
APPROVAL SHEET

Title of Thesis: Automatic Composition and Invocation of Semantic Web Services

Name of Candidate: Mithun Sheshagiri
Master of Science, 2004

Thesis and Abstract Approved:
Dr. Marie desJardins
Assistant Professor
Department of Computer Science and
Electrical Engineering

Date Approved:

Curriculum Vitae

Name: Mithun Sheshagiri.

Permanent Address: 4813 Fernley Square, Baltimore, MD 21227.

Degree and date to be conferred: Master of Science, 2004.

Date of Birth: February 6, 1979.

Place of Birth: Miraj, India.

Secondary Education: South Indian Education Institute, Mumbai, 1996.

Collegiate institutions attended:
University of Maryland, Baltimore County, M.S. Computer Science, 2004.
Ramrao Adik Institute of Technology, India, B.E. Computer Science, 2000.

Major: Computer Science.

Professional publications:

Mithun Sheshagiri and Marie desJardins
Data Persistence: A Design Principle for Hybrid Robot Control Architectures
KBCS 2002

Mithun Sheshagiri, Marie desJardins and Tim Finin
A Planner for Composing Service Described in DAML-S
Workshop on Planning for Web Services, International Conference on
Automated Planning and Scheduling, Trento, July 2003

Subhash Kumar, Anugeetha Kunjithapatham, Mithun Sheshagiri, Tim Finin,
Anupam Joshi, Yun Peng, and R. Scott Cost
A Personal Agent Application for the Semantic Web
AAAI Fall Symposium on Personalized Agents, North Falmouth, Nov 15-17,
2002

Mithun Sheshagiri, Norman Sadeh and Fabien Gandon
Using Semantic Web Services for Context-Aware Mobile Applications
Proceedings of MobiSys2004 Workshop on Context Awareness, Boston,

June 2004

Professional positions held:

Senior Software Engineer, Samsung Information Systems America (April ’04 -)

Research Associate, Carnegie Mellon University (Feb ’04 - April ’04)

Research Intern, Hewlett Packard Laboratories (June ’03 - Dec ’03)

Research Assistant, CSEE Department, UMBC. (Jan. ’02 - Jun. ’03).

Software Engineer, Patni Computer Systems Ltd., Mumbai. (June. ’00 - Aug.
’01).

2

ABSTRACT

Title of Thesis:

Automatic Composition and Invocation of Semantic Web Services

Author: Mithun Sheshagiri, Master of Science, 2004

Thesis directed by: Dr. Marie desJardins, Assistant Professor
Department of Computer Science and
Electrical Engineering

Web Services are viewed as a new paradigm for building distributed web applications.

The W3C defines web services as a programmatic interface that enables communica-

tion among applications [1]. OWL-S (earlier known as DAML-S) is an initiative that

aims to describe web services using semantic web languages like RDF, RDFS and

OWL. The motive behind adding semantics is to enable automatic discovery, compo-

sition, invocation and execution monitoring. In this thesis, we look at the problem

of web service composition – synthesizing complex tasks from a set of atomic (basic)

tasks. We look at how a service description can be transformed into planning oper-

ators. We present a planner that uses a backward-chaining algorithm for the task of

composition. We also discuss an algorithm for automatic invocation. The automatic

invocation algorithm takes the plan generated by the planner and determines data re-

quired for invocation using queries. Finally, we discuss the architecture of our agent,

which is capable of interacting with web services solely based on service descriptions.

Automatic Composition and Invocation of

Semantic Web Services

by

Mithun Sheshagiri

Thesis submitted to the Faculty of the Graduate School
of the University of Maryland in partial fulfillment

of the requirements for the degree of
Master of Science

2004

Dedicated to my Mother

ii

ACKNOWLEDGMENTS

I would like to take this oppurtunity to thank my Gurus: Dr. Marie desJardins

and Dr. Tim Finin. This thesis wouldn’t have been possible without their support.

Dr. desJardins, my advisor, has been extremely helpful in shaping my ideas and

provided me a great deal of flexibility in carrying out my work. She has shown great

patience and has put considerable effort to make herself accessible. I am also indebted

to her for taking efforts to improve the quality of this thesis. Dr. Finin has been been

very encouraging and I feel lucky to have worked under him. I am also grateful to

Dr. Anupam Joshi and Dr. Alan Messer for agreeing to be on my thesis committee.

I should also thank Dr. Stuart Williams, Dr. Janet Bruten and HP-Laboratories

for providing an opportunity to work as an intern at HP. My ideas on modelling

and effects were conceived under Dr. Stuart Williams’ wing. I am grateful to my

room-mates for keeping me sane during my graduation. Special thanks to Priyang

Rathod for doing all my paper-work when I was away from Baltimore. I would like to

thank the Graduate Program Director - Dr. Krishna Sivalingam, the administrative

staff at the CSEE department and Linda Thomas from the Graduate School for their

co-operation. Finally, my parents, especialy my mother deserves special mention: her

belief in me is very valuable to me.

iii

TABLE OF CONTENTS

. i

. ii

ACKNOWLEDGMENTS . iii

LIST OF FIGURES . v

Chapter 1 INTRODUCTION . 1

1.1 Background and Motivation . 3

Chapter 2 RELATED WORK . 6

Chapter 3 INTERNAL ARCHITECTURE OF THE AGENT . . 10

3.1 System Architecture for Disconnected Composition and Invocation . . 10

3.2 Using Forward Chaining for Simultaneous Composition and Invocation 11

Chapter 4 OWL-S: SERVICE DESCRIPTIONS USING OWL . . 14

Chapter 5 PLANNING FOR COMPOSITION 18

5.1 Planner . 19

5.2 Extraction of Operators from Service Descriptions 20

iv

5.2.1 Additional Constraints . 20

5.3 Planning Algorithm for Composition 21

Chapter 6 PRECONDITIONS AND EFFECTS 23

6.1 Disconnected Composition and Invocation 23

6.2 Modelling Effects . 26

6.3 Adding Semantics to Existing Services 31

6.3.1 Mapping between RDF and XML 34

6.3.2 Realizing Preconditions and Effects 37

Chapter 7 AUTOMATIC INVOCATION 43

7.1 Routines . 45

7.1.1 AutoInvoke . 45

7.1.2 ExQuery and PartQuery . 46

7.1.3 QueryAndMatch . 46

7.1.4 Diagnose . 48

Chapter 8 CONCLUSIONS . 54

REFERENCES . 56

v

LIST OF FIGURES

3.1 Arcitecture for Disconnected Composition and Invocation . . 11

3.2 Architecture for Simultaneous Composition and Invocation . 12

4.1 Currency Conversion Service . 17

6.1 Modelling Effects by Reification 33

6.2 Current Web Service Architecture 33

6.3 Semantic Web Service Architecture 34

6.4 Transformation between RDF and XML 42

6.5 Realization of Preconditions . 42

7.1 The ListOfFlights Class . 50

vi

Chapter 1

INTRODUCTION

Traditionally, the coupling between applications that interact over a network

has been very tight. Changes to any application could sometimes lead to the re-

engineering of the other applications. Introduction of new applications to the system

required an in-depth analysis of the existing system. The tight coupling, along with

the fact that applications in the system were developed independently, made the task

of designing and maintaining these applications very difficult. An alternative black-

box approach was introduced aimed at reducing the tight coupling. In this approach,

the internal working of the system is hidden and functionalities of the application is

exposed as service descriptions. This approach to building applications ,along with a

set of supporting technologies, is referred to as web service technology.

Web Service Description Language (WSDL) is by far the most widely language

used for web service descriptions. Web service technology, in its current state, pro-

vides a platform and language independent way of building applications. In other

words, given a WSDL description for a set of services, the user has the liberty to

interact with the service provider using a language of his/her choice. The actual

remote invocations can be synthesized as a local API, simplifying the integration

of functionalities provided by the service provider. However, there is still a human

involved in the loop. The signature of methods (method name, input and output)

1

2
convey insufficient information so the task of ascertaining the correct usage of the

service is often left to the human. To enable an agent to interact with the service

provider, the agent needs to know the correct sequence of the operations that achieve

the user’s goal (automatic composition) and it needs to know the content of the mes-

sages that need to be sent out to the service provider (automatic invocation). WSDL

descriptions by themselves do not provide sufficient information to enable an agent

to perform the above activities. We use Semantic Web Languages (SWL) to add

semantics to WSDL descriptions and capture information that will enable an agent

to automatically interact with the service.

