyond current natural language understanding techniques and our
decision about the likelihood that a document matches an information need will be
based on the fairly crude representations of the meaning or content that we can

currently extract from these descriptions.



Information retrieval, then, can be seen as comprising three basic steps. Given
a set of descriptions for objects in the collection and a description of an information

need, we must:

1. generate a representation of the meaning or content of each object based on

its description,
2. generate a representation of the meaning of the information need, and

3. compare these two representations to select those objects that are most likely

to match the information need.

When we fix the details of these representations, how they are generated, and how

they are compared we have defined a retrieval model.
Given this three step view of information retrieval, the major research issues

fall into four broad categories:

1. What makes a good document representation? What are retrievable units
and how are they organized? How can a representation be generated from a

description of the document?

2. How can we represent the information need and how can we acquire this
representation either from a description of the information need or through

interaction with the user?

3. How can we compare representations to judge likelihood that a document

matches an information need?

4. How can we evaluate the effectiveness of the retrieval process?

These categories are not independent. We cannot, for example, develop a good rep-
resentation of an information need without considering the document representation

and the matching process.



The primary motivation for the research described here is to improve the pro-
cess of comparing representations. No current representation technique completely
captures the meaning of a document or information need and there is little reason
to believe that truly adequate representations will be developed in the near future.
Indeed, the notion of a single representation of meaning may not be practical since
the meaning of a body of text is so heavily dependent upon the context in which it
is to be interpreted.

There are, however, many representation techniques that capture at least some
aspects of meaning in text. The artificial intelligence (AI) community, particularly
that portion interested in natural language understanding, has developed a number
of techniques for representing the meaning of a text [All87]. The most successful
representations make fairly specific assumptions about the way in which the text
should be interpreted (e.g., as a story about one of a small number of topics) and
about the kinds of questions that might be asked about the text (e.g., questions
about actor’s intentions). Some work has been done to adapt the natural language
understanding techniques to an information retrieval setting, but there is little
near-term hope that these techniques could be used to represent large document
collections and arbitrary queries [Sal86].

Within the information retrieval community, a number of techniques have been
developed that can represent the content of documents and information needs.
These representations have a much different flavor than NLP representations. They
are generally based on simple, very general, features of documents (e.g., words,
citations) and represent simple relationships between features (e.g., phrases) and
between documents (e.g., two documents cite the same document). The focus here
is on simple, but general, representations that can be applied to most texts rather

than on specialized techniques which capture more information but are applicable



only in narrow contexts. Information retrieval representations also make extensive
use of the statistical properties of representation features and attempt to make use
of information produced by human analysis (e.g., manual indexing) when available.

Over the last decade there has been considerable interaction between the Al and
information retrieval communities; Al techniques have been adapted to an IR setting
and the IR focus on “real” document collections and on thorough experimental
evaluation has helped to expand the focus of Al research. The research reported
here is one example of this interaction.

Given the availability of a number of representation techniques that capture
some of the meaning of a document or information need, our basic premise is that
decisions about which documents match an information need should make use of as
many of the representation forms as practical. The remainder of this dissertation
develops the theoretical framework to allow multiple representations to be combined
and describes the experimental evaluation of the resulting formal model.

While our focus is on methods for comparing representations rather than on the
development of new representations, we must inevitably make some assumptions
about the kinds of representations that will be available and our research suggests
how different kinds of representations should be organized to allow effective com-

parison.

1.2 Current retrieval models

A retrieval model fixes the details of the representations used for documents and
information needs, describes how these are generated from available descriptions,
and how they are compared. If the model has a clear theoretical basis we call it a

formal retrieval model; if the model makes little or no appeal to an underlying theory



we call it ad hoc. We use the terms theory and model here in the mathematical
or logical sense in which a theory refers to a set of axioms and inference rules that
allow derivation of new theorems. A model is an embodiment of the theory in which
we define the set of objects about which assertions can be made and restrict the
ways in which classes of objects can interact.

Four current retrieval models are particularly relevant to this research: the
Boolean, cluster-based, probabilistic, and vector-space models. We will use the
measures precision and recall when describing retrieval performance. Precision is
the proportion of a retrieved set that is actually relevant. Recall is the proportion
of all relevant documents that are actually retrieved. These measures are discussed
further in Section 2.1.

Boolean. Boolean retrieval forms the basis of most major commercial retrieval
services, but is generally believed to be difficult to use and has poor precision/recall
performance since the model does not rank documents. In the Boolean model we
have a finite set of representation concepts or features R = {ry,...,r} that can
be assigned to documents. A document is simply an assignment of representation
concepts and this assignment is often represented by a binary-valued vector of length
k. The assignment of a representation concept r; to a document is represented by
setting the i*" element of the vector to true. All elements corresponding to features
not assigned to a document are set to false.

An information need is described by a Boolean expression in which operands
are representation concepts. Any document whose set of representation concepts
represents an assignment that satisfies the Boolean expression is deemed to match
the information need, all other documents do fail to match the information need.

This evaluation partitions the set of documents, but provides no information about



the relative likelihood that documents within the same partition will match the
information need.

Relevance in Boolean retrieval, then, is defined in terms of satisfiability of a first-
order logic expression given a set of document representations as axioms. Several
attempts have been made to extend the basic Boolean model to provide document
ranking. The most successful of these is the Extended Boolean model that will be
discussed in section 6.3.2.

Cluster-based retrieval. Cluster-based retrieval is based on the Cluster
Hypothesis which asserts that similar documents will match the same information
needs. Rather than comparing representations of individual documents to the
representation of the information need, we first form clusters of documents using
any of several clustering algorithms and similarity measures. For each cluster,
we then create an “average” or representative document and compare this cluster
representative to the information need to determine which clusters best match. We
then retrieve the clusters that are most likely to match the information need rather
than the individual documents. There are several ways to identify the clusters to
be retrieved, particularly when using hierarchical clustering techniques that allow
navigation of the cluster hierarchy.

Since many techniques are used to compare the query with the cluster represen-
tative, there is no single definition of relevance for cluster-based retrieval. Rather,
relevance is partially defined by the model that forms the basis of the comparison.
The similarity measure used to define cluster and the method used to create the
cluster representatives also play a part in defining relevance since they determine
which documents will be judged similar to a cluster representative that matches the

information need.



Vector-space retrieval. In the vector-space model, we have a set of represen-
tation concepts or features R = {ry,...,rt}. Documents and queries are represented
as vectors of length k in which each element corresponds to a real-valued weight
assigned to an element of the representations set. Several techniques have been used
to compute these weights, the most common being tf.idf weights which are based
on the frequency of a term in a single document (¢f) and its frequency in the entire
collection (idf). These tf.idf weights are discussed in more detail in Section 8.2.

Documents and queries are compared using any of several similarity functions,
the most common function being the cosine of the angle between their representation
vectors.

Since several techniques have been used to compute weights for the vector
elements, the vector-space model has no single form of document or query represen-
tation, although all representations have a common form. Similarly, since several
similarity functions have been used, relevance has no single definition.

The vector-space model is historically important since it forms the basis for a
large body of retrieval research that can be traced back to the 1960’s. The vector-
space model has been criticized as an ad hoc model since there is relatively little
theoretical justification for many of its variations. Some forms of the vector-space
model can be shown to produce rankings that are equivalent to those produced by
probabilistic models [Cro84].

Probabilistic retrieval. Probabilistic retrieval is based on the Probability
Ranking Principal which asserts that the best overall retrieval effectiveness will be
achieved when documents are ranked in decreasing order of probability of relevance.

There are several different probabilistic formulations which differ mainly in the
way in which they estimate the probability of relevance. Using a representative

model, a document d; and an information need f; are represented as the now



familiar vectors of length k in which each element is true if the corresponding
representation concept is assigned to the document or query. If we let F' represent
the set of representations for information needs and D represent the set of document
representations, then we can define an event space F' X D and our task becomes one
of determining which of these document-request pairs would be judged relevant, that
is, estimating P(R|d;, f;). We then use Bayes’ theorem and a set of independence
assumptions about the distribution of representation concepts in the documents
and queries to derive a ranking function that computes P(R|d;, f;) in terms of the
probabilities that individual representation concepts will be assigned to relevant
and non-relevant documents. Different independence assumptions lead to different
forms of the model. Given estimates for these two probabilities (say, from a sample
of documents judged relevant and from the entire collection), we can compute
P(R|d;, f;)-

Probabilistic models are in many ways similar to the vector-space model. The
main difference between the models is that probabilistic models generally have a

much more rigorous theoretical base.

1.3 Inference network model

Recent retrieval research has suggested that significant improvements in retrieval
performance will require techniques that, in some sense, “understand” the content
of documents and queries [van86, Cro87] and can be used to infer probable rela-
tionships between documents and queries. In this view, information retrieval is an
inference or evidential reasoning process in which we estimate the probability that a

user’s information need, expressed as one or more queries, is met given a document

10



as “evidence.” Network representations show promise as mechanisms for inferring
these kinds of relationships [CT89, CK87].

The idea that retrieval is an inference or evidential reasoning process is not
new. Cooper’s logical relevance [Coo71] is based on deductive relationships between
representations of documents and information needs. Wilson’s situational relevance
[Wil73] extends this notion to incorporate inductive or uncertain inference based on
the degree to which documents support information needs. The techniques required
to support these kinds of inference are similar to those used in expert systems that
must reason with uncertain information. A number of competing inference models
have been developed for these kinds of expert systems [KL86, LK88| and several of
these models can be adapted to the document retrieval task.

Network representations have been used in information retrieval since at least
the early 1960’s. Networks have been used to support diverse retrieval functions,
including browsing [TC89], document clustering [Cro80], spreading activation search
[CK87], support for multiple search strategies [CT87], and representation of user
knowledge [OPC86] or document content [TS85].

In the research described here we adapt an inference network model to the

retrieval task. The use of the model is intended to:

e Support the use of multiple document representation schemes. Research has
shown that a given query will retrieve different documents when applied to
different representations, even when the average retrieval performance achieved
with each representation is the same. Katzer, for example, found little overlap
in documents retrieved using seven different representations, but found that
documents retrieved by multiple representations were likely to be relevant
[KMT*82]. Similar results have been obtained when comparing term- with

cluster-based representations [CH79] and term- with citation-based represen-

tations [FNL88|.

11



o Allow results from different queries and query types to be combined. Given a
single natural language description of an information need, different searchers
will formulate different queries to represent that need and will retrieve different
documents, even when average performance is the same for each searcher
[MKN79, KMT*82]. Again, documents retrieved by multiple searchers are
more likely to be relevant. A description of an information need can be
used to generate several query representations (e.g., probabilistic, Boolean),
each using a different query strategy and each capturing different aspects of
the information need. These different search strategies are known to retrieve

different documents for the same underlying information need [Cro87].

e Facilitate flexible matching between the terms or concepts mentioned in queries
and those assigned to documents. The poor match between the vocabulary
used to express queries and the vocabulary used to represent documents ap-
pears to be a major cause of poor recall [FLGD87]. Recall can be improved
using domain knowledge to match query and representation concepts without
significantly degrading precision.

The resulting formal retrieval model integrates several previous models in a single
theoretical framework. The network model can be used to simulate probabilistic,
Boolean, and cluster-based models. Moreover, retrieval results produced by these
disparate models can be combined to form an overall assessment of relevance. In
the network model, multiple document and query representations are treated as
evidence which is combined to estimate the probability that a document satisfies a

user’s information need.

1.4 Research summary

In the research reported here we have developed a formal retrieval model which uses

Bayesian inference networks to infer the probability that individual documents in
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the collection satisfy a user’s information need. This model treats multiple docu-
ment representations as sources of evidence about document content and multiple
query representations as sources of evidence about the information need. To simplify
the presentation, we distinguish between a basic form of the model which uses the
same sources of evidence as are used in simple probabilistic models (documents are
represented by terms that are manually assigned or extracted from the document)
and an extended model in which additional evidence forms are considered (e.g.,

citations, thesauri, clustering).

The network model has been implemented and evaluated using two standard
test collections to compare the retrieval performance of the model with probabilis-
tic and Boolean models. Based on the formal properties of the retrieval model
and our implementation experience we developed performance bounds for building
document networks and showed that queries could be evaluated efficiently.

Our original objectives for this research were:

1. Determine the retrieval performance achievable under the inference network

model.

2. Compare the retrieval performance of the inference network model with that
obtained with a conventional probabilistic model using the same searches run

on the same databases.

3. Compare retrieval performance within the inference network model of different

document representations.

4. Compare retrieval performance within the inference network model of different

query representations (natural language, Boolean, and both).

5. Compare the computational performance of these networks with that of con-
ventional probabilistic models and to characterize the costs associated with

these networks as a function of network size.
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These objectives led to the following hypotheses.

1.

Given equivalent document representations, query forms, and assumptions
about the match between indexing and query vocabularies, the inference net-

work model will perform as well as probabilistic models.

. The use of networks containing multiple document representations will signif-

icantly improve retrieval performance when compared to equivalent networks

without the additional representations.

. The use of multiple query formulations and search strategies will significantly

improve retrieval performance when compared to equivalent networks with a

single natural language query.

Hypotheses 2 and 3 deal with the features of the basic model in which no

dependencies between documents or between terms are represented.

The incorporation of dependencies between documents (citations and nearest
neighbor links) will significantly improve retrieval performance when compared

to equivalent networks that do not incorporate these additional dependencies.

. It will be possible to build and evaluate these networks in “reasonable” time.

For a collection that contains ¢ term occurrences we will interpret “reasonable”
to mean a) O(¢?) time to build and preevaluate the network, b) query evaluation
time relatively independent of document network size and less than 10 seconds
for 90% of the queries when run on a typical micro-Vax or Sun network, and c)
storage overhead that is a small constant (¢ < 5) times the original collection

size.

The main results of the research are:

The basic inference network model offers very substantial improvements in
retrieval performance when compared to the best conventional retrieval models.

Using equivalent evidence forms, average performance improved by 25.0%
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for one test collection and 5.3% for the other when compared to baseline
probabilistic retrieval. Most of this improvement results from an improved
estimate of the probability that a document should be judged relevant when
a term present in the query is absent from the document. These performance

improvements lead us to accept Hypothesis 1.

e The network interpretation of Boolean queries performs substantially better
than conventional Booleans. For the three sets of Boolean queries available
with the test collections, performance improved by 57.7%, 49.1%, and 65.3%
when compared to conventional Boolean retrieval. When compared to the
best performance achievable with the Extended Boolean or p-norm model,

performance improved by 15.1%, 7.8%, and 4.3% for the three query sets.

o The network interpretation of Boolean queries generally outperforms the orig-
inal natural language versions. Booleans performed 6.6%, 0.7% and 15.7%

better than the natural language versions.

e The use of Computing Reviews categories assigned to documents by authors
as an additional document representation does not consistently improve per-
formance. Performance improves significantly only when CR categories are
assigned to queries by a human expert. However, the poor performance of
the CR categories appears to result from problems with the assignment of CR
categories in the CACM collection, so our research supports no conclusion with

regard to Hypothesis 2.

e Multiple query representations significantly improve retrieval performance. When

Boolean query forms are combined with the original natural language forms,
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performance improves by 20.5%, 9.0%, and 17.8% for the three Boolean query

sets. These results lead us to accept Hypothesis 3.

e Additional query representations can be generated automatically that will im-
prove performance when combined with the natural language versions. These
queries capture phrase structure in the natural language query and user-supplied

information about the importance of terms.

e The use of additional document representations based on citation links signif-
icantly improves performance, but those based on nearest neighbor links do
not. The performance improvements achieved with citations leads us to accept

Hypothesis 4.

e Networks can be built and searched efficiently. Networks can be built in
O(tlgt) time where t is the number of term occurrences in the collection.
Average query processing time is less than one second for the test queries and
average query processing time should grow logarithmically with collection size.
Network files are roughly twice as large as the original source collection text
and will exhibit linear or slightly sublinear growth. These performance results

lead us to accept Hypothesis 5.

Implementation of the network model has also led to the development of efficient
techniques for evaluating restricted classes of Bayesian inference networks. The

evaluation of general Bayesian inference networks is NP-complete.
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1.5 Research contributions

This research makes a number of contributions to information retrieval theory and
has resulted in retrieval techniques of that can considerably improve the retrieval

performance of conventional systems. The specific contributions of this work are:

o Very significant improvements in retrieval performance.

e Development of a formal retrieval model that generalizes probabilistic, Boolean,

extended Boolean, and cluster-based retrieval models.

e Development of a theoretical framework that allows the results from several
different retrieval techniques to be combined when assessing the probability

that a document matches a query.

e Development of a mechanism for representing uncertain information needs.
Representation of uncertainty is a very general problem that must be dealt

with in many automated tasks.

e Development of techniques for representing complex information objects. Doc-
uments (and text in general) represent a particularly important class of com-
plex object, and the techniques for integrating multiple representations of

objects are of general interest.

e Development of techniques for efficient evaluation of a restricted class of prob-

abilistic inference networks.

e This research represents a step toward more integrated information systems.
The retrieval model can be integrated with a number of other types of systems

(e.g., DBMS, hypertext, office automation) to improve text handling.
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1.6 Outline of the dissertation

In the remainder of this dissertation we first describe the research methodology
(Chapter 2) and review related work (Chapter 3). We then present the basic infer-
ence network retrieval model (Chapter 4), provide an example of its use (Chapter 5),
and compare the network model to current retrieval models (Chapter 6). Finally,
we describe extensions to the basic model (Chapter 7), present experimental results
(Chapter 8), review implementation details (Chapter 9), and discuss conclusions

and future work (Chapter 10).
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CHAPTER 2

EXPERIMENTAL METHODOLOGY

In this chapter we will review techniques for evaluating retrieval performance

(Section 2.1) and describe the methodology used to evaluate the inference network

model (Section 2.2).

2.1 Evaluation in information retrieval

The development of methods for evaluating retrieval systems and retrieval models
remains an active area of research. See [Spa8l] for a more complete review of
evaluation for information retrieval.

Evaluations are conducted in many contexts (e.g., evaluation of an operational
retrieval system, a laboratory prototype, or a paper model) with widely varying
objectives (e.g., quantify retrieval effectiveness, cost effectiveness, collection quality,
or user satisfaction). We will concentrate primarily on evaluation methods that
can be applied to compare retrieval models in a laboratory setting. A second
objective of our evaluation is to quantify the computational costs associated with
retrieval techniques as they are scaled up for use in commercial settings. The issue

of scalability has not received much attention in the information retrieval literature
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and we make use of traditional techniques for evaluating computational complexity
(see [Baa88| for a review).

The most common measures of retrieval effectiveness are precision and recall.
Precision is the proportion of a retrieved set of documents that is relevant to a
query. Recall is the proportion of all documents in the collection that are relevant to
a query that are actually retrieved. For ranked retrieval, where there is no retrieved
set, we generally compute a precision/recall pair for each relevant document in
the ranking and then interpolate to find precision at standard recall points (i.e.,
recall= 0.1,0.2,...,1.0). Tables showing precision at standard recall points will be
used extensively in Chapter 8. Several other measures of retrieval effectiveness have

been developed but are not widely used.

2.1.1 Test collections

In order to compare the effectiveness of two retrieval models we make use of standard

test collections [Sv76]. A test collection consists of:

o A set of documents — current test collections generally contain information
from the original document, such as title, author, date, and an abstract. The
collection may include additional information such as controlled vocabulary
terms, author-assigned descriptors, and citation information. Current test
collections are small, generally containing from a few hundred to a few thousand
records. Documents represented in these collections are generally journal or

newspaper articles.

o A set of queries — These are often actual queries submitted by users either
in natural language form or in some formal query language (e.g., a Boolean
expression), although artificially constructed queries are occasionally used (e.g.,

queries built to retrieve known documents or the text of a sample document).
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o A set of relevance judgements — For each query the set of documents relevant to
the query is identified. For small collections, the relevance judgements may be
obtained by reviewing all documents in the collection, but for large collections
relevance judgements are generally obtained by reviewing the combined results
from a number of different representations of the query constructed by different
searchers. Relevance judgements may be made by the query submitter or by
independent domain experts. In most cases we prefer user-supplied queries and

relevance judgements.

Test collections are expensive to create, primarily because developing relevance
judgements for a significant number of queries is labor intensive.

When using a test collection to compare two retrieval techniques we first eval-
uate each query to produce a document ranking, use the relevance judgements to
compute precision at standard recall points, then average the precision values over

the set of queries and compare the results.
The use of test collections to evaluate retrieval performance is widespread, but

there are several limitation:

e Current test collections are unrealistically small. It is not clear that tech-
niques that are effective with test collections containing only a few thousand
documents will work with commercial collections that contain several million
documents. For example, a Boolean query that retrieves 3 or 4 documents
from a test collection is effective since users can quickly scan the small set.
The same query used with a commercial system could easily return 3,000 to

4,000 documents, far too many for the user to scan.

o Test collections generally only contain bibliographic information, while com-
mercial systems increasingly offer the full text of newspaper and journal articles
and other material types (e.g., encyclopedias or monographs). It is not clear
that retrieval techniques that are effective for short bibliographic records will

work well with full-text records or other material types.
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o Relevance judgements are not likely to be complete for test collections of

realistic size.

e Relevance judgements are subjective and are affected by a number of factors
that are difficult to control. For example, the order in which documents are

presented can affect whether a given document will be judged relevant.

Despite these limitations, test collections remain the most widely used method
for comparing retrieval performance. New test collections are currently under

development that will address the size and material type limitations [DAR90].

2.1.2 Statistical tests

Most data gathered during retrieval experiments does not lend itself well to standard
statistical tests both because the quantities we wish to measure are difficult to define
and because the measurements we collect do not exhibit the properties that we have
come to expect in data associated with physical systems (e.g., normally distributed).
[Rob81] reviews many of the definitional problems that affect experiment design.
[Tag81] and [van79] review problems with statistical tests applied to retrieval data.

Of particular importance to the work reported here are tests that allow us to
determine whether one set of precision/recall data is better than another. Since the
data does not conform to a well-behaved distribution, we are limited to the use of
non-parametric tests, principally the Sign test which counts only differences between
the two samples or the Wilcoxon matched-pairs test which uses the magnitude of

the differences.
2.2 Methodology

To test the effectiveness of the inference network retrieval model, inference networks

were built for two test collections. The CACM test collection contains 3204 records
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describing articles published in the Communzcations of the ACM from 1958 to 1979.
CACM records contain author, title, abstract, and citation information as well
as manually assigned keywords and Computing Review categories. The CISI test
collection contains 1460 records describing highly cited information science articles
published between 1969 and 1977. CISI records contain author, title, abstract,
and citation information. Queries and relevance judgements are provided with
each collection. A query in these collections is a natural language description
of an information need. Boolean queries have been manually constructed from
these natural language descriptions by the test collection providers. One set of
Boolean queries is available for CISI and two sets (referred to as BL1 and BL2) are
available for CACM. Summary statistics for both collections are shown in Table 2.1.

See [Fox83a] for a more detailed description of the test collections and their history.

Table 2.1: Selected collection statistics

CACM CISI
collection size 3204 1460
unique stems 5493 5448
maximum stem frequency 1333 (algorithm) | 660 (inform)
stem occurrences 117578 98304
postings 79243 71017
max within document frequency 27 27
mean within document frequency 3.7 5.2
queries 50 35

Most of the experimental work was conducted with the CACM collection since
it 1s widely used and allows comparison of our results with a large body of previous
work. Experiments with the CISI collection were carried out to validate results ob-
tained with the CACM collection since the performance of many retrieval techniques

is collection dependent. Previous studies have shown that absolute performance on
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the CISI collection is low when compared to most other test collections, including
CACM. CISI articles tend to be general and queries tend to be vague (e.g., “What
is information science?”).

While these test collections are widely used, they are far from ideal for testing
the inference network model. An ideal test collection would be substantially larger
than either CACM or CISI in terms of the number of documents, the length of
the documents, and the number of queries. The quality of the documents in the
collection would be more uniform (CACM, in particular, has a number of very short
records, especially in the early part of the collection). The collection would contain
a much richer set of document and query representations. Desirable document rep-
resentations would include manually assigned index terms using both controlled and
uncontrolled vocabularies, complete citation information, and, possibly, manually
assigned links showing relationships between documents in the collection. Query
representations should include the current natural language and Boolean forms plus
a more conventional high-recall Boolean form prepared by a professional searcher,
identification of phrases in the natural language query, and importance information
for terms and phrases in both natural language and Boolean query forms.

We will use retrieval performance to refer to performance measured in terms of
precision and recall. Retrieval performance will be described in terms of observed
precision at a set of standard recall points. Precision/recall data will be presented
in tabular form showing precision at ten standard recall points and the average
of precision at all ten points (see Table 2.2 for an example). When two tests are
being compared we show the difference as the percent change from the baseline test.
While it is possible to compare performance using only average precision, this often
obscures significant differences between tests. While we are interested in improving

precision at all recall levels, improvements at the high precision (low recall) end of
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the ranking are generally preferred since they affect documents that are most likely
to be viewed by users. When computing precision/recall for a document ranking,
a precision value is computed for each new relevant document retrieved. These
points define a precision/recall curve. Precision values are then interpolated using

pessimistic interpolation to obtain precision values at standard recall points.

Table 2.2: Effect of tie breaking strategy

Precision (% change) — 50 queries

Recall | random sorted random sorted
10 56.8 56.8 (+40.0) 58.8 58.8 (+0.0)
20 43.6 43.4 (-0.5) 45.7 45.7 (40.2)
30 36.2 36.1 (—0.4) 37.2 37.2 (+0.0)
40 29.3 29.1 (-0.9) 30.3 30.3 (+0.0)
50| 255 | 252 (—11)| 256 | 25.6 (+0.0)
60| 19.1 | 192 (+0.5) [ 217 | 21.8 (+0.0)
70| 139 | 140 (+12)| 146 | 146 (-0.1)
80 10.7 10.7 (-0.0) 11.8 11.8 (+40.1)
90 4.5 4.5 (40.2) 7.0 7.1 (+0.6)
100 3.0 3.0 (+0.2) 5.1 5.1 (+0.3)

average 24.3 242 (-0.2) 25.8 25.8 (+0.1)

Most document rankings will produce a large number of ties (especially for
documents that have no terms in common with the query). The way in which these
ties are broken can affect the reported retrieval performance (e.g., breaking ties in
favor of relevant documents will bias the results). For the experiments reported
here ties are broken by sorting tied documents in descending document identifier
order. This effectively breaks ties in favor of new documents which simulates a
presentation order common in commercial systems. When compared to tests in
which ties were broken randomly this strategy did not significantly change retrieval
performance (Table 2.2 shows the effect of random versus sorted tiebreaking for two

representative tests).
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Unless otherwise noted, significance tests are based on a one-tailed Sign test
[Sieb6] comparing the ten averaged precision values for each query set, where a
5% difference in average precision is required for two observations to be considered
different. This is a conservative test, but it makes few assumptions about the
distribution of observed data. As an informal rule, a difference of 5% in average
precision is generally considered significant and a 10% difference is considered very
significant [SB77]

We use computational performance to refer to the computational costs associ-
ated with building and evaluating inference networks. Computational performance
will be described in terms of processor time, storage space, or bounds on represen-

tative operations.
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CHAPTER 3

RELATED RESEARCH

Research supporting the work reported here has been conducted in many di-
verse fields, including information retrieval, artificial intelligence, logic, probability
theory, and database and query language models. Much of the relevant literature
is discussed in the body of the dissertation, but several topics warrant separate
review. In this Chapter we review research on the use of inference and inference
networks when reasoning under uncertainty (section 3.1), the use of network models
in information retrieval (section 3.2), and other related research (section 3.3). We
conclude the Chapter by comparing the principal probabilistic inference models in

current use (section 3.4).

3.1 Inference and inference networks

A number of automated inference mechanisms have been proposed, principally in the
context of expert systems. Of particular interest are inference techniques that deal
with uncertain information or evidence and with inference based on this evidence.
Early approaches tended to be ad hoc (e.g., MYCIN’s certainty factors [Sho76| or
PROSPECTOR's use of probability [DHN76, DHB*78]). The development of more
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formal techniques has led to heated debate among several competing schools. We
will not review the debate in detail (see [KL86, LK88, SP90]| for surveys), but three
main approaches have emerged. The first approach relies on symbolic reasoning
[Coh85, Fox86, Doy79] in which degrees of certainty are encoded using a discrete
set of values (certain, somewhat certain, ...) that are then used with a deductive
reasoning system. The second approach uses fuzzy set theory [Zad83, Zad86a]. The
third approach is based on probabilistic methods. While the use of probabilistic
methods i1s gaining acceptance, the appropriateness of these techniques has been
hotly debated. An essay by Cheeseman [Che88] and the follow up discussion in a
special issue of Computational Intelligence provides a good summary of the issues.

