

Similarity and Delta for Semantic Web Graphs

Contributions

- Detect pairs of similar semantic web graphs and versioning relationships between ontologies
- Generate a delta between successive ontology versions that have been detected

Similarity of SW Graphs

- Identical copies
- Different Base URIs
- Minor textual differences
- Same structure, but different textual content

Same SWD expressed in different formats

Ontology versions

Identify pa similar
docume
Ţ

SW Graph Canonicalization

document1.nt <person:John> <</pre> _:x <a:IsPartOf> <person:John> <</pre> _:x <a:hasCapital document 2.nt_:a <a:hasCapital <person:John> < _:a <a:IsPartOf> <person:John> <</pre>

Krishnamurthy Koduvayur Viswanathan

SW graphs generated by

• Assigns uniform identifiers to blank nodes Provides a deterministic order to statements Empirical method that works for most examples

(input)	canonicalized document1.nt (output)
$(a:livesIn) _:x$.	$_:g2 < a:hasCapital > _:g1$.
"USA" .	$_:g2 < a:IsPartOf > "USA"$.
<a:likes> "cheese" .</a:likes>	<person:John> $<$ a:likes> "cheese" .
l> _:y .	$< person: John > < a: lives In > _:g2$.
(input)	canonicalized document2.nt (output)
l>_:b .	$_:g2 < a:hasCapital > _:g1$.
$< a: lives In > _:a$.	$_{:g2} < a:IsPartOf > "USA"$.
"USA" .	<person:John> $<$ a:likes> "cheese".
< a: likes > "cheese".	$< person: John > < a: lives In > _:g2$.

Reduced Forms

- Only the literals from the original ntriples file
- All content except the literals from the original n-triples file
- The base-URI of every node replaced by the empty string
- string

Generating Deltas

- Describe the deltas as the smallest set of atomic triples
- Canonicalization smoothens most disparities amongst statements in similar graphs
- Compare only local names of entities in the graph, i.e. ignore the global namespaces

Preliminary Results

Preliminary dataset of 8300 triples, across 23 RDF graphs (ontologies and data)

In collaboration with Dr. Tim Finin

- All the literals and the base-URI of
- every node replaced by the empty
- Compute the deductive closure of
- documents before comparing them

- 17 different combinations of similarity metrics are generated
- The pairs on the top right of the graph identify ontology versions Microsoft[•]
 - Acknowledgements Research