The goal of this research has been to enable an agent to interact automatically

with a system based solely on service descriptions. This is achieved by using our

techniques for automatic composition and invocation. Web service composition can

be defined as the task of putting together atomic (basic) services to achieve complex

tasks. We present a planner that uses a backward-chaining algorithm for the task of

service composition. Web services by nature are non-deterministic; we take this into

account and suggest techniques for representing the web service to enable composition.

The service composition orders atomic processes in the right sequence; the inter-

action is complete only when the processes are invoked/executed. Invocation involves

gathering the correct data to be provided as input to each service. We present an

algorithm for automatic invocation using two types of queries – ExactQuery and

PartQuery. At any stage, if invocation fails, our algorithm tries to diagnose the

likely cause of failure, which may be either the faulty execution of a service or incor-

rect/incomplete information provided by the user.

We also address the issue of adding semantics to existing services. If Semantic

Web Services (SWS) will be adopted by the industry, there will be a large number of

WSDL/SOAP services in use. Methods of porting these into SWS would be of great

3
help. WSDL operations are defined using inputs and outputs (IOs) whereas OWL-S

represents atomic processes (the equivalent of WSDL operations) in terms of inputs,

outputs, preconditions and effects (IOPEs). We look at how IOs can be mapped to

IOPEs.

1.1 Background and Motivation

Machine-readable descriptions of existing web service applications are stored

in the form of WSDL files. The WSDL file essentially provides information about

the operations (methods) that can be invoked, defines the schema for the message

content, describes the message exchange pattern and the location of the service. This

is analogous to a collection of methods and their signatures along with information

about the syntax of the input and the output. The decision to invoke is still done

manually, based on textual descriptions that explain the implications of invoking

the service. The goal of SWS is to make the existing account of services richer by

articulating the implications in SWL rather than text. The SWS lets a machine know

when a service should/could be executed and what the effects of executing the service

are. This description can, in principle, be used by the agent to perform automatic

discovery, automatic composition and automatic invocation.

The potential to delegate tasks to a client that is capable of interacting with var-

ious services on the web has several implications. A typical (Business-to-Consumer)

B2C scenario involves using online websites for such as shopping and traveling. The

consumer’s interest lies in choosing the best deal from available deals. Best could be

quantified by the customer as a function of factors such as price, reputation of man-

ufacturer and seller, quality of service of the seller and convenience. Traditionally,

there have been two approaches: (1) visit each website individually and interact with

it, or (2) use a service that interacts with a fixed number of websites and aggregate

4
the data for the user. Such services (websites) help the user compare similar services

offered by multiple B2C sites. The former approach is a tedious and time-consuming

task and involves a high cognitive load for the user. The latter, although it is easier

for the user, typically relies on hard-coded logic embedded in wrappers that interact

with the B2C sites. As a result, integrating a new B2C site is a substantial engi-

neering task and such systems need to be updated whenever changes are made to the

websites that are used as information sources.

Even after choosing the website, the user of a B2C site is bound by the func-

tionalities provided by the site. For example, if a user wants to buy a product, they

must also use the shipping service provided by the site selling the product, and pro-

vide the mode of payment accepted by the site. An alternative model would be to

provide users with more flexibility, allowing them to choose from a variety of services

offered by various service providers. Users could choose an online shop for selecting a

product, make the payment using a service that corresponds to their preferred mode

of payment, and choose their favorite shipping service.

A web-service-based system with rich service descriptions coupled with a user

agent offers solutions to some of these problems. The client provides flexibility by

relieving the customer of the tedious task of navigating through the site; at the

same time, it has the potential to interact with an arbitrary number of web-based

businesses, as long as it has the service descriptions for those web sites. Since the

client relies solely on the service description to interact with the service, the service

description needs to be updated every time the service provider decides to change

some part of the service.

We use a B2C based shopping scenario to illustrate our techniques for automatic

composition and invocation. We chose the online shopping domain since it is well

understood and large online shopping stores like Amazon [9] already provide a web

5
service-based infrastructure.

As part of this work, we have implemented a planner that composes services.

We also discuss our techniques for modelling effects and preconditions. We also

present the design of a forward-chaining based service composition and invocation

engine. Chapter 3 discusses the design of two agents: a backward-chaining service-

composition agent and a forward-chaining service-invocation agent. Chapter 4 dis-

cusses the use of OWL-S for service descriptions. In Chapter 5, we discuss our the

planner we use for composition. Chapter 6 discusses preconditions, modeling of ef-

fects and mechanism to add semantics to existing web services. Chapter 7 explains

our algorithm for automatic invocation.

Chapter 2

RELATED WORK

With the increasing popularity of Web Services, several efforts have emerged in

the last year that address the problem of service composition. Before we look at

these approaches, let us revisit the definition of web services. We earlier introduced

the W3C’s definition of web service as a programmatic interface that enables com-

munication among applications. A major part of this initiative involves developing

standard interfaces that describe the applications and uniform way of accessing them.

Only when service providers commit to such standards, others can use it. Develop-

ing representations for web services without regard to standards makes it difficult,

if not impossible, for others to use it. This goes against the primary objective of

web services. We make use of OWL-S, the most widely known Semantic Web-based

framework for describing web services. OWL-S has been designed to add semantics

on top of WSDL, the de facto standard for representing web services.

In our system, we automatically build operators from the web service descriptions

in OWL-S and compose complex tasks from scratch. Most of the service composition

techniques do not address these two points simultaneously.

SWORD [16] is a model for web service composition. However, it uses its own

simple description language and does not support any existing standards like WSDL

or OWL-S. Services are modeled using inputs and outputs, which are specified using

6

7
an Entity Relationship model. Inputs are classified into conditional inputs and data

inputs. Outputs are classified similarly. Conditional inputs/outputs are assertions

about entities on which the service operates and the relationships between entities.

Data inputs/outputs constitute the actual data (attributes of entities) that the service

uses.

A similar framework was developed at IBM Research Laboratories as part of the

Web Services Toolkit (WSTK) [2]. A composition engine [18] has been built for

services described in WSDL. Although this work describes the use of a planner for

composition, constructing operators from the service description is not fully auto-

mated. This is primarily because of the absence of a mechanism to capture domain

knowledge in WSDL. Our planner makes use of services described in OWL-S. OWL

helps us to describe explicit ontologies for capturing domain language. This added

knowledge gives our planner greater versatility and helps compose complex services.

The Golog-based system [13] does service composition by using general templates

that are modified based on user preferences, yielding the final plan. The templates

are not automatically built and constitute part of the plan. Our composer is able to

build plans dynamically from scratch and does not rely on templates for composition.

Semantic E-Workflow Composition [6] talks about composition in workflow sys-

tems. Workflow is an abstract representation of a process. A workflow is built using

components called tasks/activities. Traditionally, appropriate tasks are selected from

a workflow repository. This work introduce the notion of using web services as tasks

in the workflow. They address the issue of selecting appropriate web services us-

ing semantic discovery. They also discuss how web services can be integrated into

workflows by syntactic and semantic integration of inputs and outputs. The primary

contribution of this work is to provide a tool to assist in manual workflow composition.

This work does not deal with OWL-S based semantic web services.

8
SHOP2 is a Hierarchical Task Network (HTN)-based planner for composing web

services [21]. This along with our earlier work on composition [17] were among the

first to deal with composition using DAML-S/OWL-S. The SHOP2-based composer

requires that each atomic service either produces outputs or effects but not both. This

assumption has been made to differentiate between information-gathering services

and effect-producing services. By making this differentiation, SHOP2 executes the

information-gathering services during plan generation and simulates the execution

of services that produce effects. To use SHOP2 for composition, service providers

have to describe services that are consistent with the above assumption. In principle,

services can be re-designed so that each service either produces only outputs or only

effects but not both. Our framework does not the above restriction and re-design is

not required in our case.

Paolucci, Sycara and Kawamura in their work [14] make a reference to

RETSINA, a planner that makes use of the HTN planning paradigm. This plan-

ner is similar to SHOP2 in the way they interleave planning and execution. They

claim that by executing the information-gathering services during planning, unex-

pected situations can be handled by replanning. They make use of OWL-S in their

work but do not mention how the RETSINA planner has been modified to use OWL-S

descriptions.