Two main probabilistic approaches are in use. The first uses conventional
probabilistic methods [Pea88, LS88, AOJJ89] and the second uses the Dempster-
Shafer theory of evidence [Dem68, Sha76, Sha87a, Zad86b]. The two approaches are
similar; the Dempster-Shafer approach represents an attempt to generalize Bayesian
methods in order to cope with the fact that a complete probability distribution is
rarely available. The February 1987 issue of Statistical Science includes a debate
between proponents of the two approaches [Sha87b, Lin87, Spi87]. Spiegelhalter
[Spi86] compares the Dempster-Shafer and Bayesian methods. Pearl [Pea88| com-
pares Dempster-Shafer with Bayesian inference networks and describes conditions
under which they are equivalent. Gordon and Shortliffe [GS84] compare Dempster-
Shafer with MYCIN’s certainty factors. Lowrance and Garvey [GLF81, LGS86]
describe the use of Dempster-Shafer for evidential reasoning. Spiegelhalter and
Knill-Jones [SKJ84] and Andersen et al [AOJJ89] describe the use of Bayesian
methods in clinical applications.

Other probabilistic approaches have been developed but have not been as widely

accepted. Nilsson’s probabilistic logic [Nil84, Nil86] represents an alternative method
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of dealing with incomplete probability models by estimating bounds for probabilities
rather than point estimates. Quinlan’s INFERNO [Qui83] incorporates these kinds
of probability bounds.

The same three inference approaches (symbolic, fuzzy set, probabilistic) are
evident in information retrieval research. Symbolic approaches include those based
on Boolean logic and on relational algebra [Bla88] or calculus. Retrieval models
based on fuzzy sets have been proposed [Boo85, Rad79, KB84, Zad86a| and a wide
variety of probabilistic models have been explored [MK60, RS76, CM78, vanT79,
Fuh89a] which exploit the statistical properties of text in an attempt to improve
performance.

Van Rijsbergen [van86, van89] discusses the nature of inference in information
retrieval and has proposed the use of non-classical logics for determining the degree
to which a document implies or matches a query. Croft [Cro87, CLCW89] has
developed the notion of plausible inference in information retrieval and suggested
that multiple sources of evidence should be combined to infer the probability that
a document matches a query. The research described here extends the work of
vanRijsbergen and Croft and provides a formal computational model of inference
in document retrieval.

The use of networks to represent the inference process is common, even when the
network is not an essential part of the inference model or its implementation (e.g.,
Spiegelhalter’s [Spi86] description of MYCIN). In other cases, inference models that
do not depend on an underlying network have been adapted for use in an inference
network [GLF81, GS84, LGS86]. Some of the more recent models depend on a
network model and rely heavily on the graph theoretic aspects of the network to
demonstrate properties of the inference model. Pearl relies heavily on graph proper-

ties in his axiomatic development of Bayesian inference networks [PP85, PV87] as do
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Lauritzen and Spiegelhalter in their development of the properties of causal nets in
MUNIN [LS88]. The network models also allow use of the extensive complexity
results for graph operations when reasoning about the complexity of inference
procedures.

While these inference networks were developed for use in expert systems, they
are very similar to the influence diagrams [Sha86] of operations research and to
techniques developed for pedigree analysis [CTS78], legal reasoning [SM82], and

intelligence analysis [Sch87].

3.2 Network models in information retrieval

Graph and network structures have been widely used in information retrieval.
Salton [Sal68| describes early use of tree and graph models in information retrieval
and describes implementation of many of the basic structures used in retrieval
systems (e.g., inverted files, dictionaries) in graph theoretic terms. Salton and
McGill [SM83] and van Rijsbergen [van79] provide more current introductions to
common retrieval structures, many of which are graph or network based. Other
uses of networks in information retrieval can be loosely categorized as support for
clustering, rule-based inference, structure matching, browsing, spreading activation,
and connectionist approaches. This categorization is rough and individual systems
could be assigned to multiple categories.

Clustering. Networks arise naturally in the representation of document and
term clusters. Croft [Cro81] describes a retrieval model incorporating document
and term clusters. Croft and Parenty [CP85] compare a cluster based network

representation with a conventional database implementation. Willett [Wil88] re-
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views document clustering techniques and Sparck Jones [Spa7l, Spa74| reviews
term clustering techniques.

Rule-based inference. In RUBRIC [TSMD83, TS85|, Tong represents queries
as a set of rules in an evaluation tree that specifies how individual document features
can be combined to estimate the certainty that a document matches the query.
One of the objectives of the RUBRIC design was to allow comparison of different
uncertainty calculi [TAACS86] and RUBRIC has recently been reformulated to use
inference networks [FCAT90|. Rule-based inference using network structures has
been used with thesaurus information to improve the match between document
and query vocabularies [CT87, Sho85|. Semantic networks have also been used to
represent thesaurus-like information [SSG89, MC87].

Structure matching. Structure matching forms the basis of most retrieval
techniques based on semantic networks. Early work by Salton [Sal68| describes the
use of graphs to represent the syntactic structure of text and graph matching to
identify similar text content. Lewis, Croft, and Bhandaru [LCB89] discuss the use of
frame-based networks produced by natural language parsers to represent documents
and queries and network matching functions that can be used for retrieval. Structure
matching also underlies the simpler network structures used by Belkin et al to
represent anomalous states of knowledge (ASK) [BOB82a, BOB82b, BK86, OPC86]
regarding document and query content.

Browsing. When networks are used to represent documents and indexing
information, browsing can be used to help users locate relevant material. Browsing
is common in thesaurus systems. Oddy’s THOMAS system [Odd77] uses browsing in
a simple network of documents and terms to build a model of the user’s information
need. Croft and Thompson use browsing in a more complex network as one search

strategy in I’R [CT87].
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Browsing is an important technique for accessing text in hypertext networks.
Croft and Turtle [CT89] and Frisse and Cousins [FC89] describe retrieval models
for hypertext networks. Coombs [Coo90a] reviews hypertext retrieval research and
describes an operational system.

Spreading activation. Spreading activation is a search technique in which a
network representation of a document collection is used to retrieve documents that
are “similar” to a query. The query is used to activate a set of nodes in a represen-
tation network which, in turn, activate neighboring nodes. Halting conditions and
weighting functions vary, but the pattern of activation is used to rank documents
for presentation to the user. Jones and Furnas [JF87] present a representative
spreading activation model which is compared to conventional retrieval models by
Salton [SB88|. Croft [CLCW89] used spreading activation in a network based on
document clustering. Cohen and Kjeldson [CK87| used spreading activation in a
more complex representation network with typed edges.

Connectionist approaches. Connectionist approaches are similar to spread-
ing activation. They differ in that the connectionist links do not have a clear
semantic interpretation (they simply characterize the “association” between network
nodes) and the weights associated with links are learned from training samples or
user guidance. Croft and Thompson [CT84] use a connectionist network in an
attempt to learn to select a query strategy. Brachman and McGuiness [BM88| use
a connectionist approach to retrieve facts from a knowledge base on programming
languages. Other connectionist approaches to information retrieval are described by
Belew [Bel89] and Kwok [Kwo89]. Lewis [Lew90] further explores the relationship
between information retrieval and machine learning.

The connectionist retrieval approaches that have been reported use simple

networks with no hidden units and thus learn simple linear discriminant functions.
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The inference network model supports dependence structures that require nonlinear
functions and require more complex learning strategies. [Pea88, CF89, FCAT90] and

[CL68] discuss learning strategies that are applicable to inference networks.

3.3 Other related research

Two additional areas of information retrieval research bear directly on the current
work — traditional strategies for term weighting that can be used as the basis
for estimating beliefs in the network and the use of citations to improve retrieval
performance.

Term weighting. When selecting terms to be used to represent the content
of documents and queries, we can simply use the presence or absence of a term
(feature would probably be better here since a “term” in this context might be a
word, phrase, controlled vocabulary element, or other descriptor) to characterize
the relationship between the term and the document or query, or we can develop
an estimate of the term’s importance or quality in the form of a term or feature
weight. These term weights have been studied extensively in information retrieval
(see [SB77, van79, SB87, SM83] for reviews) and a number of theoretical models
have been developed to motivate the assignment and interpretation of these weights
[CMT78, RS76, BS75, SYYT75].

In general, effective term weighting strategies have two components. The first is
an estimate of how well a term can discriminate documents in the collection. In this
regard, terms that occur in a high percentage of the documents in a collection are
poor discriminators and those that occur rarely are good discriminators. Estimates
for this component are generally based on a term’s inverse document frequency (zdf)

which will be discussed in Chapter 8.
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The second component is an estimate of how important a term is in describing
the content of an individual document or query. Estimates for this component are
generally based on the frequency with which a term occurs in the document or query;
high frequency terms are generally thought to be more important descriptors.

These two components can be combined in several ways, may be normalized for
document or query length, and are often scaled if they are interpreted as probability
estimates (see [SB87] for a comparison of several weighting strategies).

Some work on estimating weights for phrases rather than single terms has been
done [Fag87, LCY0], but our understanding of how phrases can be used to improve
retrieval performance is still limited.

Citations. The use of citation information in an attempt to improve retrieval
performance dates back to at least the early 1960’s [Sal63]. Document similarity
measures based on citation information have been developed. Bibliographic coupling
describes the degree to which the citations found in two documents overlap. Co-
citation-based measures are based on the frequency with which a pair of documents
are cited together in a third document®. It has been shown that documents with
high citation-based similarity scores also have similar index terms [Kes65, Sma73|.

Citations can be used navigationally, where we first find a relevant document
and then use the citations to find other potentially relevant documents, or they can
be treated as indexing features — each citation in a document is treated as if it were
an index term which can be used in a query. Several studies have found that searches
using natural language terms retrieve different documents for the same information
need [Hur82, PF85, GWDS86]. In a recent study comparing the performance of

term- and citation-based searches, Pao and Worthen [PW89] found that citation

Tt is sometimes useful to distinguish between a list of citations and a bibliography which may
include related but uncited documents. We will largely ignore this distinction.
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searches found a significant number of documents (14% of all relevant documents)
that were not found using natural language terms. They also found that the set
of documents retrieved by both searches was small (12% of all relevant documents)

but that documents in this set were highly relevant.

3.4 Probabilistic inference models

Probabilistic methods are among the most effective tools known for improving
retrieval effectiveness and information retrieval research has produced a substantial
body of knowledge about the statistical properties of text. Since we wish to build
on this research, the two main inference models based on probabilistic methods are
of particular interest: Bayesian inference networks and the Dempster-Shafer theory
of evidence.

A Bayesian inference network is a directed, acyclic dependency graph in which
nodes represent propositional variables or constants and edges represent dependence
relations between propositions. If a proposition represented by a node p “causes”
or implies the proposition represented by node g, we draw a directed edge from p
to g. The node g contains a matrix (a link matrix®) that specifies P(q|p) for all
possible values of the two variables. When a node has multiple parents, the matrix
specifies the dependence of that node on the set of parents (7,) and characterizes the
dependence relationship between that node and all nodes representing its potential
causes. Given a set of prior probabilities for the roots of the DAG, these networks
can be used to compute the probability or degree of belief associated with all

remaining nodes.

2The link matrix is actually a link tensor. See Appendix .
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Different restrictions on the topology of the network and assumptions about the
way in which the connected nodes interact lead to different schemes for combining
probabilities. In general, these schemes have two components which operate inde-
pendently: a predictive component in which parent nodes provide support for their
children (the degree to which we believe a proposition depends on the degree to
which we believe the propositions that might cause it), and a diagnostic component
in which children provide support for their parents (if our belief in a proposition
increases or decreases, so does our belief in its potential causes). The propagation
of probabilities through the net can be done using information passed between
adjacent nodes.

While not originally cast as a network model, the Dempster-Shafer theory
of evidence can be used as an alternative method for evaluating these kinds of
probabilistic inference networks. Rather than computing the belief associated with
a query given a set of evidence, we can view Dempster-Shafer as computing the
probability that the evidence would allow us to prove the query. The degree of
support parameters associated with the arcs joining nodes are not interpreted as
conditional probabilities, but as assertions that the parent node provides support for
the child (is active) for some proportion p of the time and does not support the child
for the remainder of the time. For an and-combination we compute the proportion
of the time that all incoming arcs are active. For an or-combination we compute
the proportion of the time that at least one parent node is active. To compute
the provability of the query given a document, we examine all paths leading from
the document to the query and compute the proportion of time that all of the arcs
on at least one proof path are active. Given the structure of these networks, this
computation can be done using series parallel reduction of the subgraph joining the

document and query in time proportional to the number of arcs in the subgraph.
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In general, the Bayesian and Dempster-Shafer models are different and can
lead to different results. Under the assumption of disjunctive rule interaction (so
called “noisy-OR”) and the interpretation of an arc from a to b as P(bla) = p and
P(b|-a) = 0, the Bayesian and Dempster-Shafer models will produce similar results
[Pea88, page 446]. The document retrieval inference networks described here are
based on the Bayesian inference network model.

The use of Bayesian inference networks for information retrieval represents an
extension of probability-based retrieval research dating from the early 1960’s. The
use of these networks generalizes existing probabilistic models and allows integration

of several sources of knowledge in a single framework.
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CHAPTER 4

BAsic MODEL

In this chapter we introduce the inference network model (Sections 4.1 and 4.2)
and show how it is used to identify documents that are most likely to match a user’s
information need (Section 4.3). We then discuss “causation” in Bayesian networks
(Section 4.4) and describe the canonical link matrix forms that are used in the
model (Section 4.5).

The basic document retrieval inference network, shown in Figure 4.1, consists
of two component networks: a document network and a query network. The
document network represents the document collection using a variety of document
representation schemes. The document network is built once for a given collection
and its structure does not change during query processing. The query network
consists of a single node which represents the user’s information need and one or
more query representations which express that information need. A query network
1s built for each information need and is modified during query processing as existing
queries are refined or new queries are added in an attempt to better characterize the
information need. The document and query networks are joined by links between
representation concepts and query concepts. All nodes in the inference network are

binary-valued and take on values from the set {false,true}.
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Figure 4.1: Basic document inference network
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4.1 Document network

The document network consists of document nodes (d;’s), text representation nodes
(t;’s), and concept representation nodes (r4’s). If we let D be the set of documents,
T be the set of text representations, and R be the set of representation concepts,
where the cardinality of these sets is ng, n;, and n,., respectively, then the event space
represented by the document network is E4 = D x T x R. Since all propositions
are binary-valued, the size of the event space is 2™ - 2™ . 2™,

Each document node represents an actual document in the collection. A doc-
ument node corresponds to the event that a specific document has been observed.
The form of the document represented depends on the collection and its intended
use, but we will assume that a document is a well defined object and will focus on
traditional document types (e.g., monographs, journal articles, office documents,

Document nodes correspond to abstract documents rather than their physical
representations. A text representation node or text node corresponds to a specific
text representation of a document. A text node corresponds to the event that a
text representation has been observed. We will focus here on traditional document
texts, but one can easily imagine other content types for documents (e.g., figures)
and multi-media documents might have several content representations (e.g., audio
or video). In these cases, a single document might have multiple physical representa-
tions. Similarly, a single text content might be shared by more than one document.
While this sharing is rare (an example would be a journal article that appears in
both a serial issue and in a reprint collection) and is not generally represented in
current retrieval models, it is common in hypertext systems. For clarity, we will only

consider text representations and will assume a one-to-one correspondence between
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documents and texts. The dependence of a text upon the document is represented
in the network by an arc from the document node to the text node.

The content representation nodes or representation nodes can be divided into
several subsets, each corresponding to a single representation technique that has
been applied to the document texts. For example, if a collection has been indexed
using automatic phrase extraction and manually assigned index terms, then the set
of representation nodes will consist of two distinct subsets or content representation
types with disjoint domains. Thus, if the phrase “information retrieval” has been
extracted and “information retrieval” has been manually assigned as an index term,
then two representation nodes with distinct meanings will be created. One corre-
sponds to the event that “information retrieval” has been automatically extracted
from a subset of the collection, the second corresponds to the event that “infor-
mation retrieval” has been manually assigned to a (presumably distinct) subset of
the collection. We represent the assignment of a specific representation concept
to a document by a directed arc to the representation node from each text node
corresponding to a document to which the concept has been assigned. For now we
assume that the presence or absence of a link corresponds to a binary assigned /not
assigned distinction, that is, there are no partial or weighted assignments.

In principle, the number of representation schemes is unlimited. In addition
to phrase extraction and manually assigned terms we would expect representa-
tions based on natural language processing and automatic keyword extraction.
Refinements that can be applied to multiple representations (e.g., thesauri, term
clustering, or inference rules) will be discussed in section 7. For any real document
collection, however, the number of representations used will be fixed and relatively
small. The potential domain of each representation scheme may also be unlimited,

but the actual number of primitive representation concepts defined for a given
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collection is fixed by the collection. The domain for most automated representation
schemes is generally bounded by some function of the collection size (e.g., the
number of keywords cannot exceed the number of words in a collection). For manual
representation schemes the domain size is limited by the number of documents and
the amount of time a human expert can invest to analyze each document.

The basic document network shown in Figure 4.1 is a simple three level directed
acyclic graph (DAG) in which document nodes are roots, text nodes are interior
nodes, and representation nodes are leaves. Document nodes have exactly one text
node as a child and each text node has one or more representation nodes as children.

Each document node has a prior probability associated with it that describes
the probability of observing that document; this prior probability will generally be
set to 1/(collection size) and will be small for reasonable collection sizes. Each text
node contains a specification of its dependence upon its parent; by assumption, this
dependence is complete, a text node is observed (¢; = true) exactly when its parent
document is observed (d; = true).

Each representation node contains a specification of the conditional probability
associated with the node given its set of parent text nodes. This specification
incorporates the effect of any indexing weights (e.g., term frequency for each par-
ent text) or term weights (e.g., inverse document frequency) associated with the
representation concept. While, in principle, this would require O(2") space for a
node with n parents, in practice we will generally use canonical representations that
will allow us to compute the required conditional probabilities when needed. These
canonical schemes are described in section 4.5 and require O(n) space if we need to
weight the contribution of each parent or O(1) space if parents are to be treated

uniformly.
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4.2 Query network

The query network is an “inverted” DAG with a single leaf that corresponds to
the event that an information need is met and multiple roots that correspond to
the concepts that express the information need. As shown in Figure 4.1, a set of
intermediate query nodes may also be used in cases where multiple query represen-
tations are used to express the information need. These nodes are a representation
convenience; it is always possible to eliminate them by increasing the complexity of
the distribution specified at the node representing the information need.

If we let C represent the set of query concepts and ) represent the set of queries
where n. and n, are the cardinalities of these sets, then the event space represented
by the query network is E;, = C x @ x I. Since we can always eliminate query
nodes, |E,| < 2™*1. The event space represented by the entire inference network is
then E; x E,.

In general, the user’s information need is internal to the user and is not precisely
understood. We attempt to make the meaning of an information need explicit by
expressing it in the form of one or more queries that have a formal interpretation.
It is unlikely that any of these queries will correspond precisely to the information
need, but some will better characterize the information need than others, and
several query representations taken together may be a better representation of the
information need than any of the individual queries.

The roots of the query network are query concepts, the primitive concepts
used to express the information need. A single query concept node may have
several representation concept nodes as parents. A query concept node contains
a specification of the probabilistic dependence of the query concept on its set

of parent representation concepts. The query concept nodes define the mapping
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between the concepts used to represent the document collection and the concepts
that make up the queries. In the simplest case, the query concepts are constrained
to be the same as the representation concepts and each query concept has exactly
one parent representation node. In a slightly more complex example, the query
concept “information retrieval” may have as parents both the node corresponding
to “information retrieval” as a phrase and the node corresponding to “information
retrieval” as a manually assigned term.

As we add new forms of content representation to the document network and
allow the use of query concepts that do not explicitly appear in any document
representation, the number of parents associated with a single query concept will
tend to increase. In many ways, a query concept is similar to a representation
concept that is derived from other representation concepts (see section 7.2.3 for a
discussion of derived representation concepts) and in some cases it will be useful
to “promote” a query concept to a representation concept. For example, suppose
that a researcher is looking for information on a recently developed process that
is unlikely to be explicitly identified in any existing representation scheme. The
researcher is sufficiently motivated, however, to work with the retrieval system to
describe how this new concept might be inferred from other representation concepts.
If this new concept definition is of general interest, it can be added to the collection
of representation concepts. The process of defining new representation concepts is
similar to that used in RUBRIC [TSMD83, TS85] where a user might add a rule
which asserts that the concept “car bomb” should be inferred with some level of
certainty if the term “car” and “bomb” occur in the same sentence. The RUBRIC
approach differs in that all representation concepts are manually defined, whereas

most representation concepts in an inference network are created automatically.
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The attachment of the query concept nodes to the document network has no
effect on the basic structure of the document network. None of the existing links
need change and none of the conditional probability specifications stored in the
nodes are modified.

A query node represents a distinct query representation and corresponds to
the event that the query representation is satisfied. Each query node contains a
specification of the dependence of the query on the query concepts it contains. The
content of the link matrices that contain the conditional probabilities is discussed
further in section 4.5, but it is worth noting that the form of the link matrix is
largely determined by the query type; a link matrix simulating a Boolean query is
much different than a matrix simulating a probabilistic or weighted query.

Multiple query representations can be obtained from many sources. It is possible
that the user might provide more than one form (e.g., a natural language description
and a sample document), but it is more likely that additional forms will be generated
automatically based on the original natural language query or using information
obtained by an intelligent interface. In cases where a search intermediary is used,
we may have multiple human-generated query representations. In Chapter 8 we
describe some initial experiments in which new query representations are generated
using natural language processing (NLP) techniques and using additional informa-
tion that users could supply.

The single leaf representing the information need corresponds to the event that
an information need is met. In general, we cannot predict with certainty whether a
user’s information need will be met by an arbitrary document collection. The query
network is intended to capture the way in which meeting the user’s information need
depends on documents and their representations. Moreover, the query network is

intended to allow us to combine information from multiple document representations
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Figure 4.2: Simplified inference network

and to combine queries of different types to form a single, formally justified estimate
of the probability that the user’s information need is met. If the inference network
correctly characterizes the dependence of the information need on the collection,
the computed probability provides a good estimate.

We will often use a simplified form of the basic model of Figure 4.1 in which we
assume a one-to-one correspondence between document nodes and text nodes and
between representation concept and query concept nodes. Under these assumptions,

the network of Figure 4.1 can be reduced to the network shown in Figure 4.2.
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4.3 Use of the inference network

The inference network we have described is intended to capture all of the signif-
icant probabilistic dependencies among the variables represented by nodes in the
document and query networks. Given the prior probabilities associated with the
documents (roots) and the conditional probabilities associated with the interior
nodes, we can compute the posterior probability or belief associated with each node
in the network. Further, if the value of any variable represented in the network
becomes known we can use the network to recompute the probabilities associated
with all remaining nodes based on this “evidence.”

The network, taken as a whole, represents the dependence of a user’s informa-
tion need on the documents in a collection where the dependence is mediated by
document and query representations. When the query network is first built and
attached to the document network we compute the belief associated with each node
in the query network. The initial value at the node representing the information
need is the probability that the information need is met given that no specific
document in the collection has been observed and all documents are equally likely
(or unlikely). If we now observe a single document d; and attach evidence to the
network asserting d; = true with all remaining document nodes set to false (referred
to as instantiating d;), we can compute a new belief for every node in the network
given d; = true. In particular, we can compute the probability that the information
need is met given that d; has been observed in the collection. We can now remove
this evidence and instead assert that some d;, 2 # j has been observed. By repeating
this process we can compute the probability that the information need is met given

each document in the collection and rank the documents accordingly.
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In principle, we need not consider each document in isolation but could look
for the subset of documents which produce the highest probability that the in-
formation need is met. While a general solution to this best-subset problem is
intractable, in some cases good heuristic approximations are possible. Best-subset
rankings have been considered in IR [Sti75, Boo89], and similar problems arise
in pattern recognition, medical diagnosis, and truth-maintenance systems. See
[Pea88| for a discussion of the best-subset or belief revision problem in Bayesian
networks. At present, we consider only documents in isolation since the approach
is computationally simpler. As will be discussed in Chapter 9, this simplification is
an important factor in reducing the exponential complexity of network evaluation.
Note that any retrieval model that produces document rankings that are consistent
with conventional formulations of the Probability Ranking Principle [Rob77] must
also consider documents in isolation.

The document network is built once for a given collection. Given one or more
queries, we then build a query network that attempts to characterize the dependence
of the information need on the collection. If the ranking produced by the initial
query network is inadequate, we must add additional information to the query
network or refine its structure to better characterize the meaning of the existing
queries. This feedback process is quite similar to that used in current retrieval
systems. The process of translating queries into network forms is discussed further

in Chapter 6.
4.4 Causation in Bayesian inference networks

The notion of causation, that one random variable can be perceived as causing
another, is fundamental to Bayesian inference networks. By drawing an arc from

node a to node b we are asserting that a in some sense causes b. If a is observed,
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then our belief in b is fixed by that observation (assuming b has no other parents). If
we later observe b to have a value that conflicts with our computed belief we suspect
that either the conditional probability P(b|a) is incorrect or that the topology is
wrong (either b has causes we haven’t recognized or a does not, in fact, cause b).
If, however, we first observe b then our belief in a changes because a is a potential
explanation for b, that is, the observation of b constitutes evidence confirming or
disconfirming a.

While in many cases the direction of causation is clear (e.g., most instances
of physical causation), in many others it is difficult to distinguish between causal
and evidential support. For example, our network in Figure 4.1 asserts that our
belief in a set of query concepts causes our belief in the query that contains them.
We could also have argued that our belief that the query is a representation of the
information need causes our belief that the query concepts are useful. In this case
we view the query concepts as evidence that supports our belief in the query.

In our network in Figure 4.1 we assert that the observation of a document (or
a set of documents) causes our belief in a text representation, which causes our
belief in a set of representation concepts, which in turn cause belief in a set of query
concepts, which cause our belief in a set of queries, which finally cause our belief
that the document supports the information need. In fact, there are (at least) two
other topologies that have some intuitive appeal. In the first, we simply invert the
entire network. This structure asserts that the information need causes our belief in
the queries, which cause our belief in the query concepts they contain. While this
chain of causation is at least plausible, the next step in which query concepts cause
our belief in representation concepts, is not very appealing. Since documents and

their representations have an existence independent of any query network, the query
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Figure 4.3: Mixed document inference network

concepts cannot cause the representation concepts; our belief that a representation
concept is assigned to a set of documents is not altered by the processing of a query.

In some retrieval models (e.g., document space modification [YM88, FB90])
queries are used in an attempt to learn better document representations, which gives
rise to an indirect causal relationship between queries and representation concepts
that is not represented in the inference network. In these models the queries do
not directly influence our belief in representation concepts, they are simply used
to improve our characterization of the dependence of representation concepts on
document texts.

A second variation, shown in Figure 4.3 asserts that the documents are the
ultimate causes of the document network and the information need is the ultimate

cause of the query network. The two nets are connected by links establishing the
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Figure 4.4: Basic causal topologies

dependence of query concepts on representation concepts. To see why this network
does not capture our intuition about the relationships among variables we need to
look more closely at how variables interact in these causal structures.

In Figure 4.4a, two nodes a and b are potential causes of ¢. If ¢ has not been
observed, a and b are independent. Changes in our belief in a will affect our belief
in ¢ but will have no effect on our belief in . This clearly does not model the
desired behavior in Figure 4.3 where we would like our beliefs about query concepts
induced by the document network to propagate up the query network to affect our
belief in the information need. If, in Figure 4.4a we observe ¢, then a and b become
dependent since they are both potential causes for c. In effect, they are competing
explanations for c. If we now observe a to be true, our belief in b diminishes because
a fully accounts for our observation of ¢. This behavior also fails to capture the
desired relationship between the document and query networks in Figure 4.3; we
would expect that when belief in the representation concepts supporting the query
concepts increases, our belief in the information need would also increase. Clearly,
the two networks are not competing to support the query concepts.

Figure 4.4b shows the second case of interest. In this network a single node d

causes both e and f. In the absence of any observation of d, e and f are dependent.
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If e is observed to be true, this evidence raises belief in d which in turn raises belief
in f. In the absence of any evidence at d, any evidence collected at one of its
children directly affects all children. Once d is observed, however, e and f become
independent; further evidence gathered at one child will not affect belief in d (since
its value is known) and can therefore have no impact on its siblings.

The interaction between the variables in these two network fragments helps to
clarify the nature of “causation” in Bayesian inference nets. Two causes sharing a
common consequence are independent until the consequence is observed, thereafter
they compete. Two consequences of a common cause are dependent and share

support until the cause is observed. Thereafter, the consequences are independent.
4.5 Link matrix forms

For all non-root nodes in the inference network we must estimate the probability
that a node takes on a value given any set of values for its parent nodes. If a node
a has a set of parents 7, = {p1,...,Pn}, we must estimate P(a|p1,...,Pn).

The most direct way to encode our estimate is as a link matrix (recall, however,
that a link matrix is actually a link tensor). Since we are dealing with binary valued
propositions, this tensor can be represented by a matrix of size 2 x 2" for a node
with n parents and specifies the probability that a takes the value a = true or
a = false for all combinations of parent values. The update procedures for Bayesian
networks then use the probabilities provided by the set of parents to condition over
the link matrix values to compute the predictive component of our belief in a or
P(a = true). Similarly, the link matrix is used to provide diagnostic information
to the set of parents based on our belief in a. As discussed earlier, encoding our

estimates in link matrix form is practical only for nodes with a small set of parents,
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so our estimation task has two parts: how do we estimate the dependence of a node
on its set of parents and how do we encode these estimates in a usable form?

