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Abstract

In studying the dynamical behavior of processes in artificial
or natural social systems, a key factor is the topology of the
network structure. It has been shown that real-world social
networks tend to have non-random network structure with
properties such as short average path length, excess clus-
tering, and skewed degree distributions (Albert & Barabási
2002; Newman 2003). We show in this paper that the nature
of the network structure in a social network of artificial or
simulated agents has a significant effect on the performance
of the overall system. We conclude that finding “good” net-
work structures for a particular application domain is critical
to modeling artificial social systems and implementing multi-
agent systems. We argue that techniques for adapting network
structure will be critical in large-scale agent communities.

Introduction
In recent years, the importance and ubiquitousness of net-
works has become increasingly apparent. The most obvious
examples of this are the World-Wide Web (WWW) and the
Internet. These networks have connected people, organiza-
tions, and companies in ways that have drastically affected
international culture and the global economy. Several dis-
coveries have been made about the underlying structure of
the Internet and the World-Wide Web, including “diameter”
approximations. Scientists have also proposed general prin-
ciples, including “preferential attachment,” for growing such
networks (Albert & Barabási 2002).

Similarly, the underlying structure of social networks has
been of interest to researchers for many years, starting with
the work of Stanley Milgram (1967). Milgram was inter-
ested in investigating the lengths of paths between people
in large social networks. Although his experiments were
not comprehensive, his hypothesis that social networks have
small diameter has been validated. In fact, many social net-
works have since been investigated and are found to sup-
port Milgram’s low-diameter hypothesis, including scien-
tific collaboration networks (Newman 2001) and telephone
call graphs (Aiello, Chung, & Lu 2000).

Although much has been done to identify and exploit the
salient structure of real-world networks, little has been done
to examine the effects that these structures have on system
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dynamics (Strogatz 2001; Watts & Strogatz 1998). The con-
tribution of this paper is an empirical demonstration, in sev-
eral different domains, that network structure has a signif-
icant effect on the dynamics of agent systems. The three
systems examined are innovation diffusion in an artificial
agent organization, opinion formation among networked ar-
tificial agents, and on-line multi-agent team formation. Our
findings are relevant for both artificial societies (Carley &
Gasser 1999; Epstein & Axtell 1996) and multi-agent sys-
tems (Huhns & Stephens 1999; Lesser 1999).

Background
Social networks, which have attracted the attention of sci-
entists for many decades, are modeled and analyzed with
the tools of graph theory. Three of the most prominently
observed properties of real-world graphs are short average
path lengths, excess clustering, and skewed degree distri-
butions (Albert & Barabási 2002; Newman 2003; Strogatz
2001). Commonly referred to as the “small-world effect,”
short average path length was first recognized by analyzing
the number of hops it took for postal mail to get to a spe-
cific destination if sent out randomly at first (Milgram 1967).
Average path length is measured by calculating the average
distance between any two nodes in the network (Watts &
Strogatz 1998; Newman 2001).

Excess clustering is found in networks that have more
clustering than would be expected in a random graph of the
same size. The amount of clustering in a graph is defined
as the number of three-cliques, or triangles, that exist in the
graph normalized by the number of possible triangles (i.e.,
the number of connected triples of nodes) (Newman 2003).

The degree distribution of a network is the frequency of
occurrence of nodes with each degree (i.e., number of con-
nections). Although there are many possible distributions
for degree, it has been observed that most real-world net-
works have a highly skewed degree distribution. These dis-
tribution have “heavy tails,” and in general follow a power
law, that is P (k) ∝ k−γ , which implies that the network
has a hub and spoke structure, with some nodes having very
large degree (Albert & Barabási 2002).

Regular graphs and random graphs are typically used to
study artificial social systems. More recently, new network
models have been developed in an attempt to capture proper-
ties observed in real-world networks. These models include



the small-world (Watts & Strogatz 1998) and scale-free (Al-
bert & Barabási 2002) networks. All of these structures are
briefly introduced in the following subsections.