SHOP2 and RETSINA-based composers offer simultaneous information-gathering

and planning. We think that the advantages of simultaneous composition and invo-

cation in the web services domain is limited. Most services (except the services that

constitute the head of the plan) are dependent on the execution of other services and

cannot be executed in an arbitrary order. This is because these services need inputs

that are available after the execution of other services, specifically, the ones which

are closer to the plan head. As a result, simultaneous execution and planning can

9
be done in a forward-chaining planner or a hybrid planner which starts building the

plan from the head and the tail. Secondly, only information-gathering services can

be invoked during plan generation. Once a service that produces one or more effects

is encountered while building the plan, all services that make use of the information

provided (as output/effect) by this service cannot be executed. Given a goal, it is

not known in advance if a plan can be built successfully. This results in service invo-

cations that correspond to failed attempts to build the plan. Execution of a service

is usually a time-intensive process that involves sending a request and receiving a

response over the network. By first building the complete plan, we avoid these ad-

ditional executions. By committing to a forward-chaining approach, RETSINA and

SHOP2 lose their potential benefits which they gained by their ability to do sensing

(information gathering) during planning.

Our system first builds the plan and then executes it. If a service does not

produce the intended result during execution, the execution engine can request the

planner to build a plan using a different service that produces the same required

result. We do not lose the ability to replan by committing to a disconnected planning

and execution approach. We present the design of a separate invocation engine that

executes the plan generated by the planner. In case the execution of the plan fails,

the invocation also determines the reason for failure – faulty execution of the service

or incomplete information provided by the user.

Chapter 3

INTERNAL ARCHITECTURE OF THE AGENT

3.1 System Architecture for Disconnected Composition and Invocation

Figure 3.1 shows the overall architecture of a Semantic Web Service system

along with the internals of the agent that interacts with such a system. The service

provider provides descriptions (OWL-S+WSDL). The OWL-S part of the description

describes services in terms of IOPEs and are used in building the planning operators

for the Planning module. WSDL defines the structure of messages using a schema,

the message interaction, the SOAP encoding and the location of the service. Planning

operators are synthesized from service descriptions. The user specifies the goal and

other information that she/he wants to use to interact with the service (userKB).

The composer builds a plan to achieve the user’s goal and passes it on to the invo-

cation engine. The invocation engine fetches operators from the plan starting from

the head and moving towards the tail. It gathers information by querying the KB

(userKB+outputKB). The client stub is generated using Apache Axis [19] from the

WSDL file. The client stub contains methods that correspond to service invocations.

The invocation engine invokes these methods to do the actual invocation.

10

11
3.2 Using Forward Chaining for Simultaneous Composition and Invoca-

tion

The alternative approach would be to use forward-chaining and move towards

the goal. Forward chaining has the advantage of maintaining the complete descrip-

tion of the state of the system at all intermediate states [4]. This feature enables

simultaneous planning and invocation. However, it suffers from the lack of direction

in reaching the goal. As a result, the planner has to deal with a very large search

space.

Let us assume that the agent has service descriptions to perform various tasks.

For instance, services used to buy a book are clustered together. We refer to each

individual group as a ”service-group.” A forward-chaining algorithm starts from the

initial state and moves towards the goal state. In a B2C site, the initial state is

the user’s knowledge known to the user. If the agent were to search for services

Fig. 3.1. Arcitecture for Disconnected Composition and Invocation

12
that take some combination of user information (initial state) as the input, its search

space will include a large number of services from each service-group. The problem

is compounded by the fact that the agent executes all of these services in its forward-

chaining algorithm. Compartmentalizing can be used to address this problem. Each

service-group is stored in distinct KBs. At any given time the planner has access

to service from a single service-group. When the user specifies a goal, the most

appropriate service-group is chosen and the planner uses a service in this service-

group to build the plan. Service-group independent services – services that can be

used across groups (for example, a third pary credit card authorization service) –

should be treated differently and considered while building all plans, across service-

groups.

Fig. 3.2. Architecture for Simultaneous Composition and Invocation

Figure 3.2 shows the architecture of an agent that does simultaneous composition

and invocation. The forward-chaining algorithm is implicit in its working. The agent

invokes a service and receives the output. The output is transformed into effects or

13
preconditions or both. Effects manipulate data structures in the client. Preconditions

act as guards for actions. The realization of new preconditions permits the client to

take one or more actions. These actions could be invocation of services or operations

internal to the client. It can be the case that the realization of a single precondition

can make more than one service, belonging to different service-groups, executable.

This is where compartmentalization of service-groups can be used by exposing the

agent to the service-group that achieves the user’s objective. When the realization of

a precondition allows the execution of multiple services in the same service-group and

if all these services produce different outputs, they are executed one after the other.

The precondition might enable the execution of more than one service that achieves

the same output. In such cases, the agent, on behalf of the user, chooses one service

and executes it. The agent might make use of user preferences to pick a service.

Chapter 4

OWL-S: SERVICE DESCRIPTIONS USING

OWL

OWL-S is an ontology in OWL for describing services. The long-term aim of

OWL-S is to help service providers describe services to enable automatic discovery,

composition and execution monitoring. OWL-S consists of the following ontologies:

The topmost level consists of a Service ontology. The Service is described in

terms of a ServiceProfile, ServiceModel and a ServiceGrounding ontology, which are

as follows:

1. The service presents a ServiceProfile which has a subclass Profile. The Profile

provides a vocabulary to characterize properties of the service provider, func-

tional properties of the service like Inputs, Outputs, Effects and Preconditions

(IOPEs) and non-functional properties of the service. The Profile is used for

discovering the service. The service provider provides this description to the

directory service.

2. The service is describedBy a ServiceModel which has a subclass called Process.

The Process consists of all the functional properties of the service; the Profile

on the other hand need not include all the functional properties. The service

14

15
could be a collection of atomic services, composite services or a combination of

both. The Process lets the service provider describe services in terms of IOPEs

and is used for composition.

3. The service supports a ServiceGrounding, which has a subclass called Ground-

ing. The Grounding provides an interface to plug in WSDL descriptions. It also

provides eXtensible Stylesheet Language Transformations (XSLT) stylesheets

for transforming between XML and RDF/XML. Grounding indicates how each

atomic service can be invoked using a WSDL operation (this is equivalent to an

atomic service in WSDL) .

According to OWL-S 1.0 specs, the service descriptions are instances of the

Profile and Process ontologies.

Consider the example of a currency conversion service as it would be described

in the process model.

<process:AtomicProcess rdf:ID="CurrencyConverter">

<process:hasInput rdf:resource="#SourceCurrency"/>

<process:hasOutput rdf:resource="#TargetCurrency"/>

</process:AtomicProcess>

<process:Input rdf:ID="SourceCurrency">

<process:parameterType rdf:resource="#Currency"/>

</process:Input>

<process:UnconditionalOutput rdf:ID="TargetCurrency">

<process:coOutput rdf:resource="#Currency"/>

</process:Output>

<owl:Class rdf:Id="Currency">

</owl:Class>

16
<owl:DatatypeProperty rdf:ID="currencyType">

<rdfs:domain rdf:resource="#Currency"/>

<rdfs:range rdf:resource="&xsd;#string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="amount">

<rdfs:domain rdf:resource="#Currency"/>

<rdfs:range rdf:resource="&xsd;#float"/>

</owl:DatatypeProperty>

The above fragment of RDF/XML shows the currency conversion service with

a single input and output. SourceCurrency and TargetCurrency are instances of the

class Currency. Currency is defined as the class with two properties – currencyType

and amount. The diagramatic representation of this service is shown in Figure 4.1.

The service takes in a instance of the class SourceCurrency and produces an instance

of class TargetCurrency of equivalent value. Instances of SourceCurrency and Tar-

getCurrency contain both the type of the currency and the amount.

17

Currency Converter

Source Currency

Target Currency

currencyType

amount

currencyType

amount

Fig. 4.1. Currency Conversion Service

Chapter 5

PLANNING FOR COMPOSITION

Web service composition involves ordering a set of atomic services in the correct

order to satisfy a given goal. This problem can be viewed as a planning problem

P described by the tuple <G,A> where G is the goal and A is the set of actions.

When mapping the planning problem to service composition, actions are replaced by

services. Our planner uses a backward-chaining algorithm to build the plan. The

output of this algorithm is a plan that achieves the given goal and an initial state,

which indicates the knowledge that needs to be provided by the user to execute the

plan.

Although the atomic process describes the effects of executing the service, we do

not use it for composing the plans but relying solely on preconditions and outputs.