In this section we will define canonical link matrix forms that are useful for
retrieval networks and review the time and space complexity associated with evalu-
ating these canonical forms. By a canonical form we mean that, given an ordering on
a set of n parents, we can compute the link matrix value L[z, j],7 € {0,1},0 < j < 27
given the parent index corresponding to p;. When writing a link matrix we use
the row number to index values assumed by the child node and use a binary
representation of the column number to index the values of the parents. We use the
high order bit of the column number to index the first parent’s values, the second
most high order for the second parent, and so on. The three-parent example of the

next section illustrates this notation.

4.5.1 Canonical link matrix forms

We will describe five canonical link matrix forms. Three of these forms imple-
ment the Boolean operators and, or, and not; the remaining two forms implement
weighted-sums that are used for probabilistic retrieval. A number of other forms

are possible.

For illustration, we will assume that a node @) has three parents A, B, and C

(Figure 4.5) and that

P(A =true) = a
P(B =true) = b
P(C =true) = c.
For and-combinations, () is true only when A, B, and C are all true and we

have a matrix of the form
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Figure 4.5: Network for link matrix examples

I 11111110
4”10 000000O0 1)
Using a closed form update procedure we have

P(Q = true) = abe

P(Q = false) = (1—a)(1—b)(1—c)+(L—a)l— b
+(1 = a)b(1 - ¢) + (1 — a)be + a(1 — b)(1 — ¢)
+a(1 = b)c + ab(1 — c)

= 1—abec

which is the familiar rule for conjunctive combination of events.

(4.3)

For or-combinations, ¢) will be true when any of A, B, or C is true and false

only when A, B, and C are all false. This gives a link matrix of the form
I 100000 0
V011111 1)

Again using a closed form of the update procedures, we have

= O

P(Q=true) = (1—a)(1—0)c+(1—a)b(l—c)+(1l—a)bec

+a(1 —b)(1 —¢c)+ a(l —b)ec+ ab(l — ¢) + abc

o4

(4.4)




= a+b+c— (ab+ bc+ ac) + abe

= 1-(1-a)(1-0)(1—¢) (4.5)
P(Q = false) = (1—a)(1—-25)(1—-¢) (4.6)
(4.7)

which is the familiar rule for disjunctive combination of events that are not known
to be mutually exclusive.
The not operator is defined only for unary propositions or nodes with a single

parent. If ¢) has the single parent A, Q) = true exactly when A = false which gives

01
Lnot—<1 0)

P(Q=true) = 1—a (4.8)

P(Q = false) = a. (4.9)

a link matrix of the form

and results in

If we restrict the parent nodes for any of the logic operators to values 0 or 1 then
() must also have a value of 0 or 1. If we allow terms to take on weights in the range
[0,1] and interpret these weights as the probability that the term has been assigned
to a document text, then these inference networks provide a natural interpretation
for Boolean retrieval with weighted indexing. The use of these canonical forms to
simulate Boolean retrieval will be discussed in section 6.3.

A fourth link matrix form arises when our belief in ¢) depends only on the
number of parents that are true. If j corresponds to a link matrix column number

for which m parents are true (in which m bits = 1), then

. m
Luuml 1,31 =
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n—m

Leum[0, 5] =
n
Thus, for our three parent example
2 2 1 2 1 1
L 1 33353330
el L1201 02 2 9 7
3 3 3 3 3 3

Evaluation of this sum link matrix results in

P(Q = true) = %(1 —a)(1—b)e+ %(1 —a)b(l- ) + 2(1 ~ a)be
1 2 2
—|—§a(1 —b)(1—¢)+ ga(l —b)c+ gab(l —¢) + abc
_a+ b+c
B 3

P(Q = false) = (1—a)(1-0)(1—¢c)+ g(l —a)(1—0b)c+ g(l —a)b(1l —¢)

+1(1 —a)bc + ga(l —b)(1—¢)+ %a(l —b)c+ %ab(l —c)

3
_ q 0tb+te
3

In this matrix form all parents are weighted equally; if all parents are observed to
be true then P(Q = true) is three times greater than if one parent is observed. A
number of other weightings are possible. For example, we can choose weights so
that €) is true when any m parents are true to implement an “m-of-n” operator
[Ang75], or we can choose weights so that the first parent observed has the most
influence on our belief in ¢} and the second and third parents have less influence
on our belief (essentially, the or-combination is an extreme case in which only the
first parent influences our belief). Similarly, we can choose weights so that the first
parent observed has little or no influence on our belief in ) and the second and
third parents determine our belief.

The final link matrix form we will present here is a generalization of the sum

matrix in which each parent has a weight associated with it, as does the child. In
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this weighted-sum (wtd_sum) matrix, our belief in @ depends on the specific parents
that are true — parents with larger weights have more influence in our belief. The
weight at @) acts to set the maximum belief that can be achieved at Q. If we let w,,
wp, and w, be the parent weights, 0 < w, < 1 the child weight, and ¢ = w, +wp +w,

for our example, then we have a link matrix of the form

(1 1— wc:uq 1— wbzuq 1— (wb—l—';uc)wq 1— wa,twq 1_ (wa‘l":)c)wq 1— (wa-l-’:)b)wq 1— wq)

0 wewy wpwy (wptwe)wy waewq (watwe)wy (watwp)wy

t t 1 t t Wq

Evaluation of this link matrix form results in

WeWq Wy,

P(Q = true) = =521 —a)(1—b)e+ 41— a)b(1 —c)
+%(1 ~ a)be + %a(l —B)(1—¢)
wa(l —b)e+ wab(l — ¢) + wqabc
_ (waat wa T wee)wg (4.10)
P(Q = false) = wy(1—a)(1—b)(1—c)+ w(l —a)(1 - b)c
(wa + we)w, +tw°)w4(1 —a)b(1 —c) + —279(1 — q)be
(wp + we)w, wc)wqa@ —b)(1—¢) + 294(1 — b)e
+%ab(1 — )

(waa + wpb + wec)w,
t

= 1—-

The sum matrix is a special case of wtd_sum where all weights are 1.

The witd_sum link matrix can be used to implement a variety of weighting
schemes, including the familiar term weighting schemes based on within-document
term frequency (tf), inverse document frequency (idf) or both (tf.idf). To illustrate

a tf.idf weighting, let () in our example be a representation node and let A, B, and
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C be document nodes. Let w,, wy, and w, be the normalized tf values for A, B,

and C and let
wy = tdf (wa + wp + we) (4.11)

Given our basic model, when A is instantiated, belief in ) is given by

WoW
bel(@) = o
tf, - idf,(wa + wp + we)

wa—I'wb—I'wc

= if, - idf,

which is a common form of tf.edf weight. Similarly, when B is instantiated, bel(Q) =
tf,-1df,. In general, when a document is instantiated all representation concept nodes
to which it is attached take of the tf.idf weight associated with the document/term
pair.

The weight at @ has two distinct parts. The first part (4df, in our example) acts
to set the maximum belief achievable at a node. If, for some combination of parent
values, our belief in ) is certain then this component disappears. Note that in this
formulation, the ¢df component is dependent only upon the distribution of the term
in the collection, not on the distribution of the term in relevant and non-relevant
subsets. Relevance feedback is modeled as part of the query network and does not
affect belief in representation concepts.

The second part (w, + wp + w, in our example) acts to normalize the parent
weights. Equation 4.11 is the appropriate weight for the basic model in which
only one document can be instantiated at a time. In the extended model of
Chapter 7 where multiple documents can be instantiated, this component is adjusted

to normalize for the maximum achievable set of parent weights. In the general case,
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where all parents can take any value in the range [0, 1], this normalizing component

disappears.

While these five canonical forms are sufficient for the retrieval inference networks
described here, many others are possible (see section 6.3.2). Further, when n is small
(say, less than 5 or 6) we can use the full link matrix if the dependence of a node

on its parents does not fit a canonical form.

To summarize the results of this section, the following closed-form expressions
can be used to evaluate the canonical matrices for a node @ with parents P, ..., P,

where P(P; = true) = p1,..., P(P, = true) = py,:

belor(@Q) = 1—(L—p1)-...(1—pn) (4.12)
belana(Q) = Pr-pz---- P (4.13)
beluor(Q) = 1 —py (4.14)
beloum(Q) = plﬂ’zjb'”“’" (4.15)

belyg sum(Q) = (WiPLF WPzt e+ WnpaJug (4.16)

wy +wy+ -+ wy
In the network model, the distinction between the Boolean operators and the prob-
abilistic sum operators begins to blur. The operators are, after all, only specialized
link matrix forms and the model allows Boolean and probabilistic operators to be
freely mixed in expressions. The ability to mix operator types is required to allow
us to combine query forms and is useful in representing phrases and for developing

relevance feedback strategies (discussed further in Chapter 7).

4.5.2 Time and space complexity

The canonical link matrix forms of the last section are intended to mitigate the
exponential space and time complexity associated with a full link matrix. We next

consider the space and time complexity of the canonical forms.
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Table 4.1: Complexity of canonical forms for a node with n parents

matrix form | space complexity | time complexity
not 0(1) 0(1)
and O(1) O(n)
or O(1) O(n)
sum O(1) O(n)
wtd_sum O(n) O(n)

Table 4.1 summarizes the space complexity of each canonical matrix form. The
sum and logic operators do not require any link matrix information and therefore
require O(1) space. The wtd_sum operator requires a weight for each parent and
therefore uses O(n) space. Clearly, these canonical forms substantially reduce space
requirements.

For time complexity, we will take the number of factors that must be multiplied
to compute a term in an expression as the basic cost associated with evaluating that
term. Without loss of generality, we also assume that the cost of evaluating a closed
form expression is the sum of the costs of evaluating the terms in the expression.

A lower bound for all of the canonical forms is {(n) since each parent belief
must be accessed in order to compute belief. Any algorithm that does not use all
parent beliefs cannot be guaranteed to produce correct results.

Given our assumption that not is defined only for single parent nodes, bel,;
(equation 4.14) requires a single access to its only parent and operates in O(1) time.

From equation 4.13, the expression for bel,,q contains a single term which
requires access to each parent so bela,g can be computed in O(n) time. Similarly,
from equation 4.12, the expression for bel,; contains two terms, one is a constant
and the other requires access to each parent so bel,, can also be computed in O(n)

time.
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The closed-form expressions for sum (equation 4.15) and wtd_sum (equation 4.16)
contain n terms, each requiring access to a single parent, so sum and witd_sum can

both be computed in O(n) time.

4.5.3 Diagnostic evidence

The canonical link matrix forms of section 4.5.1 provide closed-form expressions
for use in propagating predictive evidence (from parents to children). Except for
evidence attached to documents (roots), all evidential flow in retrieval inference
networks is predictive. Finding useful canonical forms for diagnostic evidence
(children to parents) is less straightforward.

When combining evidence from parents, the entire link matrix and all parent
messages are used to compute the predictive component of a node’s belief. When
computing the diagnostic message to be sent to each parent P; the effect of evidence
received from P; is excluded. In order to exclude P; we essentially use the original
link matrix which specifies P(Q| P, ..., P,) to form a new link matrix which specifies
P(Q|Py,...,Pi-1, Py, ..., P,). Conceptually, this link matrix is multiplied by the
outer product of all messages from parents other than P; and this result is combined
with the diagnostic evidence provided by @’s children to form the diagnostic message
for P;. For diagnostic evidence, then, we need n different link matrices, each of which
is derived by “summing out” the effect of one parent.

In order for canonical forms to be useful for diagnostic evidence, we would
like matrices that produce the same result (or at least a small number of different
results) when any parent is summed out. The matrix forms for and, or, and not
have this property, but most canonical forms, including sum and wtd_sum, do not.

Returning to the example of Figure 4.5, consider a link matrix of the form
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I 11—l 1-4 1-1l, 1-1l3 1-1, 1-1; 1—-1g 1—1I
N lo A Iy I3 ly ls ls 7 ’

For clarity, we will show only the row for ¢ = 1 in the remainder of this example.

When summing out A, we get a new matrix of the form
Lpc = ( b+l L+l L+l 13+l7)-
Similarly, when summing out B and C we get

LACZ(lo—l-lz Li+ls L+ 15+l7)-

LABZ(lo—l-h I+l L+ la-l-l7)-

In order to have a single reduced matrix for this example, then, we need an original

matrix which satisfies the following constraints

lg+l4:lg+12:lg+ll (4:]_7)
L+l=L+l=0L+1;

13 + l7 == l5 + l7 = 16 + l7. (418)

A matrix satisfying these constraints will provide the same result when any parent
is summed out. Moreover, to be generally useful, the matrix form must satisfy a
similar set of constraints for any number of parents. Clearly, the sum and witd_sum
forms do not satisfy these constraints.

Since not i1s defined only for one parent, the canonical form is trivial. For and,
l;is 0 for 1 < 2™ — 1 and lyn_; = 1, so every sum in the above set of constraints
that does not involve lyn_; is 0 and every sum involving ls»_; is 1. Since every
sum involving ly»_; appears in the last constraint above (4.18), and satisfies the
constraints for n = 3. A similar argument can be used to show that and satisfies

the constraints for arbitrary n.
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For or,lp =0 and [; = 1,0 <2 < 2" — 1, so every sum in the above constraints
that involves Iy is 1 and every sum that does not involve [y is 2. All sums involving
lo occur in the first constraint above (4.17) so or satisfies the constraints for n = 3.
Again, a similar argument can be used to show that or satisfies the constraints for
arbitrary n.

In practice, we do not form these reduced link matrices directly but compute
them incrementally by forming the outer product of the link matrix and the message
from a single parent and then contracting on the common index. The contracted
matrix is then used to form the outer product with the next parent, and so on
(see Appendix ). For diagnostic evidence we will form this product and contract
n — 1 times which results in a matrix (an order 2 tensor) which specifies P(e*|F;)
where et is the combined evidence from all parents excluding P;. This matrix has
a canonical form for the logic operators, but not in general. If we let p be the result

of the closed-form expressions for belief (equations 4.12 and 4.13), then this matrix

(b7

has the form

for and, and

for or.

Our use of diagnostic evidence in retrieval networks is limited, in part because
of the difficulty of finding exact closed-form solutions for combining functions other
than the Boolean operators. The fact that canonical forms are rare suggests that
any use of diagnostic evidence for nodes with a large number of parents will require

some form of approximation that allows efficient computation.

63



CHAPTER b

INFERENCE NETWORK EXAMPLE

In this chapter we will present an example inference network and show how
queries are evaluated.

The inference network fragment shown in figure 5.1 contains two documents and
four representation concepts. Document d; discusses the use of inference networks
for information retrieval and is represented by the phrase inference network and
the keywords information and retrieval (among others). Document dy discusses
the retrieval of satellites from low-earth orbit and is represented by the keywords
information, retrieval, and satellite. A single query has been attached containing
the phrase inference network and the keywords information and retrieval. For the
purposes of this example we are using only features of the simplified form of the
basic model shown in Figure 4.2. We will use this network to estimate bel(Q|d;)
and bel(Q|d,).

In a belief network the absence of any evidential support for or against a
proposition is represented by bel = 0.5. Positive evidential support is represented
by beliefs in the range (0.5,1.0] with bel = 1.0 representing certainty that the
proposition is true. Similarly, negative evidential support is represented by beliefs

in the range [0.0,0.5) with bel = 0.0 representing certainty that the proposition is
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Y

(inference network) (information) (retrieval) (satellite)

-

Figure 5.1: Inference network fragment

false. Our first task, then, is to find estimates for belief that lie in the appropriate
intervals.

Several weighting schemes have been proposed in which the belief in a repre-
sentation concept depends on the frequency with which the concept occurs in a
document and on the frequency of the concept in the collection (see, for example,
[EW61]). We will assume that belief in a representation concept is proportional
to the within-document frequency (¢f) and inversely proportional to the frequency
of the concept in the collection. The collection frequency component is generally

expressed as the term’s inverse document frequency (¢df) which is given by

collection size

idf = log(

concept frequency’

We will normalize both ¢f and idf to the range [0, 1] by dividing ¢f by the maximum

tf value for any term in the document and dividing ¢df by the maximum possible
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idf value in the collection (the idf score for a term that occurs once). For concept

1 that occurs tf;; times in document j and f; times in the entire collection, we have

nif, = tf;i (5.1)

ma:z:_tfj

lo collection size
mdf, = 8 fi ). (5.2)

log( collection size)

Techniques for estimating these beliefs are discussed in detail in Chapter 8, but for

the purposes of the example, we will assume that P(r; = true|d; = true) is given by
P(r; = true|d; = true) = 0.5 + (0.5 - ntf;; - nidf;) (5.3)

and that
P(r; = truelall parents false) = 0.0. (5.4)

(As will be discussed in Chapter 8, equation 5.4 is not a very good estimate, but it
simplifies the example and is the estimate used in most probabilistic models.) Link
matrices can be built directly from these estimates.

Arcs are drawn from a document only to representation concepts that have been
assigned to that document. When a document is instantiated it provides equal
support for all members of the set of assigned representation concepts; all other
representation concepts receive no support (this is not the case for the extended
model of Chapter 7). Any representation concept with no support is believed to be
false (not observed or bel = 0). Any representation concept that receives support
is believed to the degree specified in equation 5.3.

Table 5.1 gives frequency and nidf scores based on a small NTIS database
(n = 136,609) and the ¢f and ntf values for the two documents. We assume that

maz_tf; =5 and that maz_tf, =4.
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Table 5.1: Frequencies and ¢df and if weights

frequency | nudf score | if, | tfy, | nify | nif,,
inference network 16 0.77 3 0 0.6 0.0
information 16461 0.18 3 2 0.6 0.5
retrieval 820 0.43 5 1 1.0 | 0.25
satellite 2675 0.33 0 4 0.0 1.0

5.1 Probabilistic query

If we interpret the query in figure 5.1 as a probabilistic natural language query,

from equation (5.3) we have

P(inference network = true|ld; = true) = 0.5+ 0.5-0.6-0.77

= 0.731

which results in a link matrix of

1.000 0.269
Linference net — \ 0.000 0.731 /-

For the information node we must compute beliefs for both parents, so

P(information = true|d; = true) = 0.5+ 0.5-0.6-0.18
= 0.554
P(information = true|d; = true) = 0.5+ 0.5-0.5-0.18

= 0.545

which results in a link matrix of

I. - _ [ 1.000 0.455 0.446 0.446
information ™ \ 0.000 0.545 0.554 0.554 |

The last column of this link matrix is unused since only one document can be

instantiated at a time. It is set to the maximum of the individual document beliefs.
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Using the same procedure, the link matrix for retrieval is

I ' _( 1.000 0.285 0.446 0.285
retrieval = \ 0.000 0.715 0.554 0.715

and for satellite we have

1.000 0.335
Lsateltite =\ 0.000 0.665 |-

There are several ways to estimate the matrix at (). We would generally estimate
the matrix based on the frequency of each term in the query text, but for the example
we will assume that the user has indicated that the probability that a document
matches his information need if it contains none of the query terms is 0.1, that
the probability for a document containing all of the terms is 0.9, that the phrase
inference network is twice as important as either keyword, and that the probabilities

for multiple terms are additive. The link matrix can then be estimated as

I - 09 0.7 0.7 05 05 03 03 0.1
=101 03 03 05 05 07 07 09/

Instantiating d; results in

bel(inference network) = 0.731 bel(information) = 0.554
bel(retrieval) = 0.554 bel(satellite) = 0.000

which gives
bel(Q|d;) = 0.1-0.269 -0.446 - 0.446 + 0.3 - 0.269 - 0.446 - 0.554
+0.3-0.269 - 0.554 - 0.446 + 0.5 - 0.269 - 0.554 - 0.554

+0.5-0.731 - 0.446 - 0.446 + 0.7 - 0.731 - 0.446 - 0.554

+0.7-0.731 -0.554 - 0.446 + 0.9 - 0.731 - 0.554 - 0.554
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= 0.614.

Instantiating d, results in

bel(inference network) = 0.000 bel(information) = 0.545
bel(retrieval) = 0.715 bel(satellite) = 0.665

which gives

bel(Q|d,) = 0.1-1-0.455-0.285+0.3-1-0.455-0.715+0.3-1-0.545-0.285
+0.5-1-0.545-0.71540.5-0-0.455-0.28540.7-0-0.455-0.715
+0.7-0-0.545-0.285+0.9-0-0.545-0.715

= 0.352.

If relevance judgements were available, they could be used to adjust link matrix

values at @) and to produce refined estimates of bel(Q).
5.2 Boolean query — weighted indexing

If the query of figure 5.1 is interpreted as the Boolean conjunction
“inference net” and information and retrieval

rather than a natural language query, we would use the link matrix form described

in section 4.5.1 at ¢) and
I — 11111110
" {0000000 1)
Using the same term weights as above our beliefs in the representation concepts

would be unchanged and evaluation of the Boolean query would result in

bel(Q|d;) = 0-0.269 - 0.446 - 0.446 + 0 - 0.269 - 0.446 - 0.554

+0-0.269 - 0.554 - 0.446 4 0 - 0.269 - 0.554 - 0.554
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+0-0.731-0.446 - 0.446 4 0-0.731 - 0.446 - 0.554
+0-0.731-0.554 - 0.446 + 1 -0.731 - 0.554 - 0.554

= 0.224.

and

bel(Q|d;) = 0-1-0.455-0.2854+0-1-0.455-0.715+0-1-0.545-0.285
+0-1-0.545-0.71540-0-0.455-0.285+0-0-0.455-0.715
+0-0-0.545-0.285+4+1-0-0.545-0.715

= 0.0.
5.3 Conventional Boolean query

If we interpret the query of figure 5.1 as a conventional Boolean conjunction with
binary rather that weighted indexing, instantiating d; results in

bel(inference network) = 1.0 bel(information) = 1.0
bel(retrieval) = 1.0 bel(satellite) = 0.0

and instantiating d, results in

bel(inference network) = 0.0 bel(information) = 1.0
bel(retrieval) = 1.0 bel(satellite) = 1.0 °

Using the link matrix for and gives
bel(Q|d;) = 0-0-0-040-0-0-140-0-1-0
+0-0-1-14+0-1-0-04+0-1-0-1
+0-1-1-041-1-1-1
= 1.0

and

bel(Q|d,) = 0-1-0-040-1-0-140-1-1-0
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+0-1-1-140-0-0-04+0-0-0-1
+0-0-1-041-0-1-1

= 0.0

which is equivalent to conventional Boolean evaluation.

These examples illustrate the use of the inference networks and have been
simplified to reduce the number of computational details. We have used simple
estimates for the link matrices, and have not dealt with the more complex network

features described in Chapter 7.
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CHAPTER 6

COMPARISON WITH OTHER RETRIEVAL
MODELS

The inference network retrieval model generalizes both the probabilistic and
Boolean models. Inference networks can be used to simulate both probabilistic and
Boolean queries and can be used to combine results from multiple queries.

In this chapter we will compare the inference network model with probabilistic
(Sections 6.1 and 6.2) and Boolean (Section 6.3) models and show how inference
networks can be used to simulate both forms of retrieval. We then consider how
the probabilities required by the model can be estimated (Section 6.4) and show
that the estimation problems are essentially equivalent to those encountered with

probabilistic or vector-space retrieval.

6.1 Probabilistic retrieval models

Conventional probabilistic models [van79, BC87, SM83] rank documents by the
probability that each document in the collection would be judged relevant to a given

query, P(relevant|d;).! This is, in many ways, similar to computing the probability

!Most probabilistic models do not actually compute P(relevant|d;), but simply rank documents
using some function that is monotonic with P(relevant|d;). Like Fuhr ([Fuh89b]), we believe that
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that a user’s information need is met given a specific document, P(I|d;). The prin-
cipal differences between conventional probabilistic models and the model described
here are: 1) conventional probabilistic models do not explicitly represent the query,
2) conventional probabilistic models do not distinguish between a document and its
representations but treat a document as a single vector, and 3) the inference model
depends less upon Bayesian inversion than probabilistic models, Bayesian inversion
is just one way to estimate P(I|d;) (or P(Q|d;) in the case of a single query).

In this section we first summarize the major differences between the inference
network and conventional probabilistic models by comparing the network model
to the binary independence model. We then provide a formal comparison of the
inference network model with a recent probabilistic model that explicitly represents

documents and queries.

6.1.1 Binary Independence Model

An inference network that corresponds to the binary independence model [van79,
Fuh89a] is shown in figure 6.1. A document is represented by a vector whose
components are indexing or representation concepts (d; = {r1,...,7,}). The set
of concepts considered is generally restricted to the subset that actually occurs in
the query. Comparing this network with that shown in figure 4.1, we see that in
the binary independence model, the document network is represented by a single
level of representation nodes and the query network consists of a single relevance
node. In order to implement this network we must somehow estimate the probability

of relevance given the set of parent representation concepts and this estimate must

an estimate of the probability of relevance is more useful than the ranking by itself. A ranked
list of documents in which the top ranked document has a probability of relevance of 0.5 should
be viewed differently than a similar list in which the top ranked document has a probability of
relevance of 0.95.
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relevant

Figure 6.1: Inference network for binary independence model

incorporate all of our judgments about the probability that a representation concept
should be assigned to a document, about the semantic and stochastic relationships
between representation concepts, about the relationship between concepts named in
the query and assigned to documents, and about the semantics of the query itself.
This dependence is complex and its estimation is not a task we could expect users
to perform willingly or reliably.

One approach to simplifying the estimation task is to invoke Bayes’ rule so that
we need only estimate the probability that each representation concept occurs in
relevant or non-relevant documents. This approach does not help to provide initial
estimates of the probability distributions since these “simpler” estimates must still
incorporate all of the judgments required for the “hard” estimate. The advantage
of this approach is that, given samples of relevant and non-relevant documents, it is
easy to compute P(r;) for the relevant sample and to use the result as an estimate
of P(r;|relevant = true) and similarly for P(r;|relevant = false). Given a set of

independence assumptions and estimates for P(d;) and P(relevant = true) we can
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compute P(relevant|d;).? Estimating P(relevant|d;) without the use of Bayes’ rule
would be extremely difficult [LCB89].

Essentially the same procedures can be used to estimate P(Q|d;). If we assume
a one-to-one correspondence between representation and query concepts then the
estimation procedures are equivalent. If we do not make this assumption then we
must compute P(c;|m;) and find an expected value for P(c;|d;) in order to estimate
P(QId).

The question remains, however, whether estimates of P(relevant|d;) or P(Q|d;)
obtained in this way match users’ intuition about the dependence. The fact that
relevance feedback does improve retrieval performance suggests that the estimates
of P(relevant|d;) do capture at least some of the dependence, but these estimates
are generally based on a small number of relevant documents and are necessarily
rather coarse.

While it is clear that estimating P(relevant|d;) directly from a small number
of documents is impractical, it may be possible to obtain estimates of P(Q|mg).
Users may, for example, be able to assign importance to the concepts in their
query and may be able to identify significant interactions between concepts. These
estimates could improve the initial estimate and might be used in conjunction with
the estimates derived from training samples.

A second approach to simplifying the estimation task is to identify the different
types of judgments that enter into the overall estimate and to develop estimates
for each type of judgment separately. The model presented here represents one
decomposition in which the task of estimating the probability that a given doc-

ument satisfies an information need consists of judgments about the relationship

2P(d;) and P(relevant = #rue) do not play a major role in probabilistic models that only
produce a document ranking but are required to compute P(relevant|d;).
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of a document to its text, the assignment of representation concepts to the text,
the relationships between query and representation concepts, and the relationship
between queries, query concepts, and the information need. Other decompositions
are certainly possible and can be accommodated within the same general framework.
The set of relationships presented here incorporates those judgments most important
for current generation document retrieval systems.

When viewed this way, the probabilistic and inference models use two similar
approaches to the same estimation problem. The probabilistic model uses a single,
general purpose rule and makes assumptions about term dependence in order to
estimate P(relevant|d;). The model presented here views the problem of estimating
P(I|d;) as consisting of a set of logically related estimates. Each estimate is made
independently using procedures specific to the type of estimate; the “probabilistic”
estimate of P(Q|mg) is simply one component of the overall estimate. The com-
ponent estimates are then combined in a manner consistent with the dependence

relationships represented in the inference network to provide an estimate of P(I|d;).

6.1.2 Comparison with the RPI model

To further clarify the relationship between the inference network model and the
probabilistic model, we will compare the inference network model with Fuhr’s model
for retrieval with probabilistic indexing (RPI model) [Fuh89a]. To simplify the

comparison, we will temporarily adopt Fuhr’s notation. Let

d,,  represent a document in the collection,
x  be the binary vector (21,23, ..., 2,) in which each z; corresponds
to a document descriptor r; (a representation concept),

fr  represent the query, and
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Figure 6.2: Inference network for the RPI model

R represent the event that a document is judged relevant to a query.

All variables are binary-valued. In this model, P(z; = 1|d,,) is interpreted as the
probability that a descriptor r; i1s a “correct” indexing of d,,. Let X be the set of
possible values for x, where |X| < 2".