Regular Graphs. The two-dimensional lattice, or grid, is
commonly used to model the interaction topology of artifi-
cial social systems (Epstein & Axtell 1996; Schelling 1978;
Latané 1981). In this interaction topology, agents have a
geometric locality and are limited to directly interacting
with agents that are located within a close proximity. The
two-dimensional lattice does not exhibit short average path
lengths or a skewed degree distribution, but does exhibit a
form of generalized clustering, called transitivity. Transitiv-
ity is measured by considering the number of shared neigh-
bors among nodes (Newman 2003). As will be seen below,
lattice networks are the foundation of small-world networks.

Random Graphs. Random graphs were first introduced
in the 1960s by Erdös and Rényi (Erdos & Renyi 1959). A
random graph GN,p consists of N nodes that are connected
randomly, with p denoting the probability of an edge exist-
ing between a randomly chosen pair of vertices. Random
graph models have been widely studied and are quite use-
ful since many of their properties can be computed analyti-
cally. For instance, the average number of undirected edges
in GN,p is N(N −1)p/2, and the average degree of a vertex
is k = p(N − 1) ≈ pN , where the approximate solution
holds for large N .

Recent evidence suggests that random graphs are not
representative of real-world networks (Albert & Barabási
2002). They do possess short average path lengths, but
random graphs do not exhibit large amounts of clustering
or a skewed degree distribution. Random graphs are in-
cluded in this study, because they have been widely used for
decades. We will compare the dynamics that arise from ran-
dom graphs to those arising from alternative graph models
that are structured more like real-world networks.

Small-world Networks. The small-world network model
is an attempt to introduce more clustering into networks and
to account for observed short average path lengths (Watts
& Strogatz 1998). A key observation is that small-world
networks have properties that lie between those of regular
(lattice) networks and random graphs.

Lattices are the starting place for small-world networks.
Lattice models lend themselves directly to increased clus-
tering because they imply physical localities among agents.
A simple example of this is a ring of nodes (i.e., a one-
dimensional lattice wrapped upon itself) where each node
connects to the closest nodes on either side. The key fea-
ture here is that for any neighborhood, most of the nodes are
connected to one another inducing clustering.

The mechanism for decreasing average path length is a
probabilistic randomization of edges, resulting in shortcut
connections through the graph as seen in Figure 1. The pa-
rameter ρ is used to determine if an edge is replaced by a
random shortcut through the graph. One caveat in this con-
struction of a small-world graph is that the graph can be-

(a) ρ = 0.0 (b) ρ = 0.1 (c) ρ = 0.3

Figure 1: The graphic shows three increasingly random
small-world networks: (a) shows a one-dimensional lattice
with no shortcut links; (b) shows the same lattice with a few
shortcuts; and (c) shows a small world with many short-
cuts, which begins to resemble a random graph. All three
of the networks are constructed from a one-dimensional lat-
tice where nodes are connected to four other nodes based on
physical proximity.

come disconnected. When edges are replaced by shortcuts
with probability ρ = 1, the graph is a random graph.

Scale-free Graphs. The scale-free graph model for net-
works is motivated by the degree distributions of the Inter-
net and the WWW (Albert & Barabási 2002). The model is
a highly intuitive model based on how networks are believed
to evolve and grow in the real world.

The generation of scale-free graphs has two simple rules:

1. growth: at each time step, a new node is added to the
graph, and

2. preferential attachment: when a new node is added to
the graph, it attaches preferentially to nodes with high de-
gree.

Preferential attachment is modeled by

P (eij) = mkj

∑

v∈V

(
1

kv
)α (1)

where i is a new node being added to the network and P (eij)
is the probability of the creation of an edge from i to j.
Here, kv is the degree of node v. There must be an initial
connected core of m0 nodes, ensuring that at the beginning
of the graph generation process, nodes with non-zero de-
gree exist. There are several additional parameters for the
model including the number of expected initial connections
that a node will make m and a scaling factor for the prob-
ability of connection α to force the graphs to be more or
less dense. Note that when m = α = 1, the probabilities
of connecting to existing nodes in the network sum to ex-
actly one. Scale-free graphs exhibit both short average path
lengths and a skewed degree distribution but, like random
graphs, lack excess clustering (Albert & Barabási 2002).

