

An Improved Debugging System
Mary Lewis

Why Improve?

Nearly half of programming time
is spent debugging. The
advancements we have seen in
debugging tools in the last 20
years don't reflect how important
it is.

Current Debugging
Technology:

 Breakpoint debugging

 Algorithmic debugging

 “printf debugging”

Problems:

 These methods can be time-

consuming.

 Errors can be difficult to find

using these methods.

Proposed Alternative:

I propose a system you can run your program through
that will produce a trace of your program.

The way you navigate though this trace will resemble
the way you navigate through the help that comes
with some software.

In short, this will be hyperlinked, searchable
documentation that tells the programmer what the
code does in English sentences.

For example…

Oftentimes debugging involves searching for code
that syntactically but not semantically correct.

References:
Gerard Vink. Trends in Debugging Technology. In Embedded
 Systems Conference East, 1998.
M. Snyder and J. Blandy. The Heisenburg Debugging Technology.
 CYGNUS SOLUTIONS, 1999.
Josep Silva. Debugging Techniques for Declarative Languages:
 Profiling, program slicing and algorithmic debugging. In
 AI Communications, Volume 21, Issue 1, Pages 91-92, 2008.
The GDB Developers. GDB: The GNU Project Debugger.
 http://www.gnu.org/software/gdb/

How:

 Use current debugging

technology to gather
information during runtime

 Anticipate or detect when the

variable changes

 Use regular expressions to

create natural language

 Use free help authoring tools

to produce HTML help files

Problems:

 Time

 Memory

These problems can possibly be
alleviated through the use of
checkpoints.