The network shown in figure 6.2 corresponds to the probability distribution

P(R, fe,21,...,Zn,dm) = P(R|fr,dm)

= P(R|fu, 21, .., n)P(z1]dm) . . . P(2n|dm)P(fe) P(dm).

We will evaluate this expression for a given document and query so fx and d,, are

known and the distribution reduces to
P(R|fr,dm) = P(R|fr, 21, ..., Zn)P(21]|dm) . .. P(2n|dm).
Assuming that the descriptors are assigned independently, that is

P(x|dm) = ]I P(eildm),

1<i<n

(s



the basic ranking expression for the network of figure 6.2 is

P(R|fx,dm) = 3 P(R|fr, %) P(x|dy). (6.1)

XeX

Equation 6.1 is equivalent to the basic ranking expression used by Fuhr [Fuh89a,

equation 9]. Equation 6.1 can be expanded to the familiar product form

P(R|fx,dm) = P(RIfx) ]I (ﬁum 41 Pk uim)) (6.2)

1<i<n \ % 1 —g

where

pir = P(zi=1|R, fr)
¢ = Plz;=1)

Ui, = P(iZ}z: 1|dm)

(Strictly speaking, the network corresponding to equation 6.1 should have a single
node x in place of 4, .. ., z, since equation 6.1 makes no independence assumptions.
Independence is, however, assumed in all derivations based on equation 6.1 so we
have chosen to show it in the network.)

Using the same notation and variables, the network of figure 4.1 can be reduced
to the network of figure 6.3. This inference network is described by the probability

distribution
P(R, fx,21,...,Zn,dm) = P(R|dn)
= P(R|fe)P(frlz1,...,2n)P(21]dm) ... P(2n|dm)P(dm).

Comparing figure 6.3 with figure 6.2 we see that in the inference network model the
query does not appear as a separate prior (root) but is explicitly conditioned on the

representation concepts. Again, d,, is given, so we have
P(R|dm) = P(R|fk)P(fk|m17 s 7mn)P(m1|dm) s P(mn|dm)
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Figure 6.3: Example inference network

Applying Bayes’ rule we get

Play,..., 2l fo) P
P(mla-"amﬂ)

P(R|d,) = P(R|f:) P(21]dm) . . . P(n|dum).

Assuming that the z; are distributed independently in documents (6.3) and that

the assignment of the z; is independent of the query (6.4), that is,

P(zy,...,z,) = H P(z;) (6.3)

i<ikn
P(zy,...,2alfu) = [ Plzilfe) (6.4)
1<i<n
we have
P(RId) = P(RIFIP(R) X TT 280 payja,), (65)

XeX 1<ikn ( )

79



Figure 6.4: Effect of inversion

The application of Bayes’ rule essentially inverts the network of figure 6.3 to obtain
the equivalent network shown in figure 6.42. Note that the use of Bayes’ rule here
is to allow us to derive a closed-form ranking expression that can be compared with
the RPI model. In practice, we would use an estimate of P(fi|z1, ..., ) and would
not invert the network.

Equation 6.5 reduces to

PRl = PP T (D= plas = va,

P(z; =0[fr)

o o) T = 0|dm)) .

If we let

pie = P(zi=1|fx)

g = P(z;=1)

3While the networks in figures 6.3 and 6.4 are equivalent in the sense that the computed
probability distributions are the same, figure 6.4 does not lend itself to normal belief network
updating procedures. In order to produce the new P(z;|fi,dn) link matrix and the new prior
P(fx) we must make use of the assumed value of P(d,,). In essence, when we invert the network
we fold the prior probability of d,, into the new link matrix and extract a new prior for the query.
This means that to test the effect of a change in P(d,,), we would have to recompute the link
matrices at each z; and compute a new P(f;). With the network in figure 6.3, we can change our
assumed value for P(d,,) without changing the probability information stored at each node.
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Ui = P(m1:1|dm)

we get the ranking expression

P(Rldn) = P(RIF)P() I (P—um plomeg um)) (6.6)

18i<n \ @ 1—g
Equation 6.6 differs from equation 6.2 in that p;; is conditioned only on the query
and not on R and the resulting probability is normalized by P(fi). The difference in
conditioning for p;; arises because the network of figure 6.3 implicitly assumes that
x and R are conditionally independent given the query, that is, x cannot influence
our assessment of relevance except through its effect on the query. The network of
figure 6.2 assumes that x and f; are independent, but not necessarily conditionally
independent given R, that is, x and the query can influence our assessment of

relevance independently. Under the assumption of conditional independence
P(x|R, fr) = P(x|fe)

and the p;, terms are identical. P(fi) is constant for a given query and does
not affect the ranking so, under the assumption of conditional independence, the
rankings produced by the two models are identical.

The networks in figures 6.2 and 6.3 help to clarify the differences between
the conventional probabilistic and the inference network retrieval models. In the
network of figure 6.2, the query is modeled as a separate variable that is related
to the possible document descriptions through the specification of P(R|x, f). The
network of figure 6.3 explicitly models the dependence of the query on the document
representation and the dependence of relevance on the query. Again, the network
of figure 6.3 asserts the independence of the document representation and relevance
given the query; the document representation cannot influence the probability of

relevance except through its influence on the query.
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The principal difference between the two models, then, lies in the dependencies
assumed. While we have chosen Fuhr’s model as the basis for comparison, network
forms could be developed for the many other probabilistic formulations. The chief
advantage of the inference network model is that it allows complex dependencies to
be represented in an easily understood form and it allows networks containing these
dependencies to be evaluated without development of a closed form expression that

captures these dependencies.
6.2 Comparison with Unified Model

Two influential formulations of the probabilistic model are due to Maron, Kuhns,
and Cooper [MK60, CM78] (generally referred to as the Maron and Kuhns model)
and to Robertson and Sparck Jones [RS76, van79] (the binary independence model
of Section 6.1.1). A third formulation which generalizes these two models was
proposed by Robertson, Maron, and Cooper [RMC82]. This unified model clarifies
two different interpretations of relevance within the probabilistic framework and
provides an interesting contrast to the inference network model. For the remain-
der of this section, we use representation concept to refer to either a document

representation concept or a query representation concept.

6.2.1 Maron and Kuhns model

The focus of the Maron and Kuhns model is probabilistic indexing, that is, given a
set of documents d,,...,d,, and a set of representation concepts r1,...,7,, how do
we estimate the probability that a user submitting a single representation concept as
a query will judge a given document to be relevant. For clarity, this model restricts

attention to single term queries.
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Figure 6.5: Network for Maron and Kuhns model

The approach advocated by Maron and Kuhns was to keep track of the number
of times each query is submitted and which documents are judged relevant and
non-relevant to each query. This information is then used to determine the frequency
with which each document in the collection has been judged relevant to each query
submitted. This frequency information is then used to estimate the probability of
relevance and documents are ranked accordingly. This model, then combines the
judgements of multiple users to compute the probability of relevance with respect
to a set of equivalent queries.

This probability of relevance is independent of any information about which
concepts occur in documents. In terms of the inference network model, these
representation concepts are the query concepts contained in user queries and the
document representation concepts play no part in estimating the probability of
relevance. This gives the network shown in Figure 6.5 in which we learn the full
link matrix form for each query concept based on a set of sample queries. Since
queries are restricted to single terms, when processing a query we simply pick the
appropriate representation node, instantiate each document, and rank documents

by the belief at the representation node. No separate query network is required.
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relevant

Figure 6.6: Network for Robertson and Sparck Jones model

6.2.2 Robertson and Sparck Jones model

The Robertson and Sparck Jones model takes a much different approach. We
again maintain a history of queries and relevance judgements, but here we view
the association between documents and representation concepts as fixed by the
collection and independent of the use of these representation concepts in queries
(although users can only submit as queries those concepts that have been associated
with documents). In the Maron and Kuhns model the association between a
representation concept and a document is created by a relevance judgement; in the
Robertson and Sparck Jones model the association is known from characteristics
of the individual documents and documents appear in the model only as the set
of representation concepts assigned to them. In the Robertson and Sparck Jones
model, a query is a set of one or more of these representation concepts and the
objective of the retrieval system is to compute the probability that a randomly
selected document is relevant given a set of representation concepts as a query.
Given appropriate independence assumptions, we can compute this probability for

each concept separately and combine them using a canonical rule.
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In inference network terms, the representation concepts of the Robertson and
Sparck Jones model are the document representation concepts. This approach gives
the network of Figure 6.6 (which repeats Figure 6.1) in which the documents and
query concepts are omitted and a single relevance node is attached directly to the
document representation concepts. The link matrix at the relevance node is learned

from the training sample under a set of independence assumptions.

6.2.3 Unified model

To integrate these two views, the unified model considers documents and groups of
similar query uses, where a query use is the submission of a query by a user with
an information need and a group of similar uses is the set of all uses for a single

query. If we let

A = the class of all (past and future) query uses,

C = the class of all (present and future) documents,
by = a single query use,
dm = a document,

then the event space for the unified model is A X C' and relevance is defined as a
relation R C A x C where a document /use pair (bg, d) € R if and only if d,, would
be judged relevant to by. We now define a partitioning B = By, ..., B, of the set
A into sets of similar query uses (all uses for a single query), and a partitioning
D of the set C into sets containing similar documents (a component set of D will
have more than one element only if two documents are assigned exactly the same
set of representation concepts). Using this notation, the probability of relevance

under the Maron and Kuhns model is P(R|B;,d.), that is, relevance is defined
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for a single document and the set of all uses of a given query. Relevance for the
Robertson and Sparck Jones model is P(R|Bg, D), that is, relevance is defined for
a single query use and all documents. For the unified model, relevance is defined

for a single document and a single query use, that is, P(R|bg, dy).

6.2.4 Comparison of the unified and inference network models

The unified model is similar to the inference network model in that it distinguishes
between document and query representations (document and need properties in
Robertson, Maron, and Kuhns terms) and views the problem of estimating the
probabilities for the two representations as separate.

The two models differ, however, in at least four important respects. First, in the
network model there is no notion of a query use. The notion of a query use arises as
a result of the Maron and Kuhns interpretation of representation concepts as queries
and the use of a sample of relevance judgements from several uses to estimate the
probability of relevance. As will be discussed later, we question whether this kind of
learning is practical without a number of additional assumptions about the structure
of the network. As a result, we believe that this kind of learning can best be modeled
as one component of a procedure to estimate the link matrices at the query nodes
and that the retrieval model need not explicitly represent query uses.

Second, the inference network model represents documents, document represen-
tation concepts (document properties), queries, and query representation concepts
(query properties) as separate variables. The development of the unified model
at various times requires that we assume that queries are single terms or that
we introduce auxiliary variables to represent document properties. This difference
between the two models is notational, but we think it clearer to explicitly represent

all of the variables in the model.
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Figure 6.7: Network for the unified model

Third, the network model uses an explicit dependence structure in which belief
in document representation concepts causes belief in query representation concepts
which, in turn, causes belief in the information need. This assumption implies,
among other things, that while belief in document and query concepts both cause
belief in the information need, they do not act independently. The unified model is
less clear here, but the main independence assumption that can be derived from the

model is that query and document representation concepts are independent, that is
P(bg,dn) = P(b) - P(dm). (6.7)

Robertson, Maron, and Kuhns explore the consequences of additional independence
assumptions, but no firm conclusions about an appropriate set are reached. Assum-
ing that a dependence among these variables (documents, query uses, and relevance)
does exist, equation 6.7 suggests the network of Figure 6.7 for the unified model
which, like the RPI model, assumes that the document and query representations
are independent causes of our belief in relevance. While it is tempting to posit
a set of document nodes above the sets of document representations (D) and

query representation (B) in Figure 6.7, this would assert a dependence between
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the representations unless we have evidence establishing the value of document
nodes with certainty (i.e., they are all fully instantiated).

The final difference between the two models lies in a philosophical difference
regarding the nature of probability estimates; the unified model is frequentist while
the inference network model takes a modified subjectivist view (see [Savb4] for a
discussion of the history and nature of frequentist versus subjectivist interpreta-
tions).

The structure of the unified model is influenced by the desire to estimate the
required probabilities based on observed frequencies. This orientation gives rise to
the notion of query uses and definition of the event space in terms of all past and
future queries and all present and future documents.

We take the view that estimates based on frequency data are to be preferred
when they are available but that, for these kinds of models, we will generally not
have representative samples and that other techniques will be required to estimate
the probabilities. In operational settings, the vast majority of queries will never have
been seen before, even after a long period of data collection. Further, those queries
that have occurred more than a few times may well not have the same underlying
information need. Under these conditions, it is difficult to view the samples that
will be available in practice as representative. Robertson, Maron, and Cooper are
clearly concerned with this problem and suggest some subjectivist techniques for
estimating the probabilities (e.g., using thesaurus information). They also suggest

that techniques for estimating single term weights from multiple term query samples

might be possible (e.g., [FB90]).
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Enformation) ( retrieval ) ( satellite )

and not

Figure 6.8: Inference network for (informationAretrieval)V-satellite

6.3 Boolean retrieval

Inference networks can be used to precisely simulate Boolean retrieval and they
provide a natural interpretation of the semantics of Boolean operations in proba-
bilistic terms. In this section we first show how Boolean retrieval can be simulated
and then show how the probabilistic interpretation of the Boolean operations can

be relaxed to produce document rankings.

6.3.1 Implementing Boolean retrieval

Using the canonical link matrix forms of section 4.5 we can simulate Boolean
retrieval as follows. For clarity, we assume that the query and representation

vocabularies are identical so we can omit query concepts from the network.

1. Use a canonical or matrix at each representation node. When a document
is instantiated, all representation concepts to which it has been attached will

have bel(r;) = 1. All remaining representation concepts have bel(r;) = 0.
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2. Build an expression tree for the query. The root of the tree is the query and
all arcs in the tree are directed toward the root. The leaves of this tree will be
representation concepts and the interior nodes will correspond to expression
operators. At each operator node use the canonical link matrix form for that

operator. Attach this tree to the document network. A simple example for the

query
(information and retrieval) or not satellite

is shown in figure 6.8 (the use of or not is somewhat unusual, most commercial

systems support only and not).

3. Using the evaluation procedure described in section 4.3, instantiate each docu-
ment in turn and record the belief in the query node. Any document for which

bel(Q) = 1 satisfies the query, any node for which bel(Q) < 1 does not.

Under the assumptions above and using binary indexing, bel(Q) can only have
values 0 or 1 and the inference network simulates a conventional Boolean system
exactly.

The same probabilistic interpretation of the Boolean operators applies equally
well to weighted indexing. Using the approach described in section 4.5.1 we can
incorporate indexing weights by replacing the or link matrix in the representation
concept nodes with a wtd_sum matrix incorporating the appropriate tf and df
weights. In this case, when a document is instantiated, all representation nodes
to which it is attached take on the tf.idf weight for that term/document pair
and all remaining representation nodes take on a node-specific default belief, for
now we assume that all default beliefs are 0. These weights are then combined

using the closed-form expressions of section 4.5. In short, the ¢f.:df weights are
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interpreted as probabilities and are combined using the normal rules for negation
and for disjunctive or conjunctive combination of sets in an event space. As a result,
the inference network model provides a natural probabilistic interpretation of the
Boolean operators and of indexing weights.

An interesting result of the inference network research is an efficient imple-
mentation of a general not operator. Commercial systems allow only an and not
operator since or not and unary not generally produce unwieldy retrieved sets. The
inference network model efficiently supports general evaluation of not.

Conventional Boolean retrieval systems use inverted files in which each term
has an associated list of documents in which it occurs. When evaluating a simple
Boolean expression, two lists are combined to create a new result list. The lists
associated with most terms are quite short (again, by Zipf’s law, roughly half
are of length one) and query evaluation is generally optimized to keep the size
of intermediate results as short as possible. As an example, let a be a common term
that occurs in 5% of the documents in a collection of n documents and let b be a
term that occurs in a single document. Evaluation of the expressions a and b or a
or b requires that the inverted lists for a and b be read and results in a new list that
1s no longer than the list for a. An expression like a or not b, however, will probably
require reading a list containing nearly every document in the collection and will
create a result list containing at least n — 1 documents. For a collection containing
several million documents, this is a very expensive operation. The problem with or
not and unary not, then, is that they turn very short inverted lists into very long
inverted lists.

As will be discussed in Chapter 9, retrieval inference networks are also imple-
mented using inverted files. Each representation concept has an associated list of

parent documents with the belief in the representation concept that results when
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each parent document is instantiated. Evaluation of not b requires only that we
use equation 4.9 to recompute belief for the single document in &’s inverted list.

Computing a or not b, then, has nearly the same cost as computing a or b.

6.3.2 Relaxing the interpretation of Boolean operators

The binary nature of the retrieval decision in Boolean systems is frequently cited
as a drawback [Cro86, SM83, Sal88, LB88|. Intuitively, we would like a document
containing all but one term of an n-term and to be judged nearly as likely to match
the query as a document containing all n terms and substantially more likely to
match than a document containing none of the terms. The binary decision arises
because of our strict probabilistic interpretation of the Boolean operators. The link
matrix forms we have chosen assert complete certainty given the evidence available

at a node, that is

P(Qana = truelall parents = true) = 1
P(Qor = true|any parent = true) = 1
P(Qnot = true|parent = true) = 0.

We can easily relax this interpretation of the probabilistic semantics of the Boolean

operators. Simply reducing the certainty associated with the operators, that is,

P(Qana = truefall parents = true) = ¢,
P(Qor = truelany parent = true) = ¢,
P(Qnot = true|parent = true) = ¢,

0 < ¢4,Coy¢n < 1 does not have the desired effect since it does not incorporate

our intuition about the significance of the number of parents having a particular
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value. It simply compresses the range of values for bel(Q). A better approach is to
choose a value n < ¢ < oo where n is the number of parents at a given node and to

interpret the and operator to mean

P(Qand = true|n parents = true) = 1
n—k
P(Qana = true|k parents = true) = 1-— , 0<k<mn
c
P(Q4na = true|no parents = true) = 0
and the or operator to mean
P(Qor = true|n parents = true) = 1
k
P(Qor = truelk parents = true) = —, 0<k<n
c
P(Qor = true|no parents = true) = 0

Under this interpretation, when ¢ = oo the operators have their normal Boolean
interpretation. As ¢ decreases, our belief in ) depends increasingly on the number
of parents that are true. When ¢ = n the distinction between and and or has
disappeared, the link matrices for both operators are the same, and both are equiv-
alent to the sum link matrix of section 4.5. Note that since a node implementing
the not operator has exactly one parent, its interpretation is unchanged. These
interpretations for the Boolean operators can be implemented as canonical link
matrices requiring O(1) space and operating in O(n) time.

The use of this parent weighting scheme is quite similar to the extended Boolean
retrieval or p-norm model [Sal88, SFW83]. In this model, the similarity between
a document (represented as a binary vector D = (di,d»,...,d,)) and a query @

consisting of the conjunction or disjunction of all terms in the vector is given by

(1—di)P+ (1 —do)P...+(1—d,)P]7

n

Sim(D,de) = 1-
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sin(D, Q) — |AFAE L E]

n

When ¢ = n and p = 1, both models produce the same results. For a conjunctive

query containing n terms, m of which are true, under the p-norm model we have

1—dy)P 1—4dy)P... 1_dnp11-7
Sim(DJQa’nd)p:]_ = 1—[( 1) +( Tj) ‘I’( )
n—m
= 1- ) 1§’m§n
n

and for the network model we have

P(Qana = t|m parents true) = 1-—

1 <m<n.

For a disjunctive query using the p-norm model we have

Slm(D, Qor)p:l =

n

l£+£m+ﬂr

b

3|3

and using the network model we have

P(Qor = t|m parents true) = —.
n
Similarly, when ¢ = p = oo both models produce the same results

. 1 if =
Sim(D, Qand)p=cc = P(Qanda = t|m parents true) = { 0 Ltlﬁrwi,':e

0 fm=0

1 otherwise

Sim(D, Qor)p=cc = P(Qor =t|m parents true) = {

For values n < ¢ < oo and 1 < p < oo, both functions are monotonic in the number
of true parents (number of non-zero vector elements) m, but they are not equivalent

since P(Q =t) is linear in m while Sim(D, @) is not. Note that we could choose to
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redefine our probability function to produce equivalent results. If, for example, we

used

for and operations, then the models would produce results that are equivalent in the
sense that, for any value of p we can find a corresponding value of ¢ that produces
the same values for bel(Q) and Sim(D, Q). There is, however, no theoretical basis
for this redefinition.

The inference network model handles weighted indexing as a natural extension
and is again equivalent to the p-norm model for p = 1 and p = oo and is similar
but not equivalent for 1 < p < oo.

The performance of the network and p-norm models will be compared in Chap-

ter 8.
6.4 Estimating the probabilities

Given the link matrix forms of section 4.5, we now consider the estimates required
for the basic model of figure 4.1. The only roots in the inference network of figure 4.1
are the document nodes and the prior probability associated with these nodes is set
to 1/(collection size). Estimates are required for five different node types: text,
representation and query concepts, query, and information need.

Text nodes. Since text nodes are completely dependent upon the parent
document node, the estimate is straightforward. Since there is a single parent,

a matrix form can be used; ¢; is true exactly when d; is true and false exactly when

10
Ltext:<0 1)

This matrix form is the inverse of that used for not.

d; 1s false so
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Note that the distinction between document and text nodes is not required for
the basic model and we often ignore text nodes for clarity. Text nodes are required if
we support sharing of text by documents. If we allow document nodes to share text
nodes, then an or matrix at the text node is appropriate, ¢; is true when any parent
is instantiated. Link matrices for advanced features are discussed in Chapter 7.

Representation concept nodes. Link matrix forms for representation con-
cepts were discussed in section 4.5. For binary indexing and unweighted terms an
or-combination can be used so that P(r; = true) = 1 if any parent is instantiated.
Link matrix forms that incorporate if, zdf, and tf.idf weights are described in
Section 8.2.2.

Query concept nodes. As we have seen, previous research on indexing
and term weights can be incorporated directly in the document network. The
query network, particularly the links between representation and query concepts,
is less well understood. Here we are interested in estimating the dependence of
concepts mentioned in the user’s query upon the representation concepts. Most
current retrieval models view these two sets of concepts as identical under the
assumption that the user knows the set of representation concepts and can use them
to formulate queries. Research suggests, however, that the mismatch between query
and indexing vocabularies may be a major cause of poor recall [FLGD87, Tur90].
While our current implementation assumes a one-to-one correspondence between
query and representation concepts, it would appear that improved estimates of the
dependence of query concepts on representation concepts could markedly improve
performance. Two areas of research bear directly on improving the quality of these
estimates: automatic thesaurus construction and natural language research aimed at
extracting concept descriptions from query text, identifying synonymous or related

descriptions, and resolving ambiguity [LC90, KC89].
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Query nodes. The dependence of query nodes on the query concepts is more
straightforward. For Boolean queries we can build an evaluation tree using the link
matrix forms described in section 6.3; we can adjust link matrix values if we have
information about the relative importance of the query concepts. For probabilistic
queries we can use a weighted-sum matrix. Strategies for setting the query concept
weights are described in Section 8.2.1.

Information need. The information need can generally be expressed as a
small number of queries of different types (Boolean, m-of-n, probabilistic, natural
language, ...). These can be combined using a weighted-sum link matrix with
weights adjusted to reflect any user judgments about the importance or complete-

ness of the individual queries.
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CHAPTER 7

EXTENSIONS TO THE BASIC MODEL

The basic model described in chapter 4 is limited in at least two respects.
First, it does not describe how relevance feedback can be incorporated. Second, we
have represented only a limited number of dependencies between variables. In this

chapter we will see that these limitations can be removed.

7.1 Feedback

There are two basic ways in which feedback can be incorporated in an inference
network: adding evidence or altering the dependencies represented in the network.
The two approaches are fundamentally different. Adding evidence always leaves
the probability distribution represented in the network unchanged but alters beliefs
in the network to be consistent with that distribution. Altering the dependencies,
either by changing the topology of the network or by altering the link matrices
changes the underlying probability distribution which in turn alters belief. The
use of evidence is appropriate when we know that the distribution is “correct” (if,
for example, the topology is known and the link matrices have been learned from

a reliable sample). Evidential feedback is appropriate in the document network
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which is largely determined by the characteristics of the collection. Frisse and
Cousins [FC89] use this approach to implement feedback in a hierarchy of index
terms associated with a hypertext medical handbook.

Altering dependencies is appropriate when the initial network is known to be
an approximation to the correct distribution and we obtain better information
about the nature of the true distribution. This approach is used in document
space modification [YM88, FB90| where we use a set of queries and relevance
judgements to learn the “correct” distribution for documents and representation
concepts. This approach can also be used in the query network which changes
as we gain information about the user’s information need. This new information
can be derived from many sources, but we will restrict attention to the traditional
sources of relevance feedback information, user judgements about the relevance of
sample documents.

We will adopt the second approach, then, and will view relevance feedback is
a process through which we alter and refine the structure of the query network.
Essentially, given a sample of relevant documents we wish to develop one or more
new query representations that will retrieve documents similar to those in the
relevant sample. These new query representations can either augment or replace the
original representation. Traditional probabilistic relevance feedback can be readily
adapted to the network model. It may be possible to further improve performance,
however, if we use a Boolean or hybrid query form in place of the sum used in

traditional relevance feedback.

7.1.1 Probabilistic feedback

In conventional probabilistic retrieval, documents are ranked using a (generally)

linear discriminant function in which each term corresponds to a representation
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concept in the collection. Typically, only the representation concepts found in the
query have non-zero values and the coefficients of these terms are estimated using

some model-specific function. A representative function is

i 1—g
g(d) = > _(log 1= 5, Tlog— =) (7.1)

where p; is the probability that term ¢ occurs in a relevant document and g; is the
probability that term 7 occurs in a non-relevant document. The second term in the
summation is typically estimated using each term’s zdf and the first term is initially
estimated using some fixed p; (e.g., p; = 0.5) or based on the frequency of the term
in the query.

In the network model, query terms are represented by establishing conditional
dependence relationships between the query node and the appropriate representa-
tion concept nodes and the coefficients appear as weights in the link matrix at the
query node (P(Q|r;)).

In relevance feedback we are given a sample of documents that have been judged
relevant and we wish to re-estimate our linear discriminant function based on this
sample. In a sense, the set of relevant documents is used to augment (or replace)
the original query (it is also possible to use negative feedback based on a set of
retrieved documents that were judged nonrelevant, but we will consider only positive
feedback). In a typical relevance feedback strategy, we would compute a new set
of p; values for equation 7.1 based on the relevant sample and either add the top n
terms to the original query terms or simply replace the original query with the top
n terms to produce a new linear discriminant function.

In the network model we can use exactly the same strategy. We add links
between the query node and the representation concepts to be added and re-estimate

the link matrix weights based on the sample of relevant documents rather than on
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the query text. Whatever estimation strategy is used to produce an estimate for p;
can be incorporated directly in the link matrix weights.
Similar relevance feedback strategies (e.g., negative feedback or fixed-increment

correction [van79]) can be simulated using the same basic feedback model.

7.1.2 Boolean feedback

A number of models have been proposed for using relevance feedback with Boolean
retrieval systems [Sal88, SVF84, Rad88, Rad83]. While some of these models have
been shown to significantly improve performance when compared to conventional
Boolean retrieval, they are not attractive in the network environment. These models
generally adapt probabilistic relevance feedback techniques to estimate weights for
terms in very restricted Boolean query forms (e.g., disjunctive normal form with
no negation and and terms containing at most three representation concepts).
Since these models do not make use of any linguistic or domain knowledge, it
is unlikely that they will afford performance gains that cannot be achieved with
normal probabilistic relevance feedback.

The development of an effective relevance feedback mechanism for Boolean
queries is a potentially important area for further research. Encoding feedback
information in a Boolean query could improve performance more than as a proba-
bilistic query since it is possible to encode information in the Boolean query that is
not representable in the sum expression. A Boolean feedback mechanism could be

implemented with the following procedure:

1. Identify important words and phrases in the sample of relevant documents.
Important words can be identified using the same techniques as for probabilistic

feedback, but phrases are a harder problem. Work on the identification of
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syntactic or statistical phrases [LC90]| should be of use here and it may be

useful to ask the user about the importance of candidate words and phrases.

. Identify words and phrases whose absence from the set of relevant documents
is important. This is a hard problem since the sample of relevant documents
is usually far too small to allow meaningful statistical estimates. An expert
system may be of use here if the domain of interest is known, but for the
near term, the user is probably the only reliable source of information about

concepts that should not be in the relevant set.

. Estimate weights for the concepts identified above, probably using both sta-

tistical analysis and user input.

. Assemble a query. An obvious approach would be to use and (or a new
proximity operator) to define phrases, use or to assemble sets of concepts
that should and should not be in relevant documents, and then use and not to

combine the two sets of concepts.

A number of variation are possible. In particular, initial work suggests that the

probabilistic sum operator might be more appropriate than the or in step 4. This

would represent a hybrid approach in which we start with the basic probabilistic

relevance feedback query and selectively add Boolean structure in the form of

phrases and negation.