Models and Results
We explored the effect of network structure on the dynam-
ics of three different models of social systems and multi-
agent systems: innovation diffusion, opinion formation, and
team formation. These models were chosen because they are
widely studied in the computational organization theory and



multi-agent systems literature. In each of the experiments
described below, the performance of the system was mea-
sured for four different network structures of equal density:
a two-dimensional lattice, a two-dimensional small-world
network (connectedness verified), a random graph (connect-
edness verified), and a scale-free graph. In all of the exper-
iments, the lattice network was used to determine the size
and the density of connections in the agent organization and
the other network models were appropriately parametrized
to ensure the same size and density. Due to space limita-
tions, we have presented only representative results, but the
general findings hold across a wide range of networks.

Innovation Diffusion
Innovation diffusion, taken in the context of the theory of
the firm, is the process by which an organization adopts new
ideas. Organizational structure plays a key role in an or-
ganization’s innovation diffusion capability. DeCanio and
Watkins (1998) introduced a model of innovation diffusion
that depends heavily on the processing capability of the
agents in the organization.

In the initial study, the effects of structure on an organi-
zation’s ability to diffuse innovation were presented. The
network structures studied in the original work included a
fully connected network, a designed hierarchy, a hypercube
(n-dimensional lattice), and a small random graph. We ex-
tended the study to include much larger networks that have
more realistic structural properties.

Model. The basic model places n agents into an organiza-
tional structure where the connections among agents deter-
mine who influences whom. The agents take on binary state
values {0, 1} representing whether or not a given agent has
adopted the innovation. Initially, none of the agents have
adopted the innovation. As the system evolves, agents up-
date their state based on the ratio of their neighbors that have
adopted the innovation. One agent is selected to initiate the
innovation. Once an agent adopts the innovation, they do
not change state again.

The probability that an agent i changes state is:

Pi = f(xi), where xi =
∑

j∈V

eijyj

ki
. (2)

In (2), yj = {0, 1} is the state of agent j, ki is the degree of
agent i, and eij = 1 if i is connected to j and 0 otherwise.
Agent i then updates its state by

yi =

{

1 with probability Pi

0 with probability 1 − Pi.
(3)

Time is discrete and the agents update synchronously.
The function f is a function of the agents’ processing ca-

pability and of the ratio of the agent’s neighbors that have
adopted the innovation. Information processing capability
can be modeled using a modified logistic function (DeCanio
& Watkins 1998).1 An agent’s readiness to switch states

1Other squashing functions would apply; for consistency with
the work of DeCanio, the modified logistic function is used.

(i.e., to adopt the innovation) is based on the scaled ratio of
its neighbors’ states and the agent’s own processing capabil-
ity. The modified logistic function is

f(x) = 1/[1 + e[x−a/b]/b/c] − 1/1 + ea/b. (4)
The processing capability of an individual agent effectively
models the agent’s cognitive capacity. The lower an agent’s
processing capability, the harder it is for the agent to pro-
cess information from its neighbors. Given perfect informa-
tion processing capabilities (c = 1.0) the fully connected
network will always perform the best (i.e., all information is
avaible to all agents at all times and can be processed per-
fectly). When processing capabilities drop below perfect,
the number of connections among the agents make it more
difficult to process all of the available information.

Results. In the original study, all of the agents in the
system have the same processing capability (DeCanio &
Watkins 1998). We maintain that assumption for the results
presented here, but the general findings hold true for agents
with heterogeneous processing capabilities. In these experi-
ments, the number of agents is 10,000 and each data point is
the average of 25 simulations.
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Figure 2: Time for the entire system to adopt an innovation
as a function of processing capability.