Our definition of effects is different from the definition of effects as specified by OWL-

S. According to the OWL-S definition, if a service that produces an effect is invoked,

the physical state of the world changes. We claim that effects (in the OWL-S sense)

and preconditions are both implicit in the output produced by the service invocation.

18

19
A service can be invoked if the precondition associated with it holds. Preconditions

associated with services are sufficient to determine the sequencing constraints between

services. These constraints are used to build the plan. We use effects to address the

problem of automatic invocation of the service. In our system, effects are used to

manipulate data structures within the agent.

5.1 Planner

The Planner is designed in Java. Jess [9] is used as the knowledge base (KB)

and contains facts stored as predicate-subject-object (PSO) triples. Jess is a Java-

based expert system supporting framing rules and queries. We also use Jess to extract

planning operators.

A service operator is characterized as Service(S,P) where:

1. S is the service name

2. P is the list of inputs, ouputs and preconditions associated with the service

In our implementation, we represent service operators as a Java class with IOPEs as

fields of this class. The logical equivalent of these operators can be represented as:

(service servicename

(input i)

(output o)

(precondition p))

(effect e))

We use this representation for all subsequent chapters.

20
5.2 Extraction of Operators from Service Descriptions

The service descriptions are in OWL-S and stored in RDF/XML. The extraction

of planning operators involves three steps:

1. Converting RDF/XML into Predicate-Subject-Object (PSO) triples using Jena
[10] libraries.

2. Extraction of planning operators from service description.

3. Associating additional parameters to operators.

The conversion of the service description to PSO triples is a simple process that

makes use of the Jena libraries. After conversion, all the triples are asserted as facts

into a Jess KB. Extraction of planning operators is done using a combination of

rules and queries (defrule and defqueries in Jess). For each service, the entire KB is

queried for its corresponding IOPEs and a service/planning operator is built using

this information.

5.2.1 Additional Constraints

The third step is optional but can be very useful in certain cases. In the examples

we present in our discussions, we assume that there are two entities (service provider

and end user) involved during the interaction, but there could be scenarios that involve

more than two entities. The service provider providing services to an end user could

itself be using the services provided by a second service provider. For example, a travel

21
service providing a vacation package could be using a weather service or a currency

exchange service from some other service provider. The travel service might choose

to allow end users to use the weather or currency service. The weather and currency

service providers might be charging for using their services; therefore, the travel

service might impose additional constraints to permit only registered users to use these

services. In the above scenarios the same weather service looks different depending

upon who is using it. The travel service provider adds additional constraints to the

weather or currency service and exposes these modified service to the end user.

The service provided by the weather service provider might look like this:

(service WeatherLookUp

(input ZipCode)

(ouput Weather))

The travel service displays this service to the end user as follows:

(service TravelWeatherLookUp

(precondition RegisteredUser)

(input ZipCode)

(ouput Weather))

5.3 Planning Algorithm for Composition

The algorithm used by our planner is a simple backward-chaining algorithm. The

user initializes the planner by specifying a goal. The planner looks for service(s) whose

output(s) satisfy this goal and include these in the plan. The inputs and preconditions

of the newly included service(s) are treated as unsatisfied goals. Now the planner tries

22
to satisfy the unsatisfied goals. This corresponds to a new iteration which involves

executing the same steps described above. Planning terminates when the planner

fails to find any operators that satisfy any of the unsatisfied goals. If all unsatisfied

goals correspond to user inputs then the plan could be successful. This uncertainty

is a result of the fact that services are non-deterministic. A service could fail due to

infrastructure problems like lost messages or network failure. A service could also fail

at a higher level, i.e., the process of service might have executed successfully without

producing the intended result. For example, there might be a service in the plan that

adds an item to the shopping cart. If the particular item is out of stock then the

service did not produce the intended result. The composer provides a plan to execute

the services in the right order and the invocation engine invokes the service in that

order. The plan is only successful if all the services in the plan execute as intended:

this can be ascertained only during execution.

Chapter 6

PRECONDITIONS AND EFFECTS

Modelling of effects and preconditions is an open issue in the OWL-S community.

OWL-S 1.0 provides the definition of preconditions and effects. This is currently a

subject of discussions and a concrete defintion has not been specified. Guidelines

for modelling preconditions and effects have not been elaborated. We introduce our

notion of preconditions and effects and discuss how these can be used in web service

composition. Our approach for incorporating preconditions and effects is modular:

our technique allows existing services to be described in OWL-S.

6.1 Disconnected Composition and Invocation

Our earlier work [17] relied on connecting effects with preconditions for building

the plan. More recently, we have adopted an approach in which services are linked

using outputs and preconditions. Effects are used for another purpose explained later

in this section. We illustrate this approach with two atomic services from the process

model of an imaginary shipping service:

23

24

(service CreditCardAuthorization

(input CardNum)

(input CardExpDate)

(input CardType)

(output CardStatus))

(service Ship

(input DestA)

(input DestB)

(precondition CreditVerified)

(effect PackageShipped)

(output ShippingInvoice))

These services can be composed only at run time. The Ship service can be exe-

cuted only when the precondition CreditVerified evaluates to true. The information

needed to evaluate this precondition is available only after the CreditCardAuthoriza-

tion service is executed. In the above instance, the output CardStatus of Credit-

CardAuthorization is used for precondition evaluation. The sequencing constraint

between the two services is not evident from the service description before execution.

Automatic compostion and invocation in our system is a two-step process: compo-

sition followed by invocation. We use the realizedBy construct to ascertain the list

of outputs required to achieve a precondition. Whether they actually produce the

desired effect of realizing the precondition can be determined only during service

execution.

Use of the realizedBy construct enables us to build the plan without execut-

ing a single service, therefore achieving disconnected planning and execution. By

25
disconnecting composition and invocation one can ascertain from the plan and the

unsatisfied goals whether the plan can achieve the user’s objective. Once we know if

the plan can achieve the user’s objective, we start the invocation process.

Using the realizedBy construct, the shipping service description would be:

Shipping service using realizedBy construct:

(service CreditCardAuthorization

(input CardNum)

(input CardExpDate)

(input CardType)

(output CardStatus))

(service Ship

(input DestA)

(input DestB)

(precondition pCreditVerified)

(effect PackageShipped)

(output ShippingInvoice))

(realizedBy pCreditVerified CardStatus)

From the use of realizedBy construct it is evident that execution of the Ship ser-

vice needs to be preceded by the CreditCardAuthorization service. The realizedBy

property is associated with a precondition. These could be provided by the service

provider or could be generated by the agent as well. For example, if the agent is

aware of a service that produces CardStatusResult as output and if this output is

equivalent to the CardStatus services, the agent can do the following inferencing.

(realizedBy pCreditVerified CardStatus)

(sameAs CardStatus CardStatusResult)

=>

(realizedBy pCreditVerified CardStatusResult)

26
If more than one service realizes the same precondition, the planner

could select one service using the following heuristics:

1. Pick a service randomly

2. Select the operator (service) with the least number of preconditions

or inputs,

3. Select operators that have pre-conditions that are known to be easily

satisfiable.

These are some of the issues we have identified but our current planner

does not handle such cases.

6.2 Modelling Effects

We use effects as side effects of executing a service at the agent’s end, resulting

in changes to the agent’s KB. This definition is different from effects as defined by

OWL-S specifications. OWL-S defines effects as events that alter the state of the

world. In our system, change in world state is conveyed using outputs. The motive of

having an effect (in OWL-S) is to differentiate between information-gathering services

(also known as sensing) and services that alter the physical state of the world. In

other words, services that produce only outputs are idempotent whereas services

with at least one effect are non-idempotent. This differentiation is not required.

Most existing web services make use of WSDL descriptions and WSDL does not

differentiate between idempotent and non-idempotent services. Typically, servers

maintain some state information about the client which ensures that the client doesn’t

unintentionally execute the same operation twice. Differentiation between idempotent

and non-idempotent services only helps planners which make use of simultaneous

27
planning and execution.

Just like preconditions, which are realized from outputs, effects are implicit in

the output. For instance, the precondition pCreditCardVerified is realized from the

CardStatus output. Similarly, the effect PackageShipped can ascertained from the

information provided by the ShippingInvoice output. Having a special construct to

convey this information does not serve any purpose other than what was conveyed

by the output.

We use effects in our description to enable increased automation in our agent.