The main reason for considering the use of Boolean expressions for feedback is

to increase the expressive power of the feedback query without incurring the expense

of learning a complete link matrix. Clearly, once the set of representation concepts

i1s known we could learn the appropriate link matrix given a large enough sample

of relevant documents. Unfortunately, we will rarely have a large enough sample
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and the computational costs associated with learning a “correct” matrix would be

prohibitive if more than a few terms were involved.

7.2 Additional dependencies

In the basic model, we assume that there are no dependencies between documents,
between texts, between representation concepts, between query concepts, or be-
tween queries. While independence assumptions like these are not uncommon in
retrieval models, it is widely recognized that the assumptions are unrealistic; there
are a number of both statistical and logical dependencies between representation
concepts and between documents. In particular, we would like to incorporate
term and document clustering and would like to represent citation links between
documents and thesaurus relationships between terms.

As before, we identify the set of nodes upon which a given node depends and
characterize the probability associated with each node conditioned on its immediate
parents. When adding these new links, however, we must be careful to preserve
the acyclic nature of the inference network. Bayesian inference networks cannot
represent cyclic dependencies; evidence attached to any node in a cycle would
continually propagate through the cycle and reinforce the original node. In the
basic model, no cycles are possible since nodes are only linked to node types that
are lower in the DAG. The introduction of these “horizontal” dependencies makes

cycles possible.

7.2.1 Document and term clustering

A variety of clustering techniques have been developed to improve information

retrieval performance [van79]|. These may be loosely categorized as document clus-
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tering techniques which attempt to divide the collection into (possibly overlapping)
subsets which are similar and term clustering techniques which attempt to iden-
tify subsets of representation concepts with similar usage or meaning. Clustering
techniques differ widely in the document or term attributes considered, the defi-
nition of a similarity or dissimilarity measure, and the structure of the resulting
classification. Term clustering techniques represent one kind of automatically-built
thesaurus in which terms contained in a cluster are, in some sense, synonymous;
these thesaurus clusters may be organized in a hierarchy to represent broader and
narrower classifications. Representation of these thesaurus-like relationships will be
discussed in Section 7.2.3.

Document clustering techniques are used to retrieve documents that are similar
to a relevant document under the assumption that similar documents are related
to the same queries. Our use of cluster information is somewhat unusual since we
do not retrieve clusters; we incorporate the cluster information in the dependence
relationships between document texts and representation concepts. In the network
fragment shown in Figure 7.1, document texts ¢;, f5, and ¢3 are indexed using
representation concepts r1, 73, 73, and r4. Documents ¢, and t3 have been identified
as part of cluster ¢;; both texts are linked to a cluster node and the cluster node
is linked to the representation concepts that define the cluster. The cluster node is
similar to a conventional cluster representative. Documents ¢; and ¢, are indexed
by the same representation concepts (r; and r;) and, if we assume equivalent
conditional probabilities, would be ranked equivalently in the absence of the cluster
node. With the addition of the cluster node, however, a new representation concept
(r3) is associated with ¢ by virtue of its cluster membership. Assuming that r3
contributes positively to the belief in ¢, ¢, would be ranked higher than ¢;. Like

query nodes, cluster nodes are a representation convenience, it is always possible
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Figure 7.1: Document clustering model

to eliminate them by increasing the complexity of the distribution specified at the

representation concept nodes.

7.2.2 Citation and nearest neighbor links

A variety of asymmetric relationships between pairs of documents can also be
represented. These relationships are similar to clustering in that they use similarity
between documents to expand the set of representation concepts that can be plausi-
bly associated with a text. They differ in that they are ordered relations defined on
pairs of documents rather than an unordered, set membership relationship between
documents and clusters. The existence of one of these links can be treated as new
evidence about the set of concepts that should be assigned to a document. The use
of evidence here rather than a direct link between documents avoids the possibility

of cyclic dependencies that could arise with these directed links.
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Figure 7.2: Nearest neighbor link

Perhaps the best example of this kind of relationship is the nearest neighbor
link in which a document is linked to the document judged to be most similar to
the original document. In Figure 7.2 the set of representation concepts associated
with document ¢; is expanded by virtue of its nearest neighbor link to document ¢,
which is represented as an evidence node attached to t; when ¢; is instantiated. A
second kind of ordered link is based on citations occurring in the text. Citation links
may be useful if the type of reference can be determined (e.g., citing a similar work,
a peripherally related work, or a work presenting an opposing viewpoint) to allow
estimation of the probabilistic dependence between the nodes. Nearest neighbor

and citation links are discussed in detail in Sections 8.6.1 and 8.6.2.
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7.2.3 Thesaurus relationships

The structure of these networks provides a natural mechanism to represent prob-
abilistic dependencies between the concepts or terms that describe documents and
information needs. These relationships are similar to conventional thesaurus rela-
tionships, but include more information. For example, a conventional thesaurus
might list “house pet” as a broader term for “dog” and “cat”; the network repre-
sentation will include a specification of the probability that “house pet” should be
assigned given a document containing “dog” or “cat” in isolation, neither term, or
both terms.

In this discussion, we restrict attention to common thesaurus relations (syn-
onym, related term, broader term, and narrower term). We also deal only with the
use of this information for simple automated inference about document and query
content. We do not deal with frame-structured thesauri that attempt to capture
the detailed structure of domain knowledge [SSG89] or with the use of a thesaurus
to aid to the user during query formulation [Pol87].

Synonyms can be represented in the network by creating a node to represent an
equivalence class and adding it as a child to each synonym in the equivalence class.
This approach can also be used for “near” synonyms or related terms where the
belief that the equivalence class has been observed is dependent upon the presence
of a specific combination of representation concepts. Building these equivalence
classes into the document network is probably not useful for two reasons. First,
their presence could represent a significant computational burden. This is especially
true since the number of potential equivalence classes is very large, but only a few
will be useful for a given query [ST84]. Second, it would be necessary to consult an

external thesaurus when building the query network to determine when to attach a
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Figure 7.3: Broader term representation

query concept to the equivalence class node rather than a representation concept.
Since a query concept node represents exactly this kind of equivalence class, the
external thesaurus should be used to handle synonyms and closely related terms as
the query network is built.

Broader term relationships are very similar to the relationship between syn-
onyms and their equivalence class. They differ mainly because a broader term is
generally a member of the set of representation concepts. As with synonyms we
could represent the relationship in the document network (Figure 7.3a), but will
generally prefer to represent it in the query network (Figure 7.3b).

Synonyms, related term, and broader term relationships are useful primarily as
a means of determining the relationship between the query concepts used to describe
the information need and the representation concepts that describe document con-

tent. Narrower term relationships are somewhat less useful for inferring vocabulary
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Figure 7.4: Narrower term representation

relationships. For example, if representation concepts “dog” and “cat” have been
assigned to a document, we can infer that a set of broader terms (e.g., “house pet”
or “mammal”) could plausibly be assigned to the same document. However, the fact
that “mammal” has been assigned to a document represents fairly weak evidence
that “cat” should also be assigned.

Direct representations of narrower terms in the network is possible (Figure 7.4a),

but, again, we will generally prefer to represent them in the query network (Fig-

ure 7.4b).

7.2.4 Phrases

The use of phrases as representation concepts provides a much more detailed rep-
resentation of document content than do individual terms. The use of phrases

in information retrieval is an area of active research, see [Lew90] for a review.
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(b)

Figure 7.5: Representing phrase dependencies

One advantage of the network model is that it allows explicit representation of the
dependence between phrases and their component terms.

Figure 7.5 shows the two basic ways in which phrases can be added. In Fig-
ure 7.5a the phrase p; is added as a new representation concept that is independent
of the component terms (r;, r;, and rg). A document containing the phrase will
also contain all three terms, but this dependence is not represented in the document
network. A query which contains the phrase is linked to p; and optionally to the
component terms. Figure 7.5a is similar to the phrase model developed by Croft
[Cro86] in which the presence of a set of dependent terms (a phrase) results in
an additive correction to the independence model ranking function. It would be
possible to represent the dependence between the terms and the phrase in the link

matrix at @ (i.e., r;, rj, and 7y have less influence on belief in ) when p; is observed),
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but this would require a detailed knowledge of the relationships between terms and
phrases in the collection.

Figure 7.5b shows a model which represents the dependence of the phrase on
its component terms. In this model the phrase represents a concept that can be
inferred based on the presence of the parent terms. In a simple form of this model,
we might infer the presence of the phrase only when all three parent terms are
present and the combining function at p; is an and. In general, however, we may
believe that p; is an accurate description of a document even when all of the parent
terms are not present. Our degree of belief may depend on the specific set of parent
terms that are observed and the combining function is a full link matrix. Other
combining functions are certainly possible, in this context a weighted and canonical
form might be useful. Experimental results using a simple and model are discussed
in Chapter 8.

Recent work suggests that it may be possible to learn the appropriate combining
function. [FCAT90] describes procedures for learning link matrices given a set of
documents and basic qualitative dependence information.

With either phrase model we must still determine which concepts are contained
in the query in order to make the appropriate connections between the query and
document networks. In general, it will be possible to connect the query to both the
phrase and to the component terms. In Figure 7.5b, attaching to the phrase and a
term means that the two concepts both occur in the query. In Figure 7.5a, multiple
attachments may also arise if it is necessary to represent the dependence between
a phrase and its component terms.

In the basic inference network model we use information about the presence or
absence of a term in the document and the characteristics of a term’s use in the

collection to estimate belief in representation concepts. For phrases it will probably

111



be useful to consider additional sources of evidence (e.g., syntactic relationships

between terms and term proximity) when estimating belief in a phrase.

7.3 Rule based inference

Document retrieval inference networks can also be used to support the kind of
inference normally associated with deductive databases if we interpret the operators
of deductive logic in terms of conditional probability. Material implication as the
interpretation of if-then rules in deductive databases is replaced in Bayesian nets
by an interpretation based on conditional probability, that is, a rule a — b is
interpreted as a probability P(b|a). The normal interpretations of and, or, and not
can be simulated using canonical link matrix forms if we assume that terms are
independent (as is customary with deductive logic). Given a node ¢ with parents
P1,- -, Pn, for and-combinations ((p1A...Apn) — q) we are interested in computing
p(q|p1,...,pn). Under our assumption of independence, this is simply the product

of the individual conditional probabilities

p(z|p1, ..., pn) = p(z|p1) - p(2|p2) - - . . - P(2|pn)

which can be computed using the current belief and link matrix values. For or-
combinations we are interested in computing the probability of g given the set of
P1,---,Pn. Again under the assumption of independence, this computation can be
done using a composite link matrix which combines the effect of the individual
parents (see [Pea88] for a detailed treatment of “noisy OR-gates”).

Figure 7.6 shows an example with three document representations and a small
set of rules. Two content predicates are shown: about(document,term) asserts

that a given document representation can be described by the term. The

112



about(d;, 'deductive database') about(dy, 'algorithms"')

about(d;, 'logic and databases') about(dy, 'languages')

about(d;, 'null values') about(d,, 'capture rule')
about(d;, 'relational database') about(dy, 'query language')
about(d;, 'query language') about(dy, 'relational database')

about(dy, 'Prolog')
cites(dsz,d;)
cites(dsz,ds)
about(ds, 'logic queries')
about(dz, 'relational database')
about(dz, 'horn clause')
about(ds, 'logic database')

about (d;,t;)A cites(d;,d;) —» about(d;,t;)
about (d;,t;) A synonym(t;,t;)— about(d;,t;)

about(d;, 'Prolog') — about(d;, 'logic programming')
about(d;, 'query language')— about(d;,'database')
synonym('logic database','deductive database')

Figure 7.6: Deductive document database fragment

cites(document;,document,)

predicate asserts that a reference to document, was found in document;. Addi-
tional predicates represent knowledge about the relationships between terms or
between document representations (e.g. synonym('logic database', 'deductive
database') or a nearest neighbor predicate nn(d;,d;) which asserts that the rep-
resentation of d; is “close” to that of d;.).

The inference rules fall into two basic classes. General rules describe inferences
that are independent of a specific database and express general knowledge about
the relationship between predicates. For example, about (d;,t;) A synonym(t;,t;)
— about (d;,t;) allows us to infer that any document characterized by a term is
also characterized by a synonym for that term. Domain specific rules represent

knowledge about the meaning of the terms in a given database, for example
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about (d;, 'prolog') Aabout (d;, ' programming ') —
about (d;, 'logic programming').

A query represents a theorem to be proven and has the form ¢ = {d;|W(d;)}
where W is a first-order logic expression which represents the constraints that a
document must satisfy in order to be retrieved. This query form is more restrictive
than typically used in a deductive database since only document representations
may appear in the answer to a query rather than an arbitrary set of free variables
(one can imagine queries like {t;|about(d,, t;) Adate(d,, 1900)}, to collect all terms
assigned to documents published in 1900, but this kind of query is not generally
supported in conventional retrieval systems).

Conventional queries translate directly into logic expressions. For example, a
query “find documents about deductive databases and Prolog” is represented as the

theorem
about (d;, 'deductive databases')/A\about(d;, 'Prolog"')

The deductive database approach allows expression of other kinds of queries that are
not generally supported by conventional document retrieval systems, for example
cites(d;,d;) A author(d;,'Smith') might be used to retrieve all documents that
cite any document written by Smith.

While the deductive approach to document retrieval offers some attractive
advantages, it has two major shortcomings: it does not provide any mechanism for
dealing with uncertainty and does not provide a suitable mechanism for combining
multiple sources of evidence. Both of these shortcomings are addressed in the

current retrieval model.
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CHAPTER 8

RESULTS

In this chapter, we first review the objectives and hypotheses established for this
research (Section 8.1). We then present results for the basic model which includes
estimating the required probabilities (Section 8.2) and results for simple searches
(Section 8.3), multiple query representations (Section 8.4), and multiple document
representations (Section 8.5). Finally, we present results for the extended model
in which citations and nearest neighbor clusters are used as additional sources of

evidence (Section 8.6) and summarize the major research results (Section 8.7).

8.1 Objectives and hypotheses

The original objectives established for this research were to:

1. Determine the retrieval performance achievable under the inference network

model.

2. Compare the retrieval performance of the inference network model with that
obtained with a conventional probabilistic model using the same searches run

on the same databases.

3. Compare retrieval performance within the inference network model of different

document representations.
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4. Compare retrieval performance within the inference network model of different

5.

query representations (natural language, Boolean, and both).

Compare the computational performance of these networks with that of con-
ventional probabilistic models and to characterize the costs associated with

these networks as a function of network size.

These objectives led to the following hypotheses.

1.

Given equivalent document representations, query forms, and assumptions
about the match between indexing and query vocabularies, the inference net-

work model will perform as well as probabilistic models.

The use of networks containing multiple document representations will signif-
icantly improve retrieval performance when compared to equivalent networks

without the additional representations.

The use of multiple query formulations and search strategies will significantly
improve retrieval performance when compared to equivalent networks with a

single natural language query.

Hypotheses 2 and 3 deal with the features of the basic model in which no

dependencies between documents or between terms are represented.

The incorporation of dependencies between documents (citations and nearest
neighbor links) will significantly improve retrieval performance when compared

to equivalent networks that do not incorporate these additional dependencies.

It will be possible to build and evaluate these networks in “reasonable” time.
For a collection that contains ¢ term occurrences we will interpret “reasonable”
to mean a) O(t?) time to build and preevaluate the network, b) query evaluation
time relatively independent of document network size and less than 10 seconds
for 90% of the queries when run on a typical micro-Vax or Sun network, and c)
storage overhead that is a small constant (¢ < 5) times the original collection

size.
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The results for Hypotheses 1 through 4 are reported here. Hypothesis 5 is

discussed in Chapter 9.

8.2 Estimating the probabilities

For the basic model we must provide two probability estimates: one estimate
characterizes the dependence of a query or information need upon the terms in the
collection (Section 8.2.1) and the second characterizes the dependence of individual
terms on their parent documents (Section 8.2.2).

In what follows, we attempt to discuss the individual components of these
estimates independently, but they are, in fact, dependent. As a result, conclusions
about the performance of one component cannot be based on a single experiment.
We will generally choose a baseline set of parameters and show the effect of varying
an additional parameter. Except where noted, results represent trends that hold
over a broad range of parameters, but actual performance changes will vary with
the baseline selected.

As a simple example, experiments (discussed in section 8.2.2.2) show that using
a non-zero estimate for the probability that a term should be assigned to a document
in which it does not occur (a default probability) consistently improves retrieval
performance. The amount of improvement depends on a number of factors in
addition to the estimate used for the default. As shown in Table 8.1, adding a
“reasonable” default estimate to a network in which no query weights are used
gives a very significant improvement (20.6%) in average precision. Adding the
same default estimate to a network in which #f.2df query weights are used produces
only a modest improvement (3.3% with most of the improvement occurring at

high recall levels). If we base our conclusion on a network with unweighted query
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Table 8.1: Effect of default estimate on retrieval performance

Precision (% change) — 50 queries
Unweighted query terms Weighted query terms

Recall | No default | With default || No default | With default
10 52.8 62.7 (+18.9) 67.3 67.2 (-0.1)

20 45.9 51.9 (+13.0) 55.2 56.1 (+1.7)

30 37.1 41.4 (+11.7) 47.2 479 (+1.4)

40 26.9 33.6 (+24.9) 38.8 39.3  (+1.2)

50 22.6 27.6 (+22.0) 33.0 329 (-0.4)

60 17.1 23.2 (+35.6) 26.1 278 (+6.6)

70 11.9 16.5 (+39.1) 19.1 21.4 (+11.8)

80 9.5 12.8 (+33.8) 15.4 17.3 (+12.2)

90 5.2 6.3 (+20.1) 10.4 11.9 (+14.1)

100 3.3 4.2 (+29.4) 8.2 9.6 (+16.5)
average 23.2 28.0 (+420.6) 32.1 33.1 (+3.3)

terms we would conclude that adding a default estimate improves performance
with a significance level of 0.001. If we base our conclusion on a network with
weighted query terms the significance level is only 0.031. We have attempted to use
representative baselines throughout and will point out results that are unusually
dependent on the choice of a baseline.

In order to reduce the number of tables we try to group related results in a
single table. Unfortunately, this means that some results for combined queries (i.e.,
natural language and Boolean) are presented before multiple query representations
are discussed (in Section 8.4). Given that the use of multiple query representations
has been discussed in Chapter 4, this ordering is preferred to presenting the same

baseline results in two separate tables.

8.2.1 Dependence of queries on the document network

As suggested in section 4.5, the procedures for estimating P(Q|t;) differ for Boolean

and probabilistic queries. Estimates for Boolean queries use product-form estimates
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which are largely determined by the model, while estimates for probabilistic queries
use weighted sums and are based on the results of previous information retrieval

research.

8.2.1.1 Probabilistic queries

A probabilistic query is based on a natural language description of an information
need. Words in the query that generally do not affect retrieval performance (stop
words) are removed and the remaining words are stemmed to remove common end-
ings in an attempt to reduce simple spelling variations to a single form. Documents
are then ranked using some function that combines the scores for each document
term that occurs in the set of query terms. A number of these combining functions
have been used (see [MKNT9] for a review), but the most common technique is
to simply add the individual term scores after some weighting function has been
applied. This weighting function is intended to increase the influence of terms that
are believed to be important on the final ranking. The weighted-sum link matrix
of section 4.5 implements precisely the desired function; we need only specify the
weights to be associated with query terms.

Two factors are commonly used in weighting the contribution of query terms
— the frequency of the term in the query (¢f) and the inverse document frequency
(idf) of the term in the collection. The basic ideas are that 1) a content-bearing
term that occurs frequently in the query is more likely to be important than one
that occurs infrequently, and 2) those terms that occur infrequently in the collection
are more likely to be important than frequent or common terms. The measure used

for within-query frequency is simply the raw frequency of the term in the query.
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The 2df used is a standard idf definition that has been normalized to produce a

value in the range [0..1]. The idf measure is given by

( collection size )
term frequency

idf = (8.1)

In(collection size)
Singly-occurring terms have an idf score of 1.0 and #df scores decrease as the
frequency of a term in the collection increases. From Zipf’s law we expect that
roughly half of the terms in the collection will occur only once and will have an

1df score of 1.0. Based on the information in Table 2.1, #df scores lie in the range

0.109 < 2df < 1.0 for both the CACM and CISI collections.

Table 8.2: Effect of query weighting on retrieval performance (CACM)

Precision (% change) — 50 queries

Recall | no weights | idf weights gf weights gf.idf weights
10| 632 | 626 (-10)| 677 (17.2)] 672 (+64)

20| 522 | 513 (-1.8)| 545 (4+4.4)| 562 (+7.7)

30 45.6 43.0 (—5.9)| 483 (+5.9)| 476 (+4.2)

40 35.9 34.7 (—3.3) | 414 (+15.2) | 41.3 (+14.8)

50 30.3 286 (—-5.7)| 35.6 (+17.3) | 34.4 (+13.6)

60| 242 | 247 (421)| 27.1 (+12.0) | 29.1 (+20.5)

70 16.9 16.8 (—0.4) | 19.4 (+15.3) | 20.3 (+20.6)

80 13.7 13.3 (—2.6) | 158 (+15.6) | 16.3 (+19.4)

90 7.8 82 (+3.9)| 10.8 (+37.4) | 11.3 (+44.4)

100 5.7 5.7 (+0.8) 8.3 (+47.3) 8.7 (+54.3)
average 29.6 289 (-2.3)| 329 (+411.3) | 33.3 (+12.5)

Table 8.2 shows the retrieval performance obtained with no query term weights,
query terms weighted by ¢df only, query terms weighted by within-query frequency
only, and query terms weighted by both factors. The weighting function used is
given by equation 4.10, essentially, each term score (belief) is multiplied by the
appropriate term weight and the sum is normalized by the maximum achievable

score given the term weights.
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The use of df weights alone decreases retrieval performance and the perfor-
mance loss is somewhat more pronounced in the high precision half of the ranking.
Within-query weights (¢f) and the combination of ¢f and idf weights both increase
retrieval performance (significance levels of 0.002 for both weightings). The com-
bined weighting shows somewhat higher average precision, but most of this gain
is at high recall levels and performance actually drops somewhat at high precision
levels. For these experiments, the ¢f.idf and ¢f weightings are not significantly
different. In general, the performance levels of ¢f and g¢f.idf weightings are quite
similar, and the choice of one over the other will depend on the function used for
P(t;|d;) and on the query types to be used. For many applications, the ¢f weighting
will be preferred since it is simpler and performs at least as well as gf.2df at high
precision. Unless otherwise noted, all results for probabilistic queries use either g¢f
or gf.idf weighting.

The relative performance of these four query term weightings is consistent across
a wide range of ranking functions, but the actual performance depends heavily on
the P(t;|d;) estimate used. The comparison Table 8.2 is relatively conservative
since it uses one of the best estimates developed for term belief as the baseline. As
suggested in Table 8.1, much more dramatic improvements could be demonstrated

if a less effective baseline was used.

8.2.1.2 Boolean queries

A Boolean query consists of an expression using the operators and, or, and not
with query terms as operands. Stopwords are removed from the queries, query
terms are stemmed as with probabilistic queries, and documents are ranked using

equations 4.1 through 4.9 to combine probabilities.
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For conventional Boolean queries, then, the retrieval model specifies how proba-
bilities are to be combined and no additional probabilities need be estimated. Since
it would be straightforward to add weights to terms in Boolean queries, a open
research issue is whether significant improvements can be obtained by weighting
Boolean query terms. While the Boolean queries available with the standard test
collections do not include term importance information, [CD90] suggests that useful
information about term importance can be readily obtained from users; this infor-
mation could be directly incorporated as weights for Boolean expression evaluation.

It 1s also possible that some form of idf weighting could be used to improve per-
formance of Boolean queries or that weighting strategies developed for conventional
Boolean systems [NKM77| could be adapted to the network model. An experiment
in which each intermediate and and or expression was weighted using an ¢df based

on the number of documents in the intermediate result did not improve performance.

8.2.2 Dependence of term belief on documents

The probability that a term accurately describes the content of a document can
be estimated in several ways, but previous information retrieval research has con-
sistently shown within-document frequency (#f) and inverse document frequency
(idf) to be useful components of such estimates [SB87]. In developing estimates
we concentrated on functions involving #f and idf; other functions are certainly
possible and could be used in the basic model. The #df measure used in term belief

estimates is that given in equation 8.1.

8.2.2.1 Estimating the {f component

Two different measures were used for within-document frequency in the experi-

ments. The first is the common normalized ¢f [SM83, van79] in which the tf score
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for term 7 in document j is given by

frequency of term ¢ in doc 3

i max frequency for any term in doc j

This measure gives a very broad range of values (0.037 < ntf < 1.0 for both
CACM and CISI). Intuitively, this range is too broad. A term that occurs once
in a document in which the maximum ¢f is 20 is probably not 1/20 as important
as the most frequently occurring term. The fact that a term occurs at all 1s a
significant event and the frequency of occurrence (> 1) is of secondary importance.

In order to test the effect of a non-linear #f estimate, a second function, given by

nltf: 1.0 + 111(f”)
1.0 + In(maxf;;)

was used. This function compresses the range of belief values slightly (0.233 <
nltf < 1.0) and increases belief more for small term frequencies than for term
frequencies near the maximum. Log normalization was not used for query term
weighting since the range of frequencies queries is quite small (a term rarely occurs
more than twice in a query).

Table 8.3 shows the performance of the two estimates in the same ranking
function for the CACM collection. For probabilistic queries, the log normalized
estimate i1s better at a significance level of 0.063. There is, however, very little
difference for Boolean queries (no difference for one set of queries, raw frequency
normalization better at a significance level of 0.500 for the other) or when query
forms are combined (raw-frequency normalization better at a significance level of
0.125).

When used with the CISI collection, the raw-frequency normalization produced
slightly better results for probabilistic and combined queries (significance level of

0.500 for both) and equivalent results for Boolean queries (Table 8.4). Given these
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Table 8.3: Raw-frequency versus log-frequency normalization with CACM

Precision (% change) — 50 queries

Probabilistic Boolean Combined
Recall | ntf nltf ntf nltf ntf nltf
10 | 65.8 | 67.6 (+2.7)| 64.8 | 64.8 (—0.1) | 743 | 76.5 (+3.0)
20 | 54.7 | 55.6 (+1.6) || 56.8 | 58.2 (+42.4) | 644 | 655 (+1.6)
30 | 45.9 | 46.0 (+0.2) || 49.2 | 48.7 (—1.0) | 56.6 | 55.4 (—2.1)
40 | 39.5| 39.1 (—1.0) || 44.0 | 443 (+0.8) | 49.8 | 48.6 (-2.5)
50 | 33.7| 33.4 (—0.9)| 383 | 376 (—1.7)| 44.8 | 423 (-5.5)
60 | 27.9 | 28.3 (+1.5) || 33.3| 322 (-3.3) | 37.8| 36.1 (—4.4)
70 | 19.8 | 21.1 (47.0) || 224 | 22.7 (+1.3) || 25.6 | 25.5 (—0.4)
80 | 16.0 | 17.5 (+9.3) || 178 | 176 (—1.3) | 214 | 21.1 (-1.4)
90 | 11.0 | 12.3 (+11.8) || 11.3 | 10.9 (—4.1) || 13.5 | 12.7 (-5.3)
100 8.6 9.9 (+14.7) 7.8 76 (—24)| 104 9.6 (—7.3)
average | 32.3 | 33.1 (+24) | 34.6| 345 (—0.3) | 39.9 | 39.3 (—1.3)

results, the simpler raw-frequency normalization should probably be preferred for

most applications, although either estimate works well and performance does appear

to be collection dependent, at least for probabilistic queries.

Experiments with

additional collections will be required to determine if one estimate is superior.

Given these basic forms for the ¢f and idf estimates, several experiments were

conducted to determine

1. what range of belief values for a term is appropriate given that a term occurs

in an instantiated document (P(¢;|d; = true)),

2. what range of belief values is appropriate given that a term does not occur in

an instantiated document (P(t;|d; = false)), and

3. how the {f and 2df components should be combined when forming the overall

estimate of term belief.

Strictly speaking, our use of P(¢;|d; = true) and P(t;|d; = false) here is a bit loose.

In the basic model, only one parent document is instantiated at a time so that any
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Table 8.4: Raw-frequency versus log-frequency normalization with CISI

Precision (% change) — 50 queries

Probabilistic Boolean Combined

Recall | ntf nltf ntf nltf ntf nltf
10| 38.2 | 356 (—6.8) | 45.0 | 454 (+0.8) || 44.7 | 424 (-5.2)
20 | 28.1 | 27.0 (—4.1) | 33.1| 329 (-0.5) | 346 | 343 (-0.9)
30 | 20.3 | 19.4 (—4.6)| 249 | 245 (-1.5)| 253 | 252 (-0.1)
40 | 17.0 | 17.0 (-0.3) || 20.7 | 20.2 (-2.1) | 20.3 | 20.5 (+0.9)
50 | 15.3 | 15.0 (—2.3) | 18.0| 17.8 (-1.2) || 17.9 | 175 (-2.3)
60 | 12.7 | 12.6 (—0.9) || 15.0 | 14.8 (—1.2) || 15.1 | 14.7 (-2.2)
70 | 11.1 | 11.0 (-1.0) || 12.6 | 12.7 (+0.9) || 12.5 | 12.8 (+42.5)
80| 88| 88 (—0.4) 94| 94 (+0.3) 9.5 9.5 (-0.7)
90 | 6.7 6.8 (+2.2) 6.9 7.0 (+1.5) 6.9 7.0 (+1.0)
100 | 45| 4.5 (40.8) 41| 43 (+4.1) 45| 4.6 (+2.9)
average | 16.3 | 15.8 (—3.2) || 19.0 | 18.9 (—0.3) || 19.1 | 18.8 (—1.4)

term has either exactly one instantiated parent or no instantiated parents. When

we write P(t;|d; = true) we really mean
P(t;|d; = true A all other parents=false).
When we write P(¢;|d; = false) we really mean
P(t;|all parents=false).

When no confusion will arise, we will use the shorthand notation. We will also
occasionally refer to P(t;|d; = true) as the belief in ¢; given that parent d; is true

and will refer to P(¢;|all parents=false) as the default belief for ¢;.

8.2.2.2 Establishing a range for P(t;|d; = true)

In the network model, the absence of any information for or against a proposition

1s represented by a belief of 0.5. Our initial hypothesis, then, was that estimates
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Table 8.5: Effect of varying belief threshold for probabilistic queries

Precision — 50 queries
Recall |a=03|a=04|a=05]|a=0.6
10 66.4 67.2 65.6 61.6
20 95.8 56.2 53.5 49.6
30 45.5 47.6 45.8 41.9
40 38.0 41.3 38.7 35.7
50 32.2 34.4 33.3 30.6
60 27.4 29.1 26.9 25.7
70 20.2 20.3 19.1 18.5
80 17.1 16.3 15.6 14.9
90 11.3 11.3 10.6 10.2
100 8.5 8.7 8.4 7.9
average 32.2 33.3 31.8 29.7

for P(t;|d; = true) should lie in the range 0.5 to 1.0 and estimates for the default
belief should lie in the range 0.0 to 0.5.

The retrieval performance for a typical belief function [SM83, van79] given by
P(t;|d; = true) = a + (1 — a) * nif* idf

where P(t;|d; = false) is fixed is shown in Table 8.5 for probabilistic queries and
in Table 8.6 for Boolean queries. Retrieval performance peaks for @ = 0.4 which
gives estimates for P(t;|d; = true) in the range 0.42 to 1.0, close to the predicted
range. For larger values of a the range of scores is compressed and performance
drops due to an increase in the number of tied documents. For smaller values of
a, performance drops off sharply as estimates for P(t;|d; = true) begin to interfere
with estimates for P(¢;|d; = false). The low end performance drop can be reduced
somewhat by lowering the estimate for P(¢;|d; = false), but this in turn lowers
overall performance.

These results are largely independent of the specific belief function used. While

overall retrieval performance varies between functions, most appear to peak when
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Table 8.6: Effect of varying belief threshold for Boolean queries

Precision — 50 queries
Recall |a=03|a=04|a=05]|a=0.6
10 68.3 67.6 67.0 65.5
20 58.8 58.8 57.4 56.0
30 49.7 50.2 49.1 48.5
40 45.4 45.2 43.5 43.0
50 39.9 39.8 38.5 37.4
60 33.3 33.6 33.2 32.6
70 21.8 22.0 21.2 20.8
80 16.5 18.1 17.5 17.3
90 10.5 11.4 11.2 11.0
100 7.7 7.9 7.6 7.6
average 35.2 35.4 34.6 34.0

the range of values for P(t;|d; = true) and P(¢;|d; = false) do not overlap and the

minimum value for P(t;|d; = true) is in the 0.4 to 0.5 range.

8.2.2.3 Default belief

Most probabilistic models form a document score by adding the scores for each
term in common with the query; missing terms are treated as if they had a score
of 0. In the inference network model, this amounts to asserting that the absence
of a term in a document (in most cases, in the abstract or title of the document)
implies certainty that the term should not be assigned to the document. Given the
small size of the title and abstract compared to the full document and the fact that
the query and document vocabularies are not identical, a less extreme estimate for
the probability that a term should be assigned given that it is not observed seems
more reasonable. This estimate should probably depend on the type of document
record in use — the absence of a term from the full text of a journal article should

be treated as stronger evidence than its absence from the abstract or title.
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Table 8.7: Performance with fixed default estimates (NL queries on CACM)

Precision (% change) — 50 queries
Recall | 0.0 0.1 0.2 0.3 0.4 0.5
10 | 64.9 | 66.0(+1.6) | 67.1(+3.4) | 67.8 (+4.5) | 69.6 (+7.3) | 62.0 (—4.5)
20 | 51.1 | 51.7(+1.4) | 54.1(+6.0) | 56.2(+10.1) | 58.7(4+14.9) | 50.3 (—1.6)
30 | 43.3 | 44.4(+2.5) | 46.1(+6.4) | 47.7(+10.1) | 48.8(+12.6) | 38.2(—11.7)
40 | 35.9 | 37.1(+3.3) | 38.6(+7.6) | 41.9(+16.8) | 42.4(+18.2) | 31.5(—12.1)
50 | 30.8 | 32.0(+4.2) | 33.3(+8.4) | 35.8(+16.3) | 34.2(+11.4) | 27.2(—11.7)
60 | 25.7 | 26.9(+4.7) | 27.4(+6.6) | 20.1(+13.2) | 28.8(+12.0) | 23.5 (—8.4)
70 | 18.5 | 19.2(+3.5) | 19.2(+3.7) | 21.0(+13.2) | 22.0(+19.0) | 19.0 (+2.5)
80 | 14.9 | 15.3(+3.1) | 15.8(+6.0) | 17.1(+14.9) | 18.5(+24.1) 154 (+3.6)
90 | 10.1 103(+2.7) 10.6(+5.0) 11 7(+16.6) 125(+23.9) 5 (—5.6)
100 | 7.9 | 8.1(+2.4) | 8.4(+59)| 9.3(+17.0) | 9.6(+21.4) | 8.0 (+1.2)
avg [30.3 | 3LI(12.7) |32.1(+5.8) | 33.8(+11.4) | 34.5(113.9) 285( 6.1)

Since the within-document frequency for all of these term-document pairs is
zero, we considered only estimates based on a term’s collection frequency (¢df ) and
hypothesized that the default belief should be proportional to the frequency of the
term in the collection (inversely proportional to idf). Essentially, this hypothesis
asserts that a common term is more likely to be a correct descriptor than a rare
term given that neither occurs in the document.

Table 8.7 shows retrieval performance for probabilistic queries when a fixed
default value is assigned to all terms (no idf weights). A higher default probability
reduces the effect of a missing term on a document’s ranking. It also compresses the
range of belief values for the query given documents in the collection. Performance
improves for default estimates up to about 0.3 or 0.4 and then falls off (again, this
point can be increased by modifying the estimate for P(¢;|d; = true), but this will
not improve overall performance). Performance for Boolean queries is similar.

Since values in the 0.3 to 0.4 range produced the best retrieval performance,

several default estimates of the form a — (8 * ¢df) were tried, where a ranged from
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Table 8.8: Use of idf in the default estimate (CACM collection)

Precision (% change) — 50 queries

Probabilistic Boolean Combined

Recall | fixed udf fixed udf fixed idf
10 | 69.6 | 67.7 (—2.8) | 70.0 | 69.0 (—14)| 776 | 76.2 (—1.8)
20 | 58.7 | 56.5 (—3.7)| 59.1| 59.3 (+40.3) | 65.1 | 66.3 (+1.8)
30 | 48.8 | 479 (—1.9)| 50.1 | 50.7 (41.1) || 55.0 | 56.3 (+2.3)
40 | 42.4 | 42.8 (—I—O 9) || 44.2 | 45.6 (+3.3) | 47.5| 50.9 (+7.3)
50 | 34.2 | 35.6 (+4.0)| 38.2| 39.8 (+4.3) | 41.2 | 45.4 (+10.1)
60 | 28.8 | 30.0 (+4.1)| 32.0| 33.6 (+5.1)| 36.1 | 38.8 (+7.3)
70 | 22.0 | 21.5 (—2.3) | 21.9 | 22.2 (+1.1) | 25.1 | 25.1 (-0.1)
80 | 185 | 17.7 (—4.3)| 175 | 175 (40.3) || 19.3 | 20.4 (+5.3)
90 | 125 | 12.2 (—-1.9)| 11.0| 11.4 (+44.0) | 11.8 12 4 (+45.1)
100 96| 9.5 (—1.5) 7.7 8.0 (+4.3) 8.2 2 (+11.1)
average | 34.5 | 34.1 (—1.1) | 35.2 | 35.7 (+1.6) || 38.7 40 1 (+3.6)

0.2 to 0.5 and B ranged from 0.2 to 0.4 (estimates for P(t;|d; = true) were adjusted
as necessary to avoid overlapping ranges). Table 8.8 shows the performance of a
representative function with the CACM collection.

For probabilistic queries the :df default weighting does not improve performance
when compared to the fixed default. For probabilistic queries in the CISI collection,
however, the idf weighting improved performance somewhat (significance level of
0.250). For Boolean queries on both collections the idf weighting improves perfor-
mance somewhat. For combined queries the df weighting improves performance
significantly for CACM (significance level of 0.016) and has little effect with the
CISI collection. Given these mixed results, no conclusion can be drawn about the
superiority of fixed versus idf-weighted defaults. Both estimates work well, but
experiments with additional test collections will be required to determine if one
estimate is better. Using the best default estimate for each query type (i.e., for
CACM use a fixed default for the probabilistic and an zdf-weighted default for the

Boolean query) does not improve the performance of the combined queries.
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Since a default estimate that is inversely proportional to a term’s zdf did
not consistently improve performance, estimates in which the default is directly
proportional to zdf were examined. With this interpretation, the absence of a
common term is stronger evidence that the term should not be assigned to the
document than the absence of a rare term. These estimates performed significantly
worse than either the fixed or the original idf-weighted estimates.

While there is little reason to prefer fixed or idf-weighted defaults, the important
results here are 1) a non-zero default gives significantly better performance for both
collections, and 2) weighted estimates that are inversely proportional to idf work

better than those that are directly proportional.

8.2.2.4 Combining the {f and idf estimates

A large number of functions for combining the #f and idf estimates were tested.

These functions have the general form
P(t;|d; = true) = a+ B tf + v *xidf + & * tf * idf

where 0.4 < a < 0.6 and 3, v, and § were chosen to produce a probability in the
range [0..1]. The best performance is generally achieved when 8 = v = 0.0 and
only the tf.2df product term remains. In a final set of experiments, changes to the
relative weight of the ¢f and idf components of this product term were tested, but
changing weights did not significantly improve performance.

Several ranking functions were developed during these experiments that perform
well when compared to conventional retrieval models. The performance of many of

the best functions is quite similar, but a good overall belief estimate is given by

P(t;|d; = true) = 0.4+ 0.6 x tf x idf (8.2)
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Table 8.9: Comparison of probabilistic and network model performance

Precision (% change) — 50 queries
CACM CISI

Recall | Probabilistic Network Probabilistic Network
10 60.2 67.2 (+11.7) 34.8 37.3 (+47.0)
20 48.3 56.2 (+16.4) 26.3 29.1 (+10.6)
30 41.0 47.6 (+16.0) 20.4 215 (+5.5)
40 30.9 41.3 (+33.6) 17.0 18.4 (+8.3)
50 26.5 34.4 (+30.2) 15.0 15.9 (+5.8)
60 21.6 29.1 (+34.8) 13.2 13.5 (+2.2)
70 15.0 20.3 (+35.5) 10.7 11 6 (—|-8 3)
80 11.7 16.3 (+39.1) 9.3 2 (-1.7)
90 6.4 11 3 (476.1) 74 7 1 (—4.8)
100 44 7 (4+99.8) 5.5 8 (—14. 0)
average 26.6 33 3 (+25.0) 16.0 16 8 (+5.3)

P(t;|all parents false) = 0.4.

Variations that work about as well use log normalization for the {f component or
an idf-weighted default (e.g., P(¢;|all parents false) = 0.4 — (0.2 * idf)).

While this estimate works well for both collections and for all query types, it is
probably not the best that can be achieved. Our objective in these experiments was
to gain a better understanding of the major factors that influence the performance
of the retrieval model and how traditional information retrieval weightings could be
implemented in the inference network model. Further research can certainly improve
these estimates, but it is difficult to estimate how much additional performance can

gained.
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8.3 Baseline results

Given the strategies for estimating belief at nodes in the network, we now wish to
compare the performance of the network model with that of conventional proba-

bilistic (Section 8.3.1) and Boolean (Section 8.3.2) models.

8.3.1 Probabilistic retrieval

It is possible to build inference networks that are equivalent to conventional prob-
abilistic systems if exactly the same indexing strategies are used. In practice,
minor variations in the way documents are parsed and indexed will result in small
performance differences even when the network form implements a ranking function
that is equivalent to that used in the probabilistic system. Using the estimates
of the last section, however, it is possible to build networks that perform better
than conventional probabilistic models. Table 8.9 shows retrieval performance
of the network model compared to a baseline probabilistic model that uses tf.idf
weighting. Performance improves 25.0% for the CACM collection and 5.3% for
CISI. The performance of the network model is better than the probabilistic model
at a significance level of 0.001 for CACM and 0.062 for CISI.

These results lead us to accept a strengthened version of Hypothesis 1:

Given equivalent document representations, query forms, and assumptions
about the match between indexing and query vocabularies, the inference net-
work model will improve performance significantly when compared to conven-

tional probabilistic retrieval.
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Table 8.10: Comparison of Boolean and network models on CACM

Precision (% change) — 50 queries

Recall | Boolean BL1 BL2
10| 462 | 67.6 (+46.3) | 66.2 (+43.1)
20 39.3 58.8 (+49.9) | 55.5 (+41.5)
30| 321 | 50.2 (+56.3) | 46.9 (+46.3)
40| 261 | 452 (+72.8) | 41.4 (+58.2)
50 23.6 39.8 (+68.3) | 35.4 (+49.8)
60| 21.3 | 33.6 (+57.7) | 29.5 (+38.7)
70| 137 | 22.0 (+60.0) | 22.5 (+63.9)
80| 105 | 18.1 (+72.8) | 17.8 (4+70.3)
9| 69 11 4 (+65.1) 11 0 (+58.8)
00| 5.0 9 (+58.9) | 8.8 (+75.8)
average 22.5 35 4 (+57.7) 33 5 (+49.1)

The demonstrated performance improvements can be attributed primarily to the
use of a default probability. Probabilistic models could be formulated to use the

same default strategy and to achieve similar improvements.

8.3.2 Boolean retrieval

Establishing a reasonable baseline for Boolean queries is problematic since conven-
tional Boolean retrieval does not rank documents. In order to simulate Boolean
queries, we built inference networks with binary belief estimates for P(t;|d;) and
used the normal network evaluation procedures. This effectively assigns all docu-
ments that satisfy the query a belief of 1.0, all those that do not a belief of 0.0, and
breaks ties by sorting on document identifier which places newer documents higher

in the ranking. Tables 8.10 and 8.11 compare performance of the network model

with conventional Boolean retrieval. Performance improves by 57.7% (BL1) and

49.1% (BL2) for CACM and by 65.3% for CISI. The performance of the network

133



Table 8.11: Comparison of Boolean and network models on CISI

Precision (% change) — 35 queries
Recall | Boolean Network
10| 237 | 453  (+9L3)
20 20.9 32.8 ( )
30| 146 | 246  (+68.5)
40| 131 | 205  (+56.2)
50 12.1 17.9 ( )
60 9.2 15.0 (+62.8)
( )
( )
( )
( )
( )

70 6.9 12.7

80 5.6 9.5

90 4.9 7.1

100 3.8 4.3
average 11.5 19.0

Table 8.12: Average precision for p-norm and inference network Booleans

Average Precision — 3 recall points
Best Network
p-norm Boolean
CACM | 33.1 (p=2) | 38.1 (+15.1%)-BL1
35.6 (+7.8%)-BL2
CISI 18.4 (p=1) 19.2 (+4.3%)

model is better than the Boolean model at a significance level of 0.001 for both
CACM query sets and 0.001 for CISI.

Our results are compared with those reported for the Extended Boolean or
p-norm model of Salton, Fox, and Wu [SFW83] in Table 8.12. For this comparison
we use average precision at three recall levels (25%, 50%, and 75%) rather than
our customary ten levels in order to permit comparison with the published results.
Note that for the CACM collection, Salton, Fox, and Wu include two queries (author

searches) that are not used in our experiments.
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Table 8.13: Comparison of probabilistic and Boolean searches

Precision (% change)
CACM CISI
Recall | prob. BL1 BL2 prob. Boolean
10 | 67.2 | 67.6 (+0.6) | 66.2 (—1.6) | 38.3 | 45.3 (+18.3)
20 | 56.2 | 58.8 (+4.7) | 55.5 (—1.2) | 27.9 | 32.8 (+17.3)
30 | 47.6 | 50.2 (+5.5) | 46.9 (—1.3) || 20.0 | 24.6 (+23.3)
40 | 41.3 | 45.2 (+9.4) | 414 (40.2) || 17.5 | 20.5( )
50 | 344 | 39.8(+15.5) | 35.4 (+2.8) | 15.5 | 17.9 (+15.3)
60 | 29.1 | 33.6 (+15.2) | 29.5 (+1.4) | 12.9 | 15.0 (+16.1)
( )
)
)
3)
)

+17.4

70 | 20.3 | 22.0 (+8.1) | 22.5(+10.8) || 11.2 127 +13.7
80 | 16.3 | 18.1 (+10.7) | 17.8 H@O) 9.0 5 (+4.7
90 | 11.3 114 (+06) 110 (-3.3) | 7.0 71 (+17
100 | 8.7 9 (-9

4) 8 ( 4.7 3 (-8
average | 33.3 354 (—|—66) 335(

2)
7) || 16.4 190(+157

+0.
+0.

For both CACM and CISI, the network evaluation of the Boolean queries is
better than the best p-norm evaluation. For CACM, average precision for network
Booleans is 15.1% better than for the p-norm model for one set of Boolean queries
and 7.8% better for the other set. Note that these results should be interpreted
cautiously since the details of the precision/recall computation for the published
p-norm results are not known.

Salton, Fox and Wu report that the best p-norm interpretation of the Boolean
queries outperforms cosine-correlation searches for both CACM and CISI. Our
results also show that the Boolean interpretation consistently outperforms the prob-
abilistic (see Table 8.13). This result clearly depends on the quality of the Boolean
queries that were generated from the original natural language versions. It would
be easy to build Boolean queries that perform poorly and one would expect perfor-
mance to improve if domain knowledge was used to expand the set of query terms.
The Boolean queries in the test set, however, do not add new terms or domain

knowledge. Performance improvements appear to arise because the Boolean queries
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capture structural information in the queries (phrase structure, compound nominals,
and negation) that is not exploited in probabilistic queries. The potential for
encoding linguistic structure in Boolean or Boolean-like expressions is an important

area for future research.

8.3.3 Phrase-structured Booleans

Since the Booleans appear to capture linguistic structure in the original natural
language query, a new set of Boolean queries was built using data collected in
an earlier experiment in which important word pairs in the CACM queries were
manually identified. The individual terms in these pairs were combined using and
and the pairs were combined using a Boolean or in one set of experiments and a
probabilistic sum operator in a second. These new queries represent an attempt to
retrieve documents containing the significant phrases in the original queries rather
than the individual terms. The documents retrieved by these queries are a subset
of those retrieved by the original natural language queries since no new terms are
introduced.

The performance of these word-pair queries when compared to the original
natural language queries is shown in Table 8.14. With both the or and sum
combinations, performance is significantly worse. Performance of the word-pair
queries is also significantly worse than the original Boolean queries (Table 8.15).
It is clear that the manually constructed Boolean queries are capturing important
linguistic information that the word-pair queries are not.

When the word-pair queries are combined with the natural language version
(Table 8.16), the or combination degrades performance slightly while the sum
combination improves performance somewhat (significance level of 0.344). In both

cases, performance at high recall levels is poor, while performance at high precision
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Table 8.14: Word pair versus NL queries

Precision (% change) — 50 queries
Recall | NL or sum
10 | 67.2 | 63.9 (—5.0) | 649 (—3.4)
20 | 56.2 | 54.6 (—2.8) | 56.0 (—0.4)
30 | 47.6 | 47.8 (+40.6) | 48.2 (+1.3)
40 | 41.3 | 38.0 (—7.9)| 38.5 (—6.7)
50 | 344 | 329 (—4.4)| 33.3 (-3.2)
60 | 29.1 | 25.7 (—11.9) | 26.1 (—10.3)
70 | 20.3 | 17.5 (—13.7) | 17.5 (—13.8)
80 | 16.3 | 13.6 (—17.0) 13 4 (—18.1)
90 | 11.3 | 8.4 (-25.6)| 8.4 (-26.1)
100 | 8.7 | b5.8(-33.1) 8 (—33.1)
average | 33.3 | 30.8 (-7.3) 31 2 (—6.1)

Table 8.15: Word pair versus Boolean queries

Precision (% change) — 50 queries
Recall | Boolean or sum
10 67.6 63.9 (—5.5) | 64.9 (—4.0
20 58.8 54.6 (—7.2)| 56.0 (—4.9
30 50.2 478 (—4.6) | 48.2 (—3.9
40 45.2 38.0 (—15.8) | 38.5 (—14.7
50 39.8 32.9 (—17.2) | 33.3 (—16.2
60 | 33.6 | 25.7 (—23.5) | 26.1 (—22.1
70| 220 | 17.5(-20.2) | 17.5 (~20.3
80| 181 | 13.6 (~25.0) 13 4 (~26.0
90 | 114 | 84 (-26.0)| 8.4 (—26.5
00| 7.9 | 58(-261)| 5.8 (-26.1
average 35.4 30.8 (—13.0) 31 2 (—11.9
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Table 8.16: Word-pair combined with NL queries

Precision (% change) — 50 queries
Recall | NL or sum
10 | 67.2 | 66.9 ( )| 689 (+2.4
20 | 56.2 | 57.4 ( )| 59.4 (+5.8
30 | 47.6 | 51.3 ( )| 52.4 (+10.2
40 | 41.3 | 41.6 (+0.9) | 43.9 (+6.3
50 | 34.4 | 354 (+2.9)]| 36.6 (+6.2
60 | 29.1 | 27.9 (—4.2) | 28.1
(—4.6)
(—8.3)
)
)
)

(
(=3
70 | 20.3 | 194 19.9 (-2
80 | 16.3 | 15.0 16.3 (-0

90 | 11.3| 9.4 (-17.

100 | 8.7 | 6.8 (—21.
average | 33.3 | 33.1 (—O0.

101( 112
3 (—16.4
343 (+3.1

)
)
)
)
)
4)
.0)
.0)
)
)
)

levels is relatively good, especially for the sum combination. Part of the reason
for the performance differential stems from the fact that the word-pair queries
rank highly only those documents that have at least two terms in common with
the query. As a result, they tend to rank poorly at the high recall levels where
documents typically have only one or two terms in common with the query. These
results suggest that it may be possible to improve performance by modifying scores
only for documents that are highly ranked by word-pair queries.

The queries used in Tables 8.14 through 8.16 contain only word pairs. Since the
phrase model discussed in Chapter 7 suggests that the queries should also contain
significant single terms from the original queries a new set of queries were created
that contained these single terms plus content-bearing terms that occurred in the
word pairs. In order to reduce the chance for bias, the choice of content-bearing
terms was not made by the author.

These augmented queries were intended to simulate the performance that could

be achieved if a user marked important phrases (word pairs) and terms in the orig-

138



Table 8.17: Word-pair versus phrase-structured Booleans

Precision (% change) — 50 queries
or sum
Recall | word-pair | phrase-structured || word-pair | phrase-structured
10 63.9 68.8 (+7.7) 64.9 70.9 (+9.1)
20 54.6 60.9 (+11.6) 56.0 62.7 (+12.0)
30 47.8 49.4 (+3.2) 48.2 52.4 (+8.6)
40 38.0 40.6 (+6.6) 38.5 43.1 (+11.8)
50 32.9 34.5 (+4.8) 33.3 354 (+6.1)
60 25.7 29.2  (+13.9) 26.1 29.1  (+11.4)
70 17.5 21.0 (+19.6) 17.5 224 (+27.9)
80 13.6 175 (+29.0) 13.4 185 (+38.1)
90 8.4 12.2  (+44.1) 8.4 129 (+54.2)
100 5.8 8.4 (+43.3) 5.8 9.3  (+59.9)
average 30.8 342  (+11.0) 31.2 35.7 (+14.2)
Table 8.18: Phrase-structured versus NL and Boolean queries
Precision (% change) — 50 queries
Recall | NL BL1 BL2 phrase-structured
10 | 67.2 | 67.6 (+0.6) | 66.2 (—1.6) | 70.9 (+5.4)
20 | 56.2 | 58.8 (+4.7) | 55.5 (—1.2) | 62.7 (+11.6)
30 | 47.6 | 50.2 (+5.5) | 46.9 (—1.3) | 524 (+10.1)
40 | 41.3 | 45.2 (4+9.4) | 414 (+0. 2) 43.1 (+4.4)
50 | 34.4 | 39.8 (+15.5) | 35.4 (+2.8) | 35.4 (+2.7)
60 | 29.1 | 33.6 (+15.2) | 29.5 (+1.4) | 29.1 (—0.1)
70 | 20.3 | 22.0 (+8.1) | 22.5 (+10.8) | 224 (+10.3)
80 | 16.3 | 18.1 (+10.7) | 17.8 (—|—9 0) | 185 (+13.1)
90 | 11.3 11 4 (—I—O 6) 11 0 (—3.3) | 129 (+14.0)
100 | 8.7 9 (-9.4) 8 (+0. 2) 9.3 (+7.0)
average | 33.3 35 4 (+6. 6) 33 5 (+0.7) | 35.7 (+7.2)

139




inal queries and this information was used to automatically build a Boolean query
that incorporates phrase structure. Table 8.17 shows that these phrase-structured
Boolean queries perform significantly better than the original word-pair Booleans
and, in fact, perform significantly better than the original natural language queries
(Table 8.18) and better than the Boolean queries (Table 8.18 uses the sum operator
to combine phrases and terms). However, as will be discussed in the next section,
when the phrase-structured queries are combined with the natural language queries
they do not improve performance as much as do the Boolean queries provided with
the test set.

These results are encouraging since they show

1. that phrase information can be used to significantly improve performance of a

natural language query, and

2. that it should be possible to automatically generate a Boolean query repre-
sentation based on information about phrase structure and term importance

provided by the user.

8.4 Multiple query representations

In order to test Hypothesis 3:

The use of multiple query formulations and search strategies will significantly

improve retrieval performance when compared to baseline probabilistic searches,

inference networks were built to evaluate both probabilistic and Boolean versions
of the query and to combine the results using a weighted-sum matrix. Table 8.19

shows the effect of combining probabilistic and Boolean queries with CACM and
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Table 8.19: Performance of combined queries on CACM

Precision (% change from probabilistic)

Recall | Probabilistic | BL1 Combined BL2 Combined
10 67.2 67.6 | 76.2 (+13.3) || 66.2 | 71.9 (+6.9)
20 56.2 58.8 | 66.3 (+17.9) || 55.5 | 60.0 (+6.8)
30 47.6 50.2 | 56.3 (+18.3) || 46.9 | 51.8 (+8.9)
40 41.3 45.2 | 50.9 (+23.4) || 41.4 | 443 (+47.3)
50 34.4 39.8 | 45.4 (+31.6) | 35.4 | 38.7 (+12.4)
60 29.1 33.6 | 38.8 (+33.1) || 29.5 | 32.4 (+11.1)
70 20.3 22.0 | 25.1 (+23.5) || 22.5 | 23.6 (+16.0)
80 16.3 18.1 | 20.4 (+24.8) || 17.8 | 18.9 (+16.0)
90 11.3 114 | 124 (49.1) || 11.0 | 11.7 (+3.7)
100 8.7 7.9 9.2 (+4.8) 8.8 9.2 (+5.5)

average 33.3 35.4 | 40.1 (+20.5) || 33.5| 36.3 (+9.0)

Table 8.20: Performance of combined queries on CISI

Precision (% change) — 35 queries

Recall | Probabilistic Boolean Combined
10 38.3 45.3 (+18.3) | 44.7 (+16.7)
20 279 32.8 (+17.3) | 36.1 (+29.2)
30 20.0 24.6 (+23.3) | 25.0 (+25.0)
40 17.5 20.5 (+17.4) | 20.3 (+16.2)
50 15.5 17.9 (+15.3) | 18.0 (+16.2)
60 12.9 15.0 (+16.1) | 15.2 (4+17.1)
70 11.2 12 7 (+13.7) 12 8 (+14.3)
80 9.0 5 (+4.7) 5 (+5.3)
90 7.0 7 1 (—I—l 7) (—I—O 7)
100 4.7 3 (-8.3) 6 (—2.5)
average 16.4 19 0 (+15.7) 19 3 (+17. 8)
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Table 8.20 shows performance for CISI. Combining queries increased performance by
20.5% (BL1) and 9.0% (BL2) for the CACM collection and by 17.8% for CISI. The
combined performance is better than for probabilistic queries at significance levels
of 0.002 for both CACM query sets and 0.004 for CISI. The combined performance
is better than for Boolean queries at significance levels of 0.001 and 0.002 for
CACM but only 0.250 for CISI. These results lead us to accept Hypothesis 3. The
performance improvement due to combining queries is one of the most consistent
improvements observed in this research; for any reasonable document network,
combining probabilistic and Boolean queries gives significant performance improve-
ments.