We use effects to manage data in the KB of the agent, using reification. Take the

case of a routine in Java that is used to add objects into a queue.

public String AddToQ(Queue Q, Object A)

{

Q.add(ob);

Return ob+"- added";

}

public String AddToQ1(Queue Q, Object A)

{

Q.add(ob);

Return Q;

}

public String DeleteFromQ(Queue Q, Object A)

{

Q.add(ob);

Return Q;

}

28
In this routine the inputs are object A and object Q. The output is a message

indicating that an object has been added. The effect in this case would be that there

is a new object A in the queue. Note that the equivalent service description of this

routine would look like the signature of the routine public String AddToQ(Queue Q,

Object A). This signature does not convey information about the effect that Q now

has A in it. One could argue that if the service returns the object Q (in method

AddToQ1) as the output, then by inspecting the content of Q, one can determine

this effect. The new routine will succeed in conveying the effect of the addition of an

element. There are other cases where this technique of returning the object will fail.

Consider a case where the agent decides to add an element to the queue (using service

AddToQ1) and then deletes it using DeleteFromQ. On addition, the AddToQ1 will

provide the object Q with A in it. To delete an object from the queue, the agent

has to reset its state of the object Q and then generate the new state of Q, from the

output. The output does not convey the required reset and generate operations to

the agent. We propose a technique to achieve this by using two primitive operations

– addition and deletion of facts. Knowledge in semantic web based systems is stored

as facts which are represented as triples. By addition and deletion of facts we can

convey effects to the agent. The addition of an object into the queue is brought about

by adding statements into the KB and the deletion of the object is brought about by

the deletion of facts from the KB that represent the object being removed.

We further explain our idea of effects by using an example that consists of the

29
following services: Login, LookUp, AddToCart and RemoveFromCart.

The LookUp service takes a keyword as input and provides a list of items that

matched the keyword as the outptut. On receiving the list of items, the agent deter-

mines a match using arbitrary attributes of the item it intends to add to the Cart.

Once the right item is determined, it is sent as input to the AddToCart service which

brings about the effect of adding the item to the Cart. Similarly, the effect of re-

moving an item from the Cart can be modelled by removing statements. The Login,

LookUp, AddToCart and RemoveToCart services illustrated below have been used in

the rest of the chapter. Inputs and outputs (in bold) correspond to actual items that

can be described in an equivalent WSDL-based system; the remaining parameters

(preconditions and effects) are part of the OWL-S description of the service. The

values of these parameters are synthesized from the outputs.

(service Login

(input username)
(input password)
(output SessionInfo)
(effect InitializeClient))

(service LookUp

(input item)
(output itemList))

(service AddToCart

(input Item)
(precondition CartExists)

(output MsgItemAdded)
(effect ItemInCart))

30
(service RemoveFromCart

(input Item)
(precondition CartExists)

(precondition ItemInCart)

(output MsgItemRemoved)
(effect ItemRemoved))

We integrate effects by extending the OWL-S ontology. We introduce a

new class called Event which is pointed to by owls:ceEffect property of the class

owls:ConditionalEffect. ceEffect and ConditionalEffect are parts of the existing OWL-

S ontology. An Event can add statements or remove statements or both.

<!--Creates a cart at the client-->

<ace:Event rdf:ID="CreateCartEffect">

<ace:addStatements rdf:parseType="Collection">

<bk:Cart rdf:ID="Your_Cart"/>

</ace:addStatements>

</ace:Event>

The above Event states that CreateCartEffect is an effect and the agent can bring

about this effect by adding facts to its KB enclosed within the addStatements prop-

erty. The fact within the addStatements is (PropertyValue (predicate type) (subject

Your Cart) (object Cart)) i.e., the instance Your Cart is of type Cart. By adding

these statements the agent has created a Cart data-structure in its KB.

<!--Adds an item to the cart-->

<ace:Event rdf:ID="AddToCartEffect">

<ace:addStatements rdf:parseType="Collection">

<ace:Item rdf:about="Item1">

<ace:member rdf:resource="Your_Cart"/>

31
</ace:Item>

</ace:addStatements>

</ace:Event>

The above event add an instance of Class Item to the cart instance using the member

property.

<!--Removes the item from the cart-->

<ace:Event rdf:ID="RemoveFromCartEffect">

<ace:removeStatements rdf:parseType="Collection">

<ace:Item rdf:about="Item1">

<ace:member rdf:resource="Your_Cart"/>

</ace:Item>

</ace:removeStatements>

</ace:Event>

The above event removes an instance of Class item by removing the triple (Proper-

tyValue (predicate member) (subject Item1) (object Your Cart)).

CreateCartEffect is one of the many effects that correspond to InitializeClient

effect of the service Login. CreateCartEffect adds statements (triples) to the KB. Ad-

dToCartEffect, by adding statements, has associated Item1 with the cart Your Cart.

Similarly, RemoveFromCartEffect has removed Item1 from the Cart.

6.3 Adding Semantics to Existing Services

As evident from the earlier example, adding semantics enabled a WSDL service

to elaborate effects and preconditions without changing the existing WSDL-based

framework. To enable the industry to adopt this technology, we must ensure that the

32
new system fits in well into their existing framwework (based only on WSDL). Figure

6.2 shows a simplified view of the current web service architecture. In a B2C scenario,

contractual obligations are not brought about by negotiations; the service provider

defines the contract and the consumer adheres to it. However, in a B2B scenario,

terms and conditions of use of the service are fixed after a phase of negotiations. This

paper primarily addresses the B2C scenario and ignores contractual obligations.

The WSDL file reveals the functionalities provided by the service provider using the

operation construct of WSDL. The wsdl:operation is the equivalent of an atomic ser-

vice. It also provides information about the structure of the messages to be exchanged

and the location of the service. Figure 6.3 shows how semantics can be addded to an

existing architecture. The new architecture not only incorporates semantics but also

ensures backward compatibility; i.e., the client described in Figure 6.2 can be plugged

into the architecture in Figure 6.3 without any changes to the services described by

the WSDL file or the logic residing in the server. The client in Figure 6.3 has several

additional components that enables it to utilize the additional information described

in the semantic service descriptions. The client has a semantic web infrastructure

(SWI) that enables it to read semantic descriptions and make inferences from them.

All information coming into the client is stored in the form of PSO triples. The Dis-

covery module uses the SWI to perform discovery and match-making. Discovery and

match-making are broad topics themselves [12, ?] and is beyond the scope of this

paper. The composition module does the task of chaining together basic operations to

33

Fig. 6.1. Modelling Effects by Reification

Fig. 6.2. Current Web Service Architecture

34
perform complex operations. The invocation engine then invokes services according

to the plan. Each atomic service is grounded in an wsdl:operation that already exists

as part of the old architecture.

Fig. 6.3. Semantic Web Service Architecture

6.3.1 Mapping between RDF and XML

We present the design of our transformation logic. This logis is not part of our

implemented system. We represent RDF as RDF/XML files in our implementation.

Our discussion about mapping between RDF and XML deals with RDF/XML which

is one of the ways of representing RDF.

All information stored in the agent is in the form of PSO triples which are obtained

35
from RDF represented in RDF/XML. Inputs and ouputs generated by WSDL ser-

vices are in XML. We need a mechanism for transforming the XML messages into

RDF/XML. Message1 (shown below) is an example of an output message from a

WSDL-based search or look-up service. Outputs of WSDL based systems are in

XML.

<!-- Message1-->

<itemList>

<item partNum="872-AA">

<productName>Lawnmower</productName>

<USPrice>148.95</USPrice>

</item>

<item partNum="926-AA">

<productName>Plasma Monitor</productName>

<USPrice>39.98</USPrice>

</item>

</itemList>

The above XML message provides information about a particular item of sale at the

online shop. Each item has a part number, a product name and a price.

We transform this Message1 into the following RDF/XML message (Message2). The

RDF/XML file is then converted into facts and asserted into the KB. The namespace

information (attributes within the rdf:RDF tag) is introduced by the transformation

logic. Transformation logic is provided by the service provider. It contains informa-

tion to transform the XML message into an RDF/XML message.

<?xml version="1.0"?>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

36
xmlns:owl="http://www.w3.org/2002/07/owl"

xmlns:bk="http://www.bookstore.com/bookStoreEffects/"

xmlns="http://www.bookstore.com/workspace/">

<bk:ItemList rdf:ID="itemlist">

<bk:member>

<bk:Item rdf:ID="gen872-AA">

<productName>Lawnmower</productName>

<bk:USPrice>148.95</bk:USPrice>

</bk:Item>

</bk:member>

<bk:member>

<bk:Item rdf:ID="gen926-AA">

<bk:productName>Plasma Monitor</bk:productName>

<bk:USPrice>39.98</bk:USPrice>

</bk:Item>

</bk:member>

</bk:ItemList>

</rdf:RDF>

The following issues need to addressed when transforming from XML to RDF/XML.