We originally thought that at least part of the performance improvements
arose because the two query types were retrieving different relevant documents
so that the combined set contained more relevant documents than retrieved by the
separate queries. This is not, however, the case. The documents retrieved by the
Boolean queries are a subset of those retrieved by the corresponding probabilistic
query. The individuals preparing the Boolean queries rarely added new terms to
the query (for CACM, 4 out of 50 queries in each Boolean set contained new terms)
and these new terms retrieved no new relevant documents. It appears that the
objective in creating the Boolean queries was to capture the structural information
present in the natural language versions, not to produce the best possible Boolean
queries. If trained searchers were asked to produce high-recall Boolean queries
from the natural language descriptions, they would generally use their knowledge
of the subject domain and indexing practice to expand the set of terms to include
synonyms and related terms. It is likely that these enhanced searches would retrieve
relevant documents not found by the probabilistic query and that these queries

would perform better than those provided with the test collection.
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Table 8.21: NL plus original and phrase-structured Booleans

Precision (% change) — 50 queries

Recall | NL BL1 NL | phrase-structure

10 | 67.2 | 76.2 (+13.3) || 67.2 | 73.0 (+8.6)
20 | 56.2 | 66.3 (+17.9) || 56.2 | 61.9 ( )
30 | 47.6 | 56.3 (+18.3) || 47.6 | 54.5 ( )
40 | 41.3 | 50.9 (+23.4) || 41.3 | 46.6 ( )
50 | 34.4| 45.4 (+31.6) || 344 | 39.0 ( )
60 | 29.1 | 38.8 (+33.1) || 29.1 | 32.1 ( )
70 | 20.3 | 25.1 (+23.5) | 20.3 | 23.2 (+14.2)
( ) ( )
) ( )
) ( )
) ( )

80 | 16.3 | 20.4 (+24.8 16.3 | 18.9
90 | 11.3| 124 (491 11.3 | 13.2
100 8.7 9.2 (+4.38 8.7 9.8
average | 33.3 | 40.1 (+20.5) || 33.3 | 37.2

The observed performance improvement, then, is due entirely to the fact that
the normalized sum of the beliefs produces a better ranking than the rankings
produced by the probabilistic or Boolean queries alone.

When first analyzing these results we were somewhat surprised to find that a
set of belief estimates that improves the performance of both the probabilistic and
Boolean queries need not improve their combined performance. To see why this
is possible, assume that we have rankings for Boolean and probabilistic queries,
the probabilistic ranking is very good, the Boolean ranking is weak, and that the
probabilities in the probabilistic ranking are large when compared to the Boolean
ranking. When the rankings are combined, the probabilistic beliefs will dominate
the combined ranking and produce a good result. If we now adopt an estimate that
produces similar (or slightly improved) rankings for both queries, but increases the
beliefs in the weak Boolean ranking while reducing the beliefs in the probabilistic

ranking, the combined ranking will be degraded.
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Experiments reported in the last section showed that phrase-structured Booleans
performed better than the Boolean queries supplied with the CACM collection.
When the two Boolean forms are combined with the natural language query, how-
ever, the phrase-structured Booleans do not improve performance as much as the
original Booleans (Table 8.21). It appears that the evidence provided by the
phrase-structured queries is similar to that provided by the natural language queries;
the original Booleans are capturing additional linguistic information.

To determine the degree to which the natural language and Boolean rank-
ings agreed for the CACM test queries, correlation coeflicients (Pearson product-
moment) were computed for the rankings produced by each query. The rankings
agreed reasonably well (no negative coeflicients), ranging from 0.286 to 1.0 for
BL1 and from 0.282 to 1.0 for BL2 with mean rank coefficients of 0.731 and
0.735, respectively (using the belief estimates of equation 8.2). Unfortunately, the
correlation coefficient does not appear to be a good predictor of the performance of
the combined ranking; identical rankings can both be wrong, and dissimilar rankings
can be combined to produce a good result.

Attempts to weight the query types either by scaling beliefs to a similar range
or assigning fixed weights to the query types did not improve performance. It is
likely, however, that information about the relative quality of the queries (e.g., user
judgements) could be used to weight the contribution of each query and to improve
performance. In the next section we will present results which show that query
weighting can be useful when adding evidence that is known to be weak.

The actual belief values produced by the two query types are quite variable
and it 1s difficult to predict whether one ranking will dominate the combined result.
Probabilistic beliefs tend to be more uniformly distributed between a minimum that

is either fixed (fixed default belief) or determined by the number of query terms
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(idf -weighted default) and a maximum determined by the number of terms and
the term weights. Boolean belief values depend heavily on the structure of the
Boolean expression. In practice, and-structured queries generally rank a relatively
small number of documents highly after which belief values drop off rapidly. Or-
structured queries tend to produce a more uniform distribution of beliefs.

Croft and Thompson [CT84] found that different query representations or strate-
gies worked better for some queries than others and that it was difficult to predict
which strategy would work best with a given query. In their work they tried to
select a query evaluation strategy based on different query features (query length,
sum and average of idf weights), but found that these features did not predict which
strategy would work well. One of the strengths of the network model is that it is not
necessary to predict which query representation will perform well. Given reasonable
query representations, the combined performance is better than that achieved by

either representation separately.

8.5 Multiple document representations

In addition to the normal bibliographic fields, the CACM collection includes author
assigned Computing Reviews (CR) categories for roughly half of the articles (CR
categories were not used before 1968). The set of Computing Review categories
used evolved during the period covered by the collection, but the changes affected
a relatively small number of categories (see [Lew89] for detailed description of the
use of Computing Reviews categories in CACM). The CR categories represent an

additional document representation that can be used to test
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Table 8.22: Performance of CR category searches

Precision — 50 queries

Recall | NL Boolean
10 | 10.9 10.9
20 7.3 74
30 5.0 5.2
40 4.1 4.2
50 3.6 3.6
60 2.6 2.6
70 1.6 1.6
80 1.4 1.4
90 1.1 1.1
100 0.9 0.9
average 3.9 3.9

Hypothesis 2 — The use of multiple document representations will significantly
improve retrieval performance when compared to equivalent networks without

the additional representations.

The CACM queries do not contain CR categories. As an initial test, the author
manually assigned Computing Reviews categories to each query. This approach
represents a reasonable upper bound for performance with CR categories since it is
unlikely that a significantly better assignment could be made automatically. These
categories were then used in two experiments: one in which the CR categories
were treated as terms in a natural language query (i.e., given normal tf.idf weights
and combined using weighted-sum) and a second in which the CR categories were
treated as terms in a Boolean or query. The results for both experiments, shown
in Table 8.22, are poor. CR categories, by themselves, are not an effective retrieval
tool for the CACM collection.

Although CR categories do not work well by themselves, they may still represent

an additional form of evidence that can improve the performance of a natural
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Table 8.23: Performance of CR categories added to natural language query

Precision (% change) — 50 queries

Recall | NL new terms sep. query
10 | 67.2 | 664 (—13) | 39.2 (—4L.7)
20 | 56.2 | 53.3 (—5.1) | 30.9 (—44.9)
30 | 47.6 | 47.7 (+40.3) | 27.3 (—42.7)
40 | 41.3 | 38.5 (-6.8) | 21.8 (—47.3)
50 | 34.4| 33.4 (—3.0) | 18.5 (—46.4)
60 | 29.1 | 27.1 (—7.0) | 15.5 (—46.8)
70 | 20.3 | 20.0 (—1.8) | 12.8 (—37.1)
80 | 16.3 | 16.1 (—1.6) 10 0 (—38.9)
90 | 11.3 | 11.1 (-2.0)| 6.4 (—43.2)
100 | 87| 86 (—21) 9 (—55.7)
average | 33.3 | 32.2 (-3.2) 18 6 (—44.0)

language query. Table 8.23 shows performance when CR categories are added as
terms to the original query and when they are added as a separate natural language
query.

The addition of the CR categories as new terms to the natural language query
degrades performance slightly. Adding CR categories as a separate Boolean query
significantly degrades performance. Since the CR categories were assigned to queries
by a domain expert, these results are not encouraging.

Since earlier work by Fox [Fox83b] suggested that CR categories could improve
performance when treated as relatively weak evidence when compared to the natural
language query, we ran a series of experiments in which the CR categories were
added as a separate query with reduced weight. The best performance was achieved
when the CR categories were scaled by a factor of 0.15 (Table 8.24). Reducing the
evidential weight of the CR categories does improve their performance significantly,
but when combined with the natural language query, they improve performance

only slightly.
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Table 8.24: Effect of reducing the weight of CR categories

Precision (% change) — 50 queries
Recall | NL | unweighted weighted

10 | 67.2 | 39.2 (—41.7) | 69.7 (+3.7)

20 | 56.2 | 30.9 (—44.9) | 56.0 ( )

30 | 47.6 | 27.3 (—42.7) | 48.5 ( )

40 | 41.3 | 21.8 (~47.3) | 40.7 (-1.5)

50 | 34.4 | 18.5 (—46.4) | 34.8 ( )

60 | 29.1 | 15.5 (—46.8) | 29.4 (+0.8)

) (+5.7)

) (+4.5)

) (+1.6)

) (+0.7)

) (+1.6)

70 | 20.3 | 12.8 (—37.1) | 21.5
80 | 16.3 10 0(—38.9) | 17.1
90 | 11.3 43.2) | 11.5

8.8
33.8

4 (-
100 | 8.7 9 (—55.7
average | 33.3 18 6 (—44.0

To check these results, a second set of CR category assignments was done by
another researcher who was quite familiar with the CR categories and their use in
the CACM collection. For this assignment, two sets of CR categories were assigned
to each query, a primary set which described the main subject area of the query, and
a secondary set which included other related CR categories. This was a carefully
prepared set with an average of 6.7 CR categories assigned to each query (2.3 of
which were primary); the original assignment contained only 2.4 CR categories
per query. Performance when this set is added as new query terms is shown in
Table 8.25.

When the full set of assigned CR categories is used, performance degrades
with the worst performance loss at high precision levels. Using only the primary
categories, however, improves performance (significance level of 0.008). When
the CR categories are added as a separate scaled query (Table 8.26) performance

improves further (significance level of 0.008).
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Table 8.25: Expert-assigned CR categories as new terms

Precision (% change) — 50 queries

Recall | NL all CR cat. | primary cat.
10| 67.2 | 624 (—7.2) | 651 (-3.2)

20 | 56.2 | 52.7 (—6.2) | 55.8 (—0.8)

30 | 47.6 | 46.4 (—2.5) | 50.0 (+5.1)

40 | 41.3 | 39.2 (-5.1) | 434 (+5.1)

50 | 34.4 | 34.7 (+40.7) | 38.2 (+11.0)

60 | 29.1 | 26.9 (—7.5)| 30.0 (+3.1)

70 | 20.3 | 20.7 (+1.7)| 22.0 (+8.3)

80 | 16.3 | 16.6 (+1.5) | 17.5 (+7.2)

90 | 11.3 | 11.9 (+5.4) | 13.3 (+17.0)

100 | 8.7 | 88 (+1.1)| 10.0 (+14.2)
average | 33.3 | 32.0 (—3.7) | 34.5 (+3.8)

A recent study by Crouch, Crouch, and Nareddy [CCN90] found that CR cate-
gories could be used to improve performance on the CACM collection by assigning
to the query those categories assigned to documents that were ranked highly by the
natural language query. The essential idea is to use the initial query to identify a
set of potentially relevant documents and to use the CR categories assigned to these
documents as an additional query representation. This approach has the significant
advantage that CR categories can be assigned automatically. To simulate their
approach we evaluated each query, then added the CR categories assigned to the
top ten documents as a separate query (scaled by 0.15).

Table 8.27 shows results when all CR categories from the top ten documents are
added to the natural language query and when only those CR categories assigned
to more than one of the top ten documents are added. Using all CR categories
assigned to the top ten documents results in an average of 18.0 CR categories per
query. Using only those CR categories assigned to more than one document, 4.7 CR

categories are assigned to each query. In both cases, the automatically assigned CR
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Table 8.26: Expert-assigned CR categories as separate query

Precision (% change) — 50 queries
Recall | NL all CR cat. | primary cat.
10 | 67.2 | 70.1 (+4.2) | 71.1 (+5.7)

20 | 56.2 | 57.9 (+42.9) | 594 (+5.8)

30 | 47.6 | 50.2 (+5.6) | 52.5 (+10.3)

40 | 41.3 | 428 (+3.6) | 44.3 (+7.3)

50 | 34.4| 37.2 (+7.8) | 38.4 (+11.5)

60 | 29.1 | 29.4 (+40.9) | 29.3 (+0.7)
(+6.0) )

(+7.6) )

(+9.1) )

(£7.5) )

(+4.7) )

70 | 203 | 21.6 (+6.0) | 22.1

80 | 163 | 17.6 (47.6

90 | 11.3 | 124 (+9.1

100 | 87| 94 (+7.5
average | 33.3 | 34.8 (+4.7

(
17.1
12.3 (+8.2
9.0 (
35.6 (

categories perform about as well as the best manual assignment, but when added
to the natural language query no significant improvement is achieved (this result is
sensitive to the weighting scheme used in the network — for some weightings it is
possible to show significant improvement).

Since the Crouch study found a very significant improvement using CR cat-
egories, our results do not support theirs. We note, however, that our baseline
precision is 8% better than their best result after adding CR categories; it may be
possible to achieve greater improvement when starting from a weaker baseline.

There are several potential explanations for the mixed performance of the CR
categories. First, they are only assigned to half of the CACM collection, so that any
relevant documents published before 1968 can only be ranked lower by the inclusion
of CR categories in the query. Further, since documents in the second half of the
collection are judged relevant more often (83% of all relevance judgements are for
documents in the second half of the collection), a randomly selected document with

a CR category assignment is more than four times as likely to be judged relevant as
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Table 8.27: Using feedback to assign CR categories

Precision (% change) — 50 queries

Recall | NL | primary cat. all tops frequent tops
10 | 67.2 | 71.1 (+5.7) | 66.0 (—1.9)| 65.8 (—
20 | 56.2 | 59.4 (+5.8) | 54.9 ( )| 53.9 (-
30 | 47.6 | 52.5 (+10.3) | 47.0 ( )| 46.4 (—
40 | 41.3 | 443 (+7.3) | 41.2 ( ) | 42.0 (+
50 | 34.4 | 38.4 (+11.5) | 35.7 ( )| 35.3 (+2.5
60 | 29.1 | 29.3 (+40.7) | 29.7 (+1.9) | 30.7 (+5.5
70 | 20.3 | 22.1 (+8.9) | 20.7 (+2.1)| 21.8 (+7.1
) (+3.7) (
) (+1.1) (
) (+2.9) (=0
) (+0.0) (
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100 | 8.7 +3.6
average | 33.3 356 +6.9

.4;

_|_

a randomly selected document with no CR category assignment. As a result, one
would expect performance to improve if we raised belief in all documents containing
a CR category assignment without regard to query or document content.

Second, the assignment of CR categories to both documents and queries is
subjective and error-prone. Finally, the CR categories do not represent many of the
queries in the test set well. Both researchers who assigned CR categories to queries
had difficulty because many of the queries dealt with specializations that had not
yet been incorporated in the Computing Reviews structure. For example, many
of the queries dealt with specialized aspects of distributed systems. Unfortunately,
the CR classification had no appropriate code for distributed systems and queries
had to be assigned to loosely related categories (e.g., category 4.3 — Supervisory
Systems). Newer versions of the CR classification provide a richer set of categories
that would better match the queries in the test collection, but new categories are
not retrospectively assigned to documents in the collection. This mismatch is a

problem for controlled vocabularies in any rapidly growing field.
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These experimental results do not support any firm conclusions regarding Hy-
pothesis 2. Significant improvement is possible and the poor performance observed
here is largely due to problems with using the CR categories as descriptors with
this collection. However, significant improvement appears to require assignment
by a human expert so the question of whether multiple document representations
can improve performance in an operational setting remains open. Answering this
question will require test collections with richer document representations or natural

language techniques that exhibit a better understanding of the query.

8.6 Extended model

Two features of the extended model, citation links and nearest neighbor clustering,

were used to test Hypothesis 4:

The incorporation of dependencies between documents (citations and nearest
neighbor links) will significantly improve retrieval performance when compared

to equivalent networks without the additional dependencies.

These types of evidence were found to be useful in spreading activation research. For
both types of evidence, we used data developed for spreading activation experiments
with I3R [TC89].

Essentially, we treat the existence of a citation or nearest neighbor link as
evidence that the cited or clustered document has content that is similar to the
original. In Figure 8.1 document d; has been instantiated. All remaining documents
in the network are set to false, except those that are related to d; by citation or
nearest neighbor links. The belief accorded these related documents is based on the

type and strength of the relationship with d;. The effect of this evidence is to raise
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Figure 8.1: Evidence in the extended model

the belief in all terms contained in related documents which effectively adds terms to
d;’s representation and reinforces belief in terms held in common. In the example,
the presence of a link from d; to d3 adds terms ¢3 and t; to d;’s representation,
strengthens belief in ¢, given d;, and leaves belief in ¢; unchanged.

There are, then, two cases for which we must provide revised belief estimates:
a) when one or more related documents contain a term in common with the original,
and b) when new terms are introduced. Starting with the belief estimates developed

for the basic model we are interested in adjusting our estimate for
P(t;|d; = true) = a + (1 — a) x tf x idf (8.3)

based on this new evidence. Note that our estimate for the default belief is unaf-
fected. Since we still wish to base the maximum belief that can be achieved for a
term on that term’s idf value, we are looking for a new estimate (call it €) for the ¢f

component in equation 8.3. In case a) we start with a ¢f estimate for the original
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document and must revise it based on the strength of the link or on the number of
times the term occurs in related documents. In case b) we must produce an entirely
new estimate since the term did not occur in the original document.

When our estimate for the {f component is interpreted as a normalized term
frequency, it takes on values in the range 0 < e¢ < 1; this is the appropriate
interpretation for case a). In case b), however, it is useful to allow negative values

for €. For example, using an estimate with an :df-weighted default like

P(t;|d; = true) = 0.4+ 0.6 * € * nidf (8.4)

P(t;|d; = false) = 0.4 — (0.2 * nidf)

we can choose € = —1/3 for new terms to produce a belief estimate that is the same
as the default. In this case terms added through related documents have no effect
on our belief in the query and performance is identical to that for a network without
the additional evidence. For small € we are asserting that new terms are probably
not correct descriptors for the original document. Useful estimates for new-term €

lie between the value that produces the default belief and 1.0.

8.6.1 Citations

Each document d in the CACM collection contains a list of documents that d cites
and a list of documents which cite d (assuming that the other document is in the
test collection). A citation link is created for each document that d cites and we
say that this link belongs to d or that d has a citation link.

Summary statistics for citations in the CACM collection are shown in Table 8.28.
There are 6063 citations in the collection for an average of 1.9 citations per doc-
ument. 1747 or 54.5% of the documents have one or more citations. The original

collection contains 79,243 unique documents/term pairs (postings); 25.9% of these
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Table 8.28: Use of citations and nearest neighbor clusters in CACM

citations | nearest neighbors
Terms in basic collection 5493 5493
Postings in basic collection 79243 79243
Terms to which new postings added 4379 (80%) 2499 (46%)
Postings modified 20491 12347
Postings added 128154 13145
Postings in extended collection 207397 92388
Number of citation/nn links in collection 6063 3317
Number of documents with citation/nn links 1747 1928

are modified as a result of citations. Citations add 128,154 new postings to the
collection (162% of the original) and account for 61.8% of all postings. If we
count both new and modified postings, citations affect belief values for 71.2% of
all postings.

Previous work with citations suggests that they represent a good source of
evidence about document content [SFV83, BM85, PW89], but most of this research
assumes that we start with a set of documents that are known to be relevant and use
citations to find and rank additional documents. Previous work offers little guidance
about the relative importance of terms in cited documents. Under the assumption
that the contributions of new and common terms are relatively independent, we
first found a reasonable estimate for new term belief while leaving the belief values
for terms held in common with the original document unchanged. We then varied
beliefs for the common terms to find a good overall estimate.

The terms added by citation links do not appear to be very strong sources of
evidence. The number of terms added to a document is large, generally the number
of terms added exceeds the number of original terms, in some cases, by a factor
of 25 or more. Many of these terms do not appear to be good descriptors for the

original document.
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Table 8.29: Effect of varying € for new terms

Precision (% change) — 50 queries

Recall | e=—1/3 e=—0.2 e=—0.15 e=—0.1 e=0.0
10| 762 | 773 (+1.6) | 77.6 (+1.9) | 78.1 (+2.5) | 77.8 (+2.2)
20 66.3 68.4 (+3.1) | 69.3 (+4.6) | 69.9 (+5.5) | 69.9 (+5.5)
30| 563 | 585 (+4.0) | 59.2 (+5.1) | 58.4 (+3 8) | 57.6 (+2.4)
20| 509 | 524 (+2.9)| 51.7 (+1.5)| 505 (—0.8) | 51.0 (+0.1)
50 45.4 477 (+5.3) | 47.2 (4+4.0) | 46.4 (+2 3) | 45.8 (+1.0)
60 | 388 | 40.9 (+5.5) | 40.7 (+5.0) | 39.6 (+2.2) | 39.0 (+0.7)
70| 251 | 27.7(+10.5) | 27.9 (+11.0) | 27.7 (+10.4) | 27.1 (+8.2)
80| 204 | 216 (+6.1) | 22.0 (+8.2) | 223 (+9.7) | 22.5 (+10.6)
00| 124 13 3 (+7.4) 13 5 (+9.2) 13 9 (+12.6) 14 2 (+15.1)
00| 9.3 7 (+46)| 97 (+5.0)| 9.6 (+32)| 9.6 (+3.2)
average 40.1 41 8 (+4.2) 41 9 (+4.5) 41 6 (+3.9) 41 5 (+3.4)

Table 8.29 shows retrieval performance for values of € (equation 8.4) ranging
from —0.33 to 0.0 for combined queries. Performance is relatively flat across this
range and drops off above 0.0. As expected, these terms appear to represent
relatively weak evidence. They are less important than any term occurring in the
original document and provide only slightly stronger evidence than the absence of
the same term (e = —0.33). Attempts to use the term’s idf score when estimating
€ did not improve performance over the fixed estimate.

Adopting € = —0.15 as the baseline for new terms, we then examined estimates
for terms held in common. Several estimates based on the frequency of term
occurrence in cited documents and on the term’s i¢df score were tried, but the
simple strategy of increasing the belief estimate by 10% of the difference between
its original value and the maximum achievable for the term worked as well as more
complicated estimates. Again, this suggests that the fact that a term occurs in a

cited document is relatively weak additional evidence that it should be assigned to

the original.
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Table 8.30: Performance improvement due to citations

Precision — 50 queries

Recall | baseline | with citations
10 67.2 69.6 (+3.5)
20 56.2 59.5 (+5.9)
30 47.6 49.8 (+4.8)
40 41.3 44.7 (+8.2)
50 344 39.0 (+13.3)

60 29.1 31.8 (+49.2)

)
)
)
)
)

70 20.3 219 (+7.9

80 16.3 18.5 (+13.4

90 11.3 124 (49.7

100 8.7 94 (471
average 33.3 35.7 (473

Using € = —0.15 for new terms and increasing belief by 10% of the available
gain for terms held in common, citation information does improve performance.
Table 8.30 compares performance for natural language queries. Performance with
citation information is better than the baseline natural language query at a signifi-
cance level of 0.004. Performance also improves for Boolean and combined queries,
but the significance levels are weaker (0.063 and 0.031 respectively).

Although the use of citation information does improve performance, citations
are relatively expensive to implement. Citations more that double the number of
postings for a collection which more than doubles the size of the inverted file and
substantially increases the average length of a posting list. For large collections,

storage and processing costs may make the use of citations unattractive.

8.6.2 Nearest neighbor clusters

The use of nearest neighbor clusters is quite similar to the use of citation links. They

differ mainly in that nearest neighbor clusters have a measure of document similarity
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and that the size of the nearest neighbor clusters (typically 1 to 3 documents) is
smaller than for citations. Given the similarity of citation and nearest neighbor
links, the same estimation procedures can be applied.

Summary statistics for nearest neighbor clusters are shown in Table 8.28. There
are 3317 nearest neighbor links in the collection for an average of 1.0 links per
document. 1928 or 60.2% of the documents have one or more nearest neighbor
links. The original collection contains 79,243 postings, 15.6% of which are modified
as a result of a nearest neighbor link. Nearest neighbor links add 13,145 new
postings to the collection (16.6% of the original). These new postings account for
14.2% of all postings in the expanded collection. If we count both new and modified
postings, nearest neighbors affect belief values for 27.6% of all postings. Compared
with citations, nearest neighbors add about 1/10 as many postings and affect belief
in about half as many of the original terms.

The terms added by nearest neighbor links appear to be much better descriptors
for the original documents than those added by citations. When examining the
nearest neighbor clusters, we found some odd clusters in which the cluster members
were very short records containing text that was nearly identical. For example,
document 802 has documents 803, 926, and 1125 as nearest neighbors. All of
these are very short records (title, author and date) and all have identical titles
(“SYMINV (Algorithm 150”)). Documents 802 and 803 have identical titles and
dates and differ only in author. It is not known if clusters made up of only very
short documents are common. We examined only five clusters, two of which were
of questionable value.

Using the same strategy as for citations, we held belief for terms in common
fixed and varied € for new terms. Table 8.31 shows performance for values of € for

combined queries (probabilistic and Boolean queries behave differently for nearest
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Table 8.31: Nearest neighbor performance for new terms— combined queries

Precision (% change) — 50 queries
Recall | e=—1/3 e=—0.2 e=—0.1 e=10.0 e=0.1
10| 762 | 765 (+04) | 76.6 (+05) | 76.6 (+0.5) | 77.56 (+L1.8)
20 66.3 66.3 (+0 0) | 66.5 (+0.3) | 66.8 (+0.7) | 66.8 (+0.8)
30| 563 | 562 (—0.1)| 56.2 (=0.0)| 56.0 (—0.4) | 56.1 (—0.3)
20| 509 | 50.8 (—0.2)| 50.9 (4+0.0)| 50.8 (—0.2) | 50.8 (—0.2)
50 45.3 46.0 (+1. 5) 46.1 (+1.7) | 46.0 (+1.4) | 45.9 (+1.3)
60| 388 | 39.1 (+1.0)| 30.1 (+1.0)| 39.1 (+0.8) | 39.1 (+0.8)
70| 251 | 25.2 (40.6) | 25.3 (40.8) | 25.4 (+1.2) | 25.4 (+1.4)
80| 204 | 209 (+24)| 21.0 (+3.2) | 210 (+3.2) | 20.9 (+2.5)
00 | 124 125 (+1.0) | 125 (+0.9) | 12.4 (+0.5) | 12.4 (+0.3)
100 9.2 2 (+0.1) | 9.1 (=0.7)| 9.1 (-0.4)| 9.0 (-1.2)
average 40.1 403 (+0.5) | 40.3 (+0.7) | 40.3 (+0.6) | 40.4 (+0.8)

neighbors. The performance of probabilistic queries increases slightly for increasing
¢ while performance for Booleans decreases). Combined performance improves
slightly for € > —1/3 and changes little across the range of interest. The slight
increase 1s not significant.

Since nearest neighbor links include a weight describing the degree of similarity
between documents, estimates for € based on the nearest neighbor weights were
tried, but these estimates did not significantly improve performance over the fixed
estimates.

Using € = —0.1, we then tried increasing the belief for terms held in common.
Again, the best performance was obtained when 10% of the available gain was added
which gives the performance shown in Table 8.32.

Since the terms in nearest neighbor clusters appeared to be better descriptors
than those from citation clusters, the performance of nearest neighbor links is
surprising. Overall performance improves slightly for probabilistic and combined

queries and degrades slightly for Boolean queries, although none of these changes
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Table 8.32: Effect of nearest neighbor clusters on retrieval performance

Precision (% change) — 50 queries
Probabilistic Boolean Combined

Recall | baseline with nn baseline with nn baseline with nn
10 67.2 67.5 (+0.3) 67.6 67.3 (—0.5) 76.2 76.8 (+0.9)
20 56.2 56.3 (+0.3) 58.8 58.2 (—1.0) 66.3 66.8 (—I—O 8)
30 47.6 47.4 (0. 50.2 49.7 (—0.9) 56.3 56.2 (—0.1)
40 41.3 42.5 (+3. 45.2 44.8 (—0.8) 50.9 51.1 (—I—O 3)
50 34.4 35.5 (+3. 39.8 39.4 (—0.9) 45.4 46.1 (+1.7)
60 29.1 30.1 (+3. 33.6 33.4 (—0.6) 38.8 39.4 (+1.6)
70 20.3 20.2 (— 22.0 22.2 (+1.1) 25.1 25.4 (+1.1)
80 16.3 16.7 (+ 18.1 18.2 (40.7) 20.4 21.1 (+3.5)
90 11.3 114 (+ 11.4 11 4 (—0.3) 12.4 12 5 (—I—O 8)
100 8.7 8.6 (— 7.9 8 (—1.1) 9.2 1(-1.0)
average 33.3 33.6 (+ 35.4 35 2 (—0.6) 40.1 40 4 (+0.9)

Table 8.33: Relevance of documents with citation and nearest neighbor links

citations | nearest neighbors
Relevance judgements in collection 792 792
Relevance judgements with links 634 (80%) 297 (38%)
Relevant documents in collection 554 554
Relevant documents with links 431 (78%) 221 (40%)
Documents in collection with links | 1747 (54%) 1928 (60%)
Number of links defined 6063 3317
Links per document in collection 1.9 1.0
Links per document with links 3.5 1.7

1s significant. The main reason that the performance of nearest neighbor clusters is

worse than citations appears to be because most relevant documents (and relevance

judgements) do not have nearest neighbors but most relevant documents do have

citation links (see Table 8.33).

Although more documents have nearest neighbor

links than have citations, a relevant document is twice as likely to have a citation as

a nearest neighbor link. As a result, the apparently weak citation evidence has more
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influence on the document ranking than the apparently stronger nearest neighbor
evidence.

Documents that have nearest neighbors are much less likely to be judged relevant
than a randomly selected document. Since the presence of a nearest neighbor
link tends to raise belief in the original document, the effect of nearest neighbor
links is to raise belief in non-relevant documents, thereby depressing performance.
Given the earlier observation that short documents seem to be involved in nearest
neighbor clusters, it is possible that the nearest neighbor algorithm used favors short
documents and that these documents tend not to be judged relevant.

While nearest neighbors do not work well in this context, it is still possible that
they could be useful for relevance feedback. If the evidence links were added only
after a document was judged relevant by a user, then the fact that nearest neighbors
favor non-relevant documents would not be a factor. It is also possible that nearest
neighbor information would improve performance if added after the initial ranking,
but only to highly ranked documents.

Our results are similar to those of Croft, et al [CT89] who used citations and
nearest neighbor links in a spreading activation network. They also found that
citations represented stronger evidence than nearest neighbor links for the CACM
collection. They tested nearest neighbor links on five additional collections and
found that performance improvements were possible, but that the improvements
were small and inconsistent across collections. Finally, we found that using the
nearest neighbor weight to estimate how much to increase belief in common terms
did not improve performance which confirms their results.

Based on the citation results, we can accept Hypothesis 4. The negative results

for nearest neighbor clusters do not suggest that these kinds of evidential links do
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not improve performance. The nearest neighbor results show that nearest neighbor

clustering, at least as implemented here, is not a good source of evidence.

8.7 Summary of results

Table 8.34: Network model performance improvement

Precision (% change) — 50 queries

Recall | probabilistic NL BL1 combined
10 60.2 69.6 (+15.7) | 68.1 (+13.1) | 77.4 (+28.6)
20 48.3 59.5 (+23.3) | 60.1 (+24.6) | 69.5 (+44.0)
30 41.0 49.8 (4+21.5) | 51.5 (+25.6) | 58.9 (+43.6)
40 30.9 44.7 (4+44.6) | 46.8 (+51.6) | 52.2 (+68.9)
50 26.5 39.0 (+47.5) | 40.8 (+54.1) | 47.6 (479.8)
60 21.6 31.8 (+47.2) | 34.5 (+59.8) | 40.7 (+88.5)
70 15.0 21.9 (+46.2) | 24.4 (+62.5) | 28.0 (+86.8)
80 11.7 18.5 (+57.8) | 19.6 (+66.9) | 22.3 (+89.8)
90 6.4 12.4 (+93.2) 12 1 (+87.6) | 13.7(+113.3)
100 4.4 9.4(+114.1) 4 (492.8) | 9.7(+121.7)

average 26.6 35.7 (+34.1) 36 6 (+37.7) | 42.0 (+57.9)

Table 8.35: Average precision for p-norm and inference network Booleans

Average Precision — 3 recall points
Best Network Boolean+ NL+Boolean
p-norm Boolean Citation +Citation
CACM | 33.1 (p=2) | 38.1 (+15.1%)-BL1 | 39.5 (+19.3%) | 45.7 (+38.1%)
35.6 (+7.8%)-BL2
CISI 18.4 (p=1) 19.2 (+4.3%)

Using the best features of the network model (basic model plus citations) gives
the performance improvements shown in Table 8.34 when compared to a conven-

tional probabilistic search. For natural language queries, average precision improves
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34.1%, for BL1 it improves 37.7%, and for combined queries it improves by 57.9%.
Comparing our results to reported p-norm results (Table 8.35) shows a 38.1%
improvement over the best p-norm results. That these performance levels can be
achieved at a computational cost that is comparable to conventional probabilistic
retrieval clearly demonstrates the importance of the inference network model.

To summarize the results for the Hypotheses discussed in this chapter:

1. Given equivalent document representations, query forms, and assumptions
about the match between indexing and query vocabularies, the inference net-

work model will perform as well as probabilistic models.

Hypothesis accepted — the inference network model significantly improves per-

formance.

2. The use of multiple document representations will significantly improve re-
trieval performance when compared to equivalent networks without the addi-

tional representation.

Our experimental results do not support any conclusion with regard to multiple
document representations. The addition of CR categories can improve perfor-
mance, but the improvement is inconsistent. The inconclusive results are due,

at least in part, to problems with the original assignment of CR categories in

the CACM collection.

3. The use of multiple query representations will significantly improve retrieval
performance when compared to equivalent networks with a single query repre-

sentation.

Hypothesis accepted — significant improvements are consistently achieved.
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The

The incorporation of dependencies between documents (citations and nearest
neighbor links) will significantly improve retrieval performance when compared

to equivalent networks without the additional dependencies.
Hypothesis accepted on the basis of improvements resulting from the addition
of citations.

results described here also support a number of additional conclusions:

Conventional probabilistic retrieval strategies based on tf and idf work well in

the network model.

The use of a non-zero default probability for term belief significantly improves

performance.

The use of query term weights based on the frequency of the term in the query

improves performance for natural language queries.

Even simple Boolean queries perform as well as corresponding probabilistic

versions given the combining functions of equations 4.1 through 4.9.

Effective Boolean query representations can be generated from a natural lan-
guage query based on user supplied information about important terms and

phrases.

Perhaps the most important conclusion of the current research is that evidence

from multiple sources can be combined to improve our estimate of the probability

that a document satisfies a query. As a result, the network model provides a nat-

ural

framework within which to integrate results from several areas of information

retrieval research (e.g., intelligent interfaces or NLP techniques).
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CHAPTER 9

IMPLEMENTATION

Since the evaluation of Bayesian inference networks is known to be NP-complete
[Coo90b], it was clear from the outset that simplifying assumptions would have to
be made in order to use these techniques for anything beyond toy examples. In
order for the results of this research to be useful, it must be possible to apply the
inference techniques to collections of at least a million documents, which implies
networks containing tens of millions of nodes. As a result, computational efficiency

has been a major objective which led to our final hypothesis:

Hypothesis 5 — It will be possible to build and evaluate these networks in
“reasonable” time. In this context we will interpret “reasonable” to mean that
for a collection with ¢ term occurrences a) O(t?) time to build and preevaluate
the network, b) query evaluation time relatively independent of document
network size and less than 10 seconds for 90% of the queries when run on
a typical micro-Vax or Sun network, and c) storage overhead that is a small
constant (¢ < 5) times the original collection size.

In this chapter we will review the simplifications made to achieve our performance

objectives (Section 9.1), describe how these networks are built and evaluated (Sec-

tions 9.2 through 9.4), and review the performance of the current implementation

(Section 9.5).
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9.1 Network simplifications

To ensure that retrieval networks are computationally tractable, we restrict them
in two ways. First, we consider only the canonical link matrix forms of Section 4.5
which occupy O(n) space and can be evaluated in O(n) time, where n is the number
of parents for a given node. These link matrix forms can be used to simulate the
weighting schemes used in conventional retrieval models and experimental results
do not suggest that more complex functions are required.

Second, we attach evidence only to the roots of the network. In terms of a
network implementation, this restriction assures that we can propagate the effect of
new evidence in a single pass through the network, visiting each node at most once.
However, this restriction coupled with the fact that the structure of the document
network is not modified during query processing means that P(t;|d;) is completely
determined by the belief values at the document nodes and we can use conventional
inverted file techniques to implement the model. Without this restriction, P(t;|d;)
would be affected by evidence attached to nodes lower in the network and simple

inverted file techniques could not be used.

9.2 Building the network

Returning to the network of Figure 4.1, we see that the only part of the document
network that is visible to the query network is the set of representation concept
nodes. For the purposes of query evaluation, all we need to know about the
document network is the values of P(t;|d;) for all document/term pairs. The

basic idea then, is to build a document network, instantiate each document in
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(inference network) (information) (retrieval) (satellite)

-

Figure 9.1: Inference network fragment

inference network (d;,0.731)
information (d1,0.554) (d2,0.545)
retrieval (d1,0.554) (d2,0.715)
satellite (d1,0.665)

Figure 9.2: Inverted belief lists

turn and record the belief in each representation concept given each document.
This information can then be used to build a conventional inverted file in which we
record, for each representation concept, a list of its belief values given each document
in the collection. Fortunately, most documents change belief in only a small number
of representation concepts, so for each representation concept we need only record
this default belief (no parents instantiated) and a list of document/belief pairs for
all documents that do affect belief when instantiated.

Repeating our example of Chapter 5, we found that in the network of Figure 9.1,

instantiating d; resulted in
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bel(inference network) = 0.731 bel(information) = 0.554
bel(retrieval) = 0.554 bel(satellite) = 0.000

and instantiating d, resulted in

bel(inference network) = 0.000 bel(information) = 0.545
bel(retrieval) = 0.715 bel(satellite) = 0.665 °

Using this information, we can build an inverted belief file containing the four
records shown in Figure 9.2 and this file has all the information we need to evaluate
queries (if an ¢df weighted default was used, then this would also be stored for each
term).

For early experiments we built a general-purpose network evaluation pack-
age. Given a network described using a standard language, this package built and
initialized the network and then computed changes to the network as evidence
was attached. While this package was useful for initial experimentation, actually
building a network and instantiating (and de-instantiating) each document in turn
was far too slow to be useful — building the CACM collection with this package
required in excess of 24 hours on an Intel 286 machine. Even with the assumption
that all evidence is attached at the top, this approach evaluated each representation
concept node for each document in which it occurred, and this evaluation generally
required that the node be read from secondary storage.

A specialized package was then created to generate the inverted belief file from
indexing transactions (one transaction per document/concept pair). This package is
quite similar to those used to build commercial retrieval collections. By sorting the
transactions to group all transactions for a given concept together, it is possible to
efficiently build the inverted belief file without consulting the network description.
With one additional optimization (using a hash table rather than a keyed file to

look up concept identifiers), the time to build the CACM collection was reduced
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to under two hours — most of the savings are due to improved times for generating
inverted belief files.

This simple approach works for the basic model, but must be extended to
handle document-document dependencies (citations and nearest neighbors) and
additional term dependencies. For document-document dependencies a separate set
of transactions is generated containing a transaction for each representation concept
that is to be added to or altered in the set of concepts describing a document
(e.g., for citations, a transaction for each term contained in a cited document).
When building the inverted belief file, these two transaction sets are used to create
the belief records for each concept. When multiple dependency types are to be
added (e.g., citation and nearest neighbor), separate transaction sets are created
and merged prior to building the inverted file. Similar extensions are required for
addition of term dependencies, but were not required for the current research. All
of these techniques can be readily extended to very large collections.

Building a document network for the basic model, then, involves four steps:
1. Generate a set of indexing transactions from the source texts.
2. Sort these transactions by concept and document identifier.
3. Build a network description.

4. Build an inverted belief file.

Step 3 is useful in a research setting since is simplifies many analysis steps (it is
also required for the extended model), but could be omitted in a production setting
using only the basic model — the only essential function it provides is as a dictionary

of names for documents and representation concept names.
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Table 9.1: File building times

Elapsed time | % total | % 3-step total
generate transactions 4:31 30.7 69.1
sort 192 5.9 13.3
build network description 8:11 55.6
build inverted belief file 1:09 7.8 17.6
total 14:43 100.0 100.0

The growth of computational costs for steps 1, 3, and 4 is linear in the number
of term occurrences (t) in the collection (strictly speaking, steps 3 and 4 are linear
in the number of postings if term position information is not used, however, the
number of postings is bounded by the number of term occurrences). Step 2 is
O(tlogt) for reasonable sorts, so the time to build a document network is O(tlogt).
The time required for these four steps when building the CACM collection on a Vax
6410 are shown in Table 9.1. The programs to generate transactions from the source
text and to build the network description have not been optimized and could be
improved substantially. If the network description is not required, then the CACM
collection can be built in 6:32 or 0.12 seconds per record. Less than 15% of the time
1s in the sort, which will dominate for large collections. If the network description
is required, then the collection can be build in 14:43 or 0.28 seconds per record with
the sort accounting for roughly 6% of the total time.

The addition of new dependency types involves additional steps, but as long as
the number of postings added is bounded by some constant times the number of
original postings, the process remains O(tlogt). While these additional dependen-
cies will generally not change the order of computational costs, they can increase
time and space requirements by significant (albeit constant) factors. It is also quite
possible to imagine dependency structures that would not satisfy the constant bound

(indeed, theoretically the worst case number of added citation postings is O(t?) —
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all documents consist of a single term and cite all other documents — in practice,
the number of citations per document is small and bounded).

The use of inverted file techniques to represent an inference network is a strategy
that can be used when it is possible to predict the set of evidence assignments of
interest, to predict the set of nodes whose belief we wish to assess, and the size of
these sets has some reasonable bound.

If, for a binary-valued network, it is not possible to restrict these sets then there
are 2" evidence assignments of potential interest and the inverted file might contain
as many as n X 2" entries. However, for a retrieval network containing d documents
and t representation concepts, there are only d evidence assignments of interest and
for each assignment there are at most ¢ belief values of interest, so at most

’I'LZ
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e

belief values must be recorded. In practice, the number is much smaller. For CACM,
where d = 3204 and ¢ = 5493, we actually store only 79243 or ¢ x 14.4 belief values.
For CISI, where d = 1460 and t = 5448 we store ¢t x 13.0 = 71017 belief values. The

important factor here is clearly the number of evidence assignments of interest.

9.3 Space requirements

Table 9.2 shows the relevant file sizes for the test collections. Note that the source
files include information besides the source text (citations, time and date entered).

The transaction files are generated in order to build the inverted belief files
and need not be retained after the belief file is built. The three files that make up
the document network are then the network description file, the dictionary (which

converts terms to internal identifiers), and the inverted belief file. For CACM
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CACM | CISI
source file 2.3 2.2
indexing transactions 1.5 1.4
network description 2.1 2.0
dictionary 0.1 0.1
inverted belief file 0.6 0.6
citation transactions 2.2
nearest neighbor transactions 0.5
inverted belief(with citations) 1.5

Table 9.2: File sizes (in megabytes)

these files total 2.8 megabytes which is 1.2 times the size of the source file. For
CISI these files total 2.7 megabytes, which is also 1.2 times the size of the source
file. The network description files used here are larger than necessary since they
include belief information which is replicated in the inverted belief file. The current
implementation does not display articles, so a production version would require
an additional file containing the source text. If the unneeded information was
eliminated from the inverted belief file and the source text was added, the set of
files would be close to two times the size of the original source. The growth of these
files will be linear or slightly sublinear in the size of the source text.

The use of citations noticeably increases the size of the inverted belief file. With
citations included, the total size of the relevant files is 3.7 megabytes which is 1.6

times the size of the source file.

9.4 Evaluating queries

As with the document network, for our initial experiments with query evaluation we
built complete query networks, attached them to document networks and instanti-

ated the network. Given the inverted belief files and the fact that we are interested
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in a very narrow range of query network topologies (probabilistic, Boolean, and
combined queries) we can again improve efficiency.

It is difficult to develop useful computational bounds for query evaluation since
performance depends heavily on the specific query and the terms that it contains.
We will discuss the major efficiency considerations here, but will not develop the-
oretical bounds. Actual performance with the test set queries is a more useful
performance indication.

Perhaps the single most important factor in query evaluation performance is the
number of documents that must be examined to evaluate a term. Techniques that
must examine every document in the collection to evaluate a term are usable only
with test collections. In order to be practical for large collections, term evaluation
should involve only those documents that contain the term.

A closely related factor is how the number of documents that must be exam-
ined grows with the size of the query. In this regard, probabilistic models and
the inference network model (and most models that produce a ranking) are at a
disadvantage relative to the conventional Boolean model. In general, the number of
documents that must be considered by the ranking models increases monotonically
with the number of terms evaluated, and the final result will contain the union
of all documents contained in the inverted lists for each query term. Queries can
be optimized in many ways (e.g., take small lists first, keep scores in a hash table
[Dos82], or stop when new terms can no longer change the ranking [BL85]) but
as the number of terms increases, so does the number of documents. Conventional
Boolean queries can be optimized to order and and and not evaluations to minimize
the number of documents which must be considered. Worst-case performance for

the ranking and Boolean models is the same, an n-term or considers the same
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number of documents as the ranking models; optimization can only be used to
improve average performance.

For small collections or small queries the difference between ranking model and
Boolean performance is not significant, but for very large collections or long queries
the performance difference can be pronounced. At the same time, the importance of
ranking increases for large collections. For large collections, considerable skill (and
a long query) is required to retrieve a set of manageable size with a conventional
Boolean query. If a ranking model works well, the user is generally not concerned
with the size of the set as long as relevant documents appear at the top of the
ranking.

In terms of query processing, then, the network and probabilistic models fall
in the same general class. They perform substantially better with large collections
than techniques which must examine the entire document space and somewhat
worse than conventional Boolean techniques.

Given the closed-form expressions of Section 4.5, query evaluation is straightfor-
ward. The only unusual aspect is that a default estimate is computed as the query
is evaluated. This default value is the value that would be assigned to a document
that has contained none of the previously evaluated terms and is the correct value
to be assigned as the initial value to documents that are introduced by the next
term.

When all of the terms have been processed and the results have been normalized,
the normalized default is the probability that a document which contains none of
the query terms satisfies the query — all documents in the collection that are not
found in the merged evaluation list are tied and have this default belief. Note that

the default belief need not be lower than any in the evaluation list. Documents
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can score lower than the default when a Boolean not is used (or when a degenerate
estimate has been used somewhere in the network).

When the query is evaluated, in the current implementation we sort the entire
evaluation list so that we can assign ranks to all documents in the collection. For
large evaluation lists, this sort would be time consuming. Unless a full ranking
is needed, there are faster ways (at worst O(n)) to pick some fixed number of
documents from a large list than sorting it.

Using the inverted belief lists of Figure 9.2 we can evaluate a natural language
query containing the phrase inference network and the terms information and
retrieval. We will assume a fixed default belief of 0.4. We first merge the lists
for inference network and information, adding beliefs for documents in both lists
(equation 4.15) and adding the default for documents in a single list. This gives a

combined list of
(d1,1.285) (d2,0.945)

and a combined default of 0.8. We then add the list for retrieval and normalize by

dividing by the number of terms (we are assuming unweighted queries) to get
(d1,0.613) (d2,0.553)

with a default of 0.4.
To evaluate a Boolean conjunction, we first merge the lists for inference network
and information, this time using the product form for combining beliefs (equa-

tion 4.1). This gives a combined list of
(d1,0.405) (d2,0.218)
and a combined default of 0.16. We then merge with the list for retrieval to get

(d1,0.224) (d,0.156)
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with a default of 0.064.

For the test collection queries running on a Vax 6410, the prototype processes
the 50 CACM queries in 28 seconds for an average of 0.6 seconds per query for
the natural language versions, 13 seconds or 0.3 seconds per query for BL1, 12
seconds or 0.2 seconds per query for BL2, and 34 seconds or 0.7 seconds per query
for the combined queries. The 35 CISI queries take 11 seconds or 0.3 seconds per
query for the natural language versions, 9 seconds or 0.3 seconds per query for
the Boolean, and 17 seconds or 0.5 seconds per query for the combined queries.
This performance is well within the hypothesized bound of ten seconds. The
current network implementation makes no attempt to optimize query evaluation
and captures information that is not needed for an operational system, so these
times could be improved.

Query evaluation time is not, however, entirely independent of network size
since it depends upon the size of the posting lists in the inverted file which grow
with the size of the collection. The rate of growth for the average posting list is
logarithmic in the size of the collection, so average query evaluation time is “nearly”

independent.

9.5 Summary

Given the performance characteristics just described, we can accept Hypothesis 5.
Query networks can be build in O(tlogt) time (which is certainly O((n + t)?)),
queries can be processed within the hypothesized time bound for reasonable collec-
tion sizes (although evaluation time is not completely independent of network size),
and the files occupy substantially less than five times the size of the source text and

exhibit linear or slightly sublinear growth.
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While it is certainly possible to imagine network features that would degrade
performance, with the current model it is possible to significantly improve retrieval
performance at computational costs that are quite similar to conventional proba-

bilistic systems and that are practical for large collections.
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CHAPTER 10

CONCLUSIONS AND FUTURE RESEARCH

In this dissertation we have described a new formal retrieval model, showed
that it generalizes existing retrieval models, and have presented experimental re-
sults which demonstrate significant improvements in retrieval performance when
compared to conventional models. In this final chapter we review the major contri-
butions of this research (Section 10.1) and describe the major areas where additional

research should be pursued (Section 10.2).

10.1 Contributions

This research represents a significant contribution to information retrieval theory
and has developed retrieval techniques that can considerably improve performance

of commercial retrieval systems. The specific contributions of this work are:

o Very significant improvements in retrieval performance over conventional re-

trieval models.

e Development of a formal retrieval model that generalizes probabilistic, Boolean,

extended Boolean, and cluster-based retrieval models.
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e Development of a theoretical framework that allows the results from several
different retrieval techniques to be combined when assessing the probability

that a document matches a query.

e Development of a mechanism for representing uncertain information needs.
Representation of uncertainty is a very general problem that must be dealt

with in many automated tasks.

e Development of techniques for representing complex information objects. Doc-
uments (and text in general) represent a particularly important class of com-
plex object, and the techniques for integrating multiple representations of

objects are of general interest.

e Development of techniques for efficient evaluation of a restricted class of prob-

abilistic inference networks.

e This research represents a step toward more integrated information systems.
The retrieval model can be integrated with a number of other types of systems

(e.g., DBMS, hypertext, office automation) to improve text handling.

10.2 Future research

We have accomplished most of the objectives originally established for this research
and have demonstrated the theoretical and practical utility of the inference network
retrieval model. However, one of our original Hypotheses remains open and the work
reported here has suggested several additional areas where work is required.

The one Hypothesis that we were unable to test dealt with the use of multiple

document representations. Given the strong body of evidence that suggests that
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multiple representations represent relatively independent sources of information
about document content and can be used to retrieve different documents for the
same query, we believe that the inconsistent performance observed results from
problems with the assignment of Computing Reviews categories to the CACM
collection. Additional experiments will be required using a test collection with
a richer set of document representations. Two collections are potentially interesting
for these tests. Omne is a subset of the National Library of Medicine collection
which includes manually assigned Medical Subject Heading (MeSH) descriptors.
The second is a legal database which contains manually assigned subject codes and
links to related opinions and statutes.

Additional areas where further work is required are:

e Work with additional NLP-based document and query representations cur-
rently under development. Other researchers at the University of Massachusetts
are developing new representation techniques based on phrases and disam-
biguated terms. Work will be required to determine how best to integrate

these new forms of evidence.

e Replicate experiments on other test collections. The network model has shown
consistent improvements on two standard collections. While this represents
strong evidence that the model improves retrieval performance, these test

should be repeated on additional test collections.

e Incorporate term dependencies in the network model. The current model makes
only limited use of term dependence information (phrases and thesaurus infor-
mation). We need to implement and test the effect of thesaurus information
and should extend the model to incorporate additional dependencies (e.g., term

clustering).
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e Implement and test relevance feedback. The relevance feedback model of
Section 7.1 has not been tested. Since relevance feedback gives very significant
improvements with conventional probabilistic models and is generally more
effective when the initial query produces a good ranking, we expect significant

improvements in network model performance.

o Test the model with large full-text collections. While evaluation with test
collections is important, if these techniques are to have an commercial impact,

they must be evaluated on very large collections.

o Test the effect of user supplied information about query and term importance.
Our work with user supplied information about phrase structure and term
importance suggests that this information can be used to improve retrieval
performance. Our experiments are, however, preliminary and additional work
will be required to determine how best to obtain this information and how

much improvement is possible.

e Experiment with ways to learn better belief estimates. The current document
network makes no attempt to improve the dependency estimates over time. It
is possible that better estimates could be learned from a large sample of queries

and relevance judgements (as in document space modification).

A final area of further research would explore the nature of the interactions between
the different types of evidence available for document retrieval. As a result of
this work we know that some forms of evidence complement each other and im-
prove performance, while combining other forms of evidence gives no performance
improvement or actually degrades performance. Presumably, the nature of the

interaction is related to the degree that the evidence forms are “independent,” but
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further work will be required to better define this notion of independence and to

determine how it can be measured.
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APPENDIX

TENSOR NOTATION FOR UPDATE RULES

While we follow Pearl in referring to the conditional probabilities stored at each
node as link matrices, they are really tensors. The matrix notation is workable
for nodes with up to two parents since vectors and matrices are first and second
order tensors, but the matrix notation is cumbersome for nodes with more than two
parents. To see why tensor notation is required, consider a node d with a single
parent a. Both nodes take on values from the set {v1,...,vm}. To specify P(d|a)

we need to provide values for
P(d =vila=v1),P(d =vi|la =v3),...,p(d = vm|a = vm)

which can be represented by an m x m matrix. If we now add a parent b we must
specify m X m X m values, but this is no longer a matrix. Essentially, in order to
add the second parent we create an m element vector whose components are m x m
matrices but this is, in fact, a third-order tensor. Similarly, to add a third parent we
need a vector whose elements are third-order tensors, and so on. For a node with n
parents we must specify m™*! values and would like to do so using a notation that
makes the indices for each node explicit. Thus, for a three parent example, we have
a link tensor L,;. where each of the subscripts represents indices for a single parent.

In this appendix we reformulate Pearl’s propagation rules for causal polytrees

(see [Pea88, pages 182-184]) using tensor notation. The use of tensor notation
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clarifies the computational aspects of networks containing nodes with more than

two parents.

The probability specification for a node X, which can assume d discrete values,
conditioned on its parents U, ..., U, is a d-dimension tensor L of order n + 1, that
is,

P(zlut,...,un) = Lyu,...un-

We will call L the link tensor. The link tensor is used to compute the nodal 7 vector
which summarizes the predictive evidence available at a node and to compute the

likelihood vectors to be sent by X to its parents.
The vector m,; provided by parent U; to X specifies the probability that X =z

conditioned on the evidence available at U; (m,,; is Pearl’s wx(u;)). Pearl’s method

for computing the nodal 7 vector [Pea88, equation 4.51]

m(z) = E P(zlui,...,un) H mx(u;)

U,y Un 1<i<n

is really the inner product of the link tensor and the outer product of the individual

my; vectors. If we denote this outer product by @

71-(m) = L:L‘,ul,...,unﬂ-ul 71-“2 “ .. 71'un
E,ul,...,unQul JU2 ey Up

Rﬂ-‘,ul yeeny U, UL, UZ ey Un *

R is contracted on the common parent indices to give the vector

To avoid the d*™*! element intermediate result we can form the product and contract

on common indices one parent at a time

71'((13) = L:L‘,ul,...,unﬂ-ul e Ty

n
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n—2
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R,.

100

T

O

Note that superscripts are used to identify unique tensors, not to distinguish co-

variant and contravariant indices.

The procedure for computing likelihood vectors for parents [Pea88, equation

4.52] is similar except the outer product used to compute the A, vector for U;

excludes the 7, vector received from U;. Thus, we are forming an inner product of

the order n+1 link tensor and the order »—1 outer product of the m,; vectors to get

an order 2 result. This result is then multiplied by the nodal likelihood vector A and

contracted on z to obtain A,,. Again, the product/contraction can be performed

one parent at a time. This gives

Aui = ALz, Tuy oo Ty Ty - Ty,
_ n—1
- )‘Rz,ul,...,un_l 71-ul ct 7rui—1 71-ui-l-l st 71-u'n,—l

= ARL T

e1,u1,U; 0 UL

= AR, .,

= S,

which is the likelihood vector for U;. Forming the product and contracting one

parent at a time is particularly easy to implement (and understand) and operates

in space bounded by the size of L.
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