1. Correct naming convention for instances of classes. For example, in the above

case the value of partNum has been used to name instances and the name of

these instances should be an XML Name. It is important to make sure that

for a particular client the URIs of instances are unique and references to these

should be correct.

2. In RDF/XML, the serialized information has a stripping pattern in which re-

sources and properties alternate. However, XML doesn’t require one to adhere

to this pattern since there is no notion of resource or property in XML.

3. While transforming RDF/XML to XML, the transformation logic should make

sure that the XML produced confirms to the XML schema in the WSDL doc-

37
ument. XML schema in the WSDL document specifies the structure of the

messages (input and output).

It is also important to note that these transformations are not entirely syntactic.

For example, in the AddToCart service, the output could just be a string which

indicates whether the Item was added or not. Although such a message would make

perfect sense to a user, the semantics of the message needs to be made explicit to the

agent. It can also be the case that the string received as response from the AddToCart

service does not have any reference to the Cart or the Item. In such cases, the

transformation logic can be more complicated where it will have to maintain the input

information of the AddToCart service which actually contains the references to the

Cart and the Item. Figure 6.4 show the flow of messges in and out of the agent. Our

design makes use of Extensible Stylesheet Language (XSL) for this transformation.

6.3.2 Realizing Preconditions and Effects

Preconditions and effects differ in the way they are represented and handled by

the agent. An effect is brought about by either adding or removing statements from

the KB; preconditions are conditions that evaluate to TRUE/FALSE. The evaluation

of preconditions and the addition or removal of statements is during execution and

not during planning. A precondition is evaluated to TRUE/FALSE by checking the

information generated by applying the transformation logic to output messages. A

service with a precondition(s) can be executed when the precondition(s) evaluates to

38
TRUE. Before executing each service, the preconditions associated with it must be

checked. Effects, on the other hand, do not play a role in deciding if a service can

be invoked, they merely manage the information at the client. There is no notion

of preconditions and effects in WSDL. We need a way to incorporate preconditions

and effects: without introducing new messages or changing the content of messages

provided by the existing system.

The message corresponding to session information after successful login to a book

store might look like this:

<?xml version="1.0"?>

<SessionInfo>

<ShortName>Derick</ShortName>

<SessionId>12456ARP</SessionId>

<Recommendations>

<book>Alchemist</book>

<DVD>DOS for Dummies</DVD>

</Recommendations>

<WishList>

<Misc>XXX</Misc>

<Misc>YYY</Misc>

</WishList>

<Cart name="DerickCart"/>

<Message>Login Successful</Message>

</SessionInfo>

The above example of an output message – SessionInfo is returned when a user by the

name Derick logs into the book store using the Login Service. Based on his previous

interactions, the book store might make some recommendations and provide a list of

books the user intends to buy (WishList).

39
When the login operation fails, the message might look like this:

<?xml version="1.0"?>

<SessionInfo>

<Message>Faulty username or Password!</Message>

</SessionIno>

This message is used to synthesize the InitializeClient effect and the CartExists

precondition. Among other things, initializing the client could involve creating and

populating the user’s WishList. We do this using the following effect:

<!--Creates and populates the wish list-->

<ace:Event rdf:ID="InitializeClientEffect">

<ace:addStatements rdf:parseType="Collection">

<az:Cart rdf:ID="DerickCart"

<az:WishList rdf:ID="DerickWishList"/>

<az:Item rdf:ID="XXX">

<az:member rdf:about=" DerickWishList ">

</az:Item>

<az:Item rdf:ID="YYY">

<az:member rdf:about=" DerickWishList ">

</az:Item>

</ace:addStatements>

</ace:Event>

When the login is successful, we generate the above piece of RDF from the contents of

the SessionInfo message. When the facts in this message are asserted, the agent has

created an instance of the Cart called DerickCart, created an instance of WishList

called DerickWishList and added items XXX and YYY to the wish list. On login

failure, the transformation logic does not produce the above message and no facts are

asserted into the agent’s KB.

40
We use a similar technique to generate preconditions. The session message also

contains information about the cart and its contents. We generate the CartExist-

sPrecondition.

<process:Condition rdf:ID="CartExistsPrecondition">

<ace:boundTo rdf:about="DerickCart">

<ace:groundTo>

<ace:TruthValue rdf:about="TRUE"/>

</ace:groundTo>

</process:Condition>

The description states threat CartExistsPrecondition holds (is TRUE) for the

instance DerickCart of the class Cart.

This description makes use of the Condition class of the extended OWL-S ontol-

ogy. We have included two new properties: boundTo and groundTo. The boundTo

property points to an instance and the precondition is only valid with respect to the

specified instance or class. The groundTo property points to a class called Truth-

Value. The precondition is evaluated by checking the instance of TruthValue which

can only be TRUE/FALSE. If the precondition evaluates to FALSE during invoca-

tion, this implies that the service did not produce the desired result. In this case, the

invocation engine could request an alternative service that could realize the same pre-

condition. In the worst-case scenario, the planner has to build a new plan excluding

the service whose output failed to realize the precondition. The service description

includes the InitializeClientEffect and CartExistsPrecondition but the client is re-

sponsible for binding these effects and preconditions to instances. For example, in

41
case of the CartExistsPrecondition, it is bound to Derick Cart and is grounded to

TRUE. Figure 6.5 illustrates realization of preconditions.

42

Fig. 6.4. Transformation between RDF and XML

Fig. 6.5. Realization of Preconditions

Chapter 7

AUTOMATIC INVOCATION

This section explains the invocation algorithm for executing the plan. The plan

provides the ordering constraints between services required to satisfy the user’s goal.

The agent now needs to determine what information needs to be sent as input, use

the output to determine if the service was executed correctly and finally combine

output information with the agent’s existing knowledge to execute the next service.

This set of tasks is repeated till all the services in the plan are executed. Note that

although the plan is built using backward chaining, invocation (plan execution) is in

the forward direction. Our algorithm for automatic invocation is shown below. We

explain all the routines used in the algorithm is the next section.

Terminology:

input : class definition of the input

instanceTemplate(class) : instances with unbounded rdf:ID and

rdf:resource attributes

output : class definition of output\tains knowledge

specified by the user

outputKB : KB that contains knowledge generated from

outputs received by service executions

43

44
AutoInvoke(plan)
IF IsEmpty(plan)

Return ”Nothing to Execute!”
Get the topmost service(s) from the plan and store it in Services[]
FOR each service in Services[]
IF all precondtion of the service realize to ’TRUE’

FOR each input
QMResult=QueryAndMatch(input, userKB)
IF (QMResult==NIL)

QMResult=QueryAndMatch(input, outputKB)
IF (QMResult==NIL)

pSol=Diagnose(input, outputs[])
IF (pSol==NIL)
Return ”Execution Failed” -> input

For each service in Services[]
output=execute(Service)
Store output in outputKB

Return ”Execution Successful”

QueryAndMatch(input, KB)
Results[]=ExQuery(instanceTemplateOf(input), KB)
IF (KB==userKB)

IF (Results.size()==0)
Return NIL

IF (Results.size()==1)
Return Results[0]

IF (Results.size()>1)
Return (PromptUser(input, ”Make a choice”, Results)

IF (KB==outputKB)
IF (Results.size()==1)

Return Results[0]
IF (Results.size()>1)

Return (PromptUser(input, ”Make a choice”, Results)
IF (Results.size()==NIL)

hints[]=PartQuery(instanceTemplateOf(input), userKB)
IF (hints.size()==0)

Return NIL
IF (hints[].size>1)

hint=PromptUser(input, ”Choose a hint”, hints[])
IF (hints[].size==1)

hint=hints[0]
MResult=ExQuery(hint, Results)
IF MResult.length==1

Return MResult[0]
IF (MResult==NIL)

Return NIL
ELSE

Return PromptUser(input, ”Make a choice”, MResults)

ExQuery(qPattern, KB)
Return (Triples that match the query pattern)

PartQuery(input, KB)
qPatterns[0]=instanceTemplateOf(input);
level=0
WHILE (Result==NIL)

FOR i=0 TO qPatterns.length
Results=ExQuery(qPatterns[i],KB)
IF Results!=NIL

Return Envelope(Results)
qPatterns[]=GetInnerLevelInstance(input,++level)

END WHILE

45
Diagnose(input, outputs[])
Causes[]=GetServices(input, outputs[])
IF Causes[]==NIL

pSol=PromptUser(input, ”User input required”)
ELSEIF Causes.length()==1

pSol=PromptUser(input, ”Execution Error”, Causes[0])
ELSE

pSol=PromptUser(input, ”Execution Error”, Causes)
RETURN pSol

7.1 Routines

This section describes the set of routines used for automatic invocation.

7.1.1 AutoInvoke

The AutoInvoke routine takes the plan as the input and has access to user infor-

mation stored as facts in the userKB and the outputs received from earlier execution

of services stored as facts in the outputKB: both these reside in Jess. The plan has

n levels, with the head of the plan corresponding to level 0 and the tail of the plan

corresponding to level n. We pick the operators (services) at level 0 and find check if

all preconditions associated with them hold TRUE. We then query userKB and the

ouputKB to find a match for their inputs. If a match is found for all the inputs, we

execute the service and store the ouputs received in the outputKB. We then move on

and pick operators from the next level. If all inputs are not found (QueryAndMatch

returns NIL), we try to diagnose the cause of error using the Diagnose routine. If all

the services in all the levels are executed successfully, then plan execution succeeds.

46
7.1.2 ExQuery and PartQuery

The ExQuery is used to retrieve exact matches from the KB. This routine returns

all triples that corresponds to the given query pattern. It is typically used to find

instances of a particular class. The method instanceTemplateOf(A) builds a query

pattern that cab be used to retrieves all instances of class A.

PartQuery works differently. An instance of a class could contain other instances

nested within it. It is possible that the user has specified some of the nested instances

and not the outer instance. PartQuery has been designed to look for these nested

instances and tries to determine the value of the outer instance from the outputKB.

The PartQuery works by first trying to find a match that corresponds to the outermost

instance; when this fails, it queries the KB for inner instances. If at any level there is

a match, then this instance is enveloped and returned. The Envelope routine builds

a query pattern for the outermost instance in which the inner instances have a value

and outer instances are assigned variables.

7.1.3 QueryAndMatch

This routine has two purposes: (1) Query: find all instances of a particular class

in a given KB and (2) Match: pick the correct instance if the query returns multiple

instances. The input to this routine is a class definition that corresponds to the input

of a service and the knowledge base to be queried. The KB can either be the userKB

or the outputKB. The routine behaves differently based on the KB being queried.

47
If the input is the userKB and if the querying phase returns a single match, the

routine returns the instance and terminates. In cases where multiple instances are

found, the user is asked to pick the correct choice. The agent might not have enough

infromation to pick the right choice. If querying doesn’t return a single instance, the

routine returns a NIL. The AutoInvoke routine responds to this by again invoking

the QueryAndMatch routine, but now with the outputKB as the input.

When the KB being queried is the outputKB, the flow of the routine is somewhat

different. The routine first queries the outputKB. If a single instance is returned, the

instance is returned and the routine terminates. If more than one instance is returned,

the user is asked to pick the right choice. If the query fails to return a value, the

routine goes through an additional phase to determine the correct instance. This is

where the behavior of QueryAndMatch with outputKB as the input KB differs from

its behavior with userKB as the input KB.

The routine now tries to find a matching instance by using incomplete infor-

mation that might be specified by the user in the userKB. A class definition that

corresponds to an input of service could consist of other class definitions (nested

classes). The user might have specified the instances of these nested classes in the

userKB without instantiating the main outer class. This is an attempt to detemine

the correct instance based on partial information specified by the user. We make use

of the PartQuery to handle incomplete information. As explained in an earlier sec-

tion, PartQuery looks for instances of nested classes. Even if a single nested instance

48
is found, then this instance is wrapped with all outer instances bound to variables.

This enveloped query pattern is called a hint. The hint is now used to query the

outputKB with the hope that an instance corresponding to the complete definition

of the input class would be found. If a single result is found then this is the input

to the service. If more than one instance is found, user is again prompted to make a

choice. Finally, if querying with the hint doesn’t return anything, a NIL is returned.

7.1.4 Diagnose

The missing input, and the outputs of all executed services are the input param-

eters for the Diagnose routine. In this subsection, all references to ouptut(s) mean

output(s) of executed services only. The cause of the unavailable input is a result of

either incomplete information provided by the user or due to the faulty execution of

a service. The check for the first case has already been performed by the AutoInvoke

routine. Diagnose routine now tries to determine the service that did not execute

as intended. When invoking a sequence of services, the input to the first set of ser-

vices is always user related information. The input to other services, is either user

information or information from the output of a earlier executed service. If the input

is derived from output, then we have two cases: (1) the ouput has the exact class

defintiion as the input or (2) the class definition of the input is a part of the class

definition the output. For example, the class Item (say an input to some service) is

a part of the class definition of ItemList which is essentially a container for multiple

instances of Item. The GetService checks if the class definition of the missing input

is the same as one of the classes that correspond to the output of a service or if it is a

nested class of one of the output classes. If the GetService does not find any match,

we can conclude that the missing input is expected from the user. It GetService finds

one or more matches then we can conclude that the corresponding services did not

execute correctly. This list of service(s) is shown to the user. As an example, consider

the following two atomic services:

49
(service AvailableFlights

(input DeptAirport)

(input DestAirport)

(input DeptDate)

(output ListOfFlights))

(service BookFlight

(precondition ListOfFlightsAvail)

(input FlightInfo)

(input UserName)

(input CreditCardInfo)

(output BookingStatus)

The class descriptions are as follows (we defined only classes relevant to the sub-
sequent discussion):

<owl:Class rdf:ID="ListOfFlights">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#member"/>

<owl:allValuesFrom rdf:resource="#FlightInfo"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:ObjectProperty rdf:ID="member"/>

<owl:Class rdf:ID="FlightInfo">

<owl:intersectionOf rdf:parseType="Collection">

<owl:Restriction owl:cardinality="1">

<owl:onProperty rdf:resource="#airline"/>

<owl:allValuesFrom rdf:resource="#Airline"/>

</owl:Restriction>

<owl:Restriction owl:cardinality="1">

<owl:onProperty rdf:resource="#deptTime"/>

<owl:allValuesFrom rdf:resource="&xsd;#string"/>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>

<rdf:Property rdf:ID="departure"/>

<rdf:Property rdf:ID="destination"/>

<rdf:Property rdf:ID="airlines"/>

<rdf:Property rdf:ID="deptTime"/>

A diagramatic representation of this Class would is shown in 7.1

Let us assume that the user provides the following information:

50

ListOfFlights

FlightInfo
member

String

Airline

deptTime

airline

String

String

departure

destination

Fig. 7.1. The ListOfFlights Class

<fly:DeptAirport>

<fly:name>London Heathrow</fly:name>

</fly:DeptAirport>

<fly:DestAirport>

<fly:name>Venice Marco Polo</fly:name>

</fly:DestAirport>

<fly:DeptDate>

<fly:Date>06/02/1979</fly:Date>

</fly:DeptDate>

<concept:UserName rdf:ID="gen534">

<concept:firstName>Mithun</concept:firstName>

<concept:lastName>Sheshagiri</concept:lastName>

</concept:UserName>

<concept:CreditCardInfo rdf:ID="gen453">

<concept:number>1234 54634 6543 67373</concept:number>

<concept:expiryDate>04/09</concept:expiryDate>

<concept:type>AmEx Student</concept:type>

</concept:CreditCardInfo>

<concept:Preferences>

<fly:Airline rdf:resource="easyjet"/>

</concept:Preferences>

The AvailableFlight service requires the departure airport, destination airport

and the date. On querying the userKB, a match is found for all of these and therefore

51
the service is executed. The output produced by the service might look like this in

OWL:

<fly:ListOfFlights rdf:ID="gen234">

<fly:member>

<fly:FlightInfo rdf:ID="gen654">

<fly:airline><fly:Airline rdf:ID="flybe"/></fly:airline>

<fly:deptTime>1730 GMT</fly:deptTime>

</fly:FlightInfo>

</fly:member>

<fly:member>

<fly:FlightInfo rdf:ID="gen654">

<fly:airline><fly:Airline rdf:ID="easyjet"/></fly:airline>

<fly:deptTime>1822 GMT</fly:deptTime>

</fly:FlightInfo>

</fly:member>

<fly:member>

<fly:FlightInfo rdf:ID="gen654">

<fly:airline><fly:Airline rdf:ID="BA"/></fly:airline>

<fly:deptTime>1300 GMT</fly:deptTime>

</fly:FlightInfo>

</fly:member>

<fly:member>

<fly:FlightInfo rdf:ID="gen654">

<fly:airline><fly:Airline rdf:ID="ryanair"/></fly:airline>

<fly:deptTime>0613 GMT</fly:deptTime>

</fly:FlightInfo>

</fly:member>

<fly:member>

<fly:FlightInfo rdf:ID="gen654">

<fly:airline><fly:Airline rdf:ID="quickfly"/></fly:airline>

<fly:deptTime>0945 GMT</fly:deptTime>

</fly:FlightInfo>

</fly:member>

</fly:ListOfFlights>

The simple representation of the above message would:

List of Flights

-----FlightInfo

--------airline---Flybe

--------deptTime--1730 GMT

-----FlightInfo

--------airline---BA

--------deptTime--1300 GMT

-----FlightInfo

--------airline---RyanAir

--------deptTime--0613 GMT

-----FlightInfo

--------airline---QuickFly

--------deptTime--0945 GMT

-----FlightInfo

--------airline---EasyJet

--------deptTime--1822 GMT

If only Flybe flew from London to Venice, the message would have been:

<fly:ListOfFlights rdf:ID="gen234">

<fly:member>

52
<fly:FlightInfo rdf:ID="gen654">

<fly:airline><fly:Airline rdf:ID="flybe"/></fly:airline>

<fly:deptTime>1730 GMT</fly:deptTime>

</fly:FlightInfo>

</fly:member>

</fly:ListOfFlights>

Consider the case where flights are available. The inputs UserName and Credit-

CardInfo are directly available from the user and values for these inputs are obtained

by calling the QueryAndMatch routine for the userKB. However, FlightInfo is not

part of userKB, so we check the outputKB. QueryAndMatch retrieves multiple in-

stances of FlightInfo when it queries the outputKB and these correspond to various

flights available for the date, departure and destination specified by the user. Pick-

ing the right flight involves the user and therefore we query the user to find a hint

to narrow down the choice to just one. In this particular case, the user specifies a

preference for a specific airline. However, this piece of information is a nested part of

the FlightInfo. PartQuery retrieves the user’s airline preference and envelopes it with

FlightInfo. Now, the outputKB is queried again with a more constrained query and

a single instance of FlightInfo is retrieved and returned to the AutoInvoke routine.

There could be instances where in spite of hints, mulitple instances could be retrieved.

In all such cases, the user is asked to make the right choice.

Now consider the case where flights that matches the user requirements are not

found. AutoInvoke checks the userKB and outputKB to find a matching input and

both these efforts fail; on both occasions, NIL is returned. AutoInvoke now invokes

the Diagnose routine which retrieves the AvaiableFlights service as the possible cause

53
and informs the user. Knowing that AvailableFlights did not produce the intended

ouput, the user can update the userKB to reflect his/her new options.

54

Chapter 8

CONCLUSIONS

In our thesis, we have presented a OWL-S-based Semantic Web framework that

enables an agent to interact web services soley based on service descriptions. In

doing so, we have proposed our techniques for service composition, modelling effects

and preconditions and service invocation. We have laid emphasis on making our

framework relevant to exisitng web services.

Semantic Web Services has great potential to contribute to the existing WSDL-

based web service framework by enabling increased automation.

However, we encountered several obstacles and observations while designing and

implementing our framework. We list some of these below:

1. OWL-S is by far the most mature initative to address the current limitations

of WSDL-based web services.

2. The OWL-S/DAML-S are fairly recent initiatives with a low percentage of active

contributors from the industry. As a result, tools for using OWL-S are few. For

55
example, we wrote all our services using a XML editor. The quality of OWL-S

tools is closely tied to tools available for the Semantic Web.

3. The learning curve required to acquire competency to use OWL-S is steep.

This is because OWL-S specifications are constantly changing and evolving

(not neccessarily in a modular way).

4. Disagreements remain on key issues like preconditions and effects.

5. Convincing the industry to adopt OWL-S is only possible if the vision of Se-

mantic Web is accepted and adopted by the industry.

6. Using and understanding OWL-S requires a good understanding of concepts

like expert systems, ontologies and reasoning. It is not reasonable to expect

software developers to acquires these skills. Tools which abstract the underlying

complexity involved in using OWL-S will greatly help developers.

56
REFERENCES

[1] Amazon.com Web Services, http://www.amazon.com/gp/aws/landing.html ,

Amazon.com, 2003.

[2] alphaWorks: Web Services Toolkit, IBM, July, 2000. Availabe at

http://www.alphaworks.ibm.com/tech/webservicestoolkit .

[3] Ankolenkar, A., M. Burstein, J. R. Hobbs, O. Lassila, D. L. Martin, D. McDer-

mott, S. A. McIlraith, S. Narayanan, M. Paolucci, T. R. Payne, and K. Sycara:

2002, DAML-S: Web Service Description for the Semantic Web. In Proc. 1st

Int’l Semantic Web Conf. (ISWC 02), 2002.

[4] Bacchus F. and Teh Y. W., Making forward chaining relevant In Proc. 4th Intl.

Conf. AI Planning Systems, pages 54–61, June 1998.

[5] Bussler, C., A. Maedche, and D. Fensel, A Conceptual Architecture for Semantic

Web Enabled Web Services. In ACM Special Interest Group on Management of

Data, Volume 31(4), Dec, 2002.

[6] Cardoso J. and Sheth A., Semantic e-WorkFlow Composition In Journal of

Intelligent Information Systems, 21(3):191-225, 2003.

[7] Christensen E., Curbera F., Greg Meredith, Sanjiva Weerawarana,WSDL Web

57
Service Description Language (WSDL). W3C Note 15, March 2001. Available

at http://www.w3.org/TR/wsdl .

[8] DAML.org, March, 2001, http://www.daml.org/ .

[9] Friedman-Hill, E. J., Jess in Action: Java Rule-based Systems, Manning Publi-

cations Co., 2003

[10] Jena, Version 1, Jena Semantic Web Toolkit, Hewlett Packard Company, 2002.

Available at http://jena.sourceforge.net/ .

[11] Kopena J., DAMLJessKb, November, 2002. Available at

http://plan.mcs.drexel.edu/projects/legorobots/design/software/DAMLJessKB/

.

[12] Li L. and Horrocks I., A Software Framework For Matchmaking Based on Se-

mantic Web Technology In Proceedings of the Twelfth International World Wide

Web Conference (WWW 2003), 2003.

[13] McIlraith, S. and T. Son, Adapting Golog for Composition of Semantic Web

Services. In: Proceedings of the Eighth International Conference on Knowledge

Representation and Reasoning (KR2002), Toulouse, France, 2002.

[14] Paolucci M., Sycara K., and Kawamura T., Delivering Semantic Web Services

In Proceedings of the Twelfth World Wide Web Conference (WWW2003), Bu-

dapest, Hungary, May 2003, pp 111- 118

58
[15] Paolucci M., Kawamura T., Payne T. R., and Sycara K., The First International

Semantic Web Conference (ISWC) First International Semantic Web Conference

(ISWC), Sardinia, June, 2002.

[16] Ponnekanti S. P.and Fox A., SWORD: A Developer Toolkit for Web Service Com-

position. In: In Proc. of the Eleventh International World Wide Web Conference,

2002.

[17] Sheshagiri M., desJardins M., Finin T., A Planner for Composing Services in

DAML-S Workshop on Planning for Web Services, July, 2003, Trento, Italy.

[18] Srivastava, B., Automatic Web Services Composition Using Planning. In: In

Proc. of KBCS 2002, Mumbai, India.

[19] WebServices-Axis, The Apache Software Foundation, 2003. Available at

http://ws.apache.org/axis/ .

[20] Weld, D., An Introduction to Least Commitment Planning. In: AI Magazine,

15(4):27-61, Winter 1994.

[21] Wu D., Parsia B., Sirin E., Hendler J. and Nau D., Automatic DAML-S Web Ser-

vices Composition Using SHOP2 In Proceedings of 2nd International Semantic

Web Conference (ISWC2003), Sanibel Islands, Florida, 2003

[22] XMethods, XMethods Inc, 2003. Available at http://www.xmethods.com .