In support of the original results (DeCanio & Watkins
1998), the most hierarchical network structure, the scale-
free graph, performs the best (i.e., adopts the innovation
the fastest) for all processing capabilities as seen in Fig-
ure 2. Next is the random graph, followed by the small-
world network. The nature of the innovation diffusion model
is that it resides in communication, or information, space.
One of the factors contributing to the somewhat poor per-
formance of the small-world model may be its ties to ge-
ographic space. The result show that the scale-free graph
structure supports rapid diffusion of innovation in a large or-
ganization of agents with sub-optimal information process-
ing capabilities.

Opinion Formation
Opinion formation is a popular topic in the social science
community. Not unlike innovation diffusion, opinion forma-



tion models address the question of how opinions (usually
binary, but sometimes continuous) can spread and change
through an agent organization. There are many different fac-
tors that affect organizational opinion formation. One factor
is that of social impact based on a notion of capturing two
agents’ social distance: the distance between the two agents’
beliefs and ideals (Latané 1981).

Model. The social impact model of opinion formation and
reformation is loosely based on the Ising model from con-
densed matter physics (Latané 1981). In the this model,
there are n agents. Each agent, i, possesses a strength,
si > 0, an opinion, σi ∈ {−1, 1}, and a position in some de-
fined space. In the original model, the position of each agent
was fixed in a two-dimensional grid (Latańe 1981). In this
situation, agent i’s social distance from agent j is simply the
Euclidean distance between their respective locations. Also
included in the model is a notion of an external influence, h,
which can be thought of as information external to the orga-
nizations that the agents can observe. Similarly, social noise,
η, is included in the model and serves as a mechanism for in-
cluding uncertainty, trust, and reputation in the dynamics of
the model.

Social impact is the impact of the entire organization on
an agent’s opinion formation process (Latané 1981). To cal-
culate social impact, the partial impact for agent i is first
calculated by

Ii =
∑

j={1,...,n}

sjσj

dij
+ h, (5)

where dii = 1. The equation for partial impact captures the
weighted sum of the impact of all of the agents relative to the
location of agent i with h being external information. Once
the partial impact is calculated, it is mapped to a probability
that accounts for social noise, by

p(Ii) =
eIi/η

eIi/η + e−Ii/η
. (6)

This function is a squashing function to create non-linear
effects on changing opinions. The agent updates its opinion
based on this probability where

σi =

{

+1 with probability p(Ii),
−1 with probability 1 − p(Ii).

(7)

The social impact opinion formation model does not ac-
count for the social network structure among the agents ex-
plicitly. The agents in the original model are in fact fully
connected; every agent impacts every other agent’s opinion.
To explore the effects of network structure on opinion for-
mation, we replace the use of the Euclidean distance metric
with that of geodesic (shortest path) distance measured from
the agent social network structure. The results presented be-
low are provided in the context of a specified leader attempt-
ing to change the opinion of the entire organization.

Results. A leader, in the context of opinion formation, is
an agent that can drive the organization toward a given opin-
ion (i.e., an agent that can make every other agent agree with

their opinion). Leaders must be strong to convince an entire
organization to change its opinion. The underlying struc-
ture of the organization impacts the necessary strength of
the leader.

As mentioned above, we replace the Euclidean distance
with the normalized length of the shortest path between two
agents for determining social distance. The lattice imposes
a distance measure similar to physical distance, although it
results in a Manhattan distance measure rather than an Eu-
clidean distance measure.

Using the network to define social distance, simulations
were conducted to determine the strength required of the
leader to force all of the other agents to change their opinion.
The agents are given random initial opinions. After 10 simu-
lation time steps, the designated leader switches and fixes its
opinion. Once 90% of the agents in the organization change
to the leader’s opinion, the time is recorded. If 90% of the
organization does not change opinion after 100 time steps, it
is determined that the leader is not strong enough to change
the opinion of the entire organization. In all simulations the
leader is the most highly connected agent (i.e., the agent with
the smallest average distance to all other agents). Based on
the original studies (Latané 1981), the number of agents is
625; social noise η = 167.3; external influence h = −0.5;
and each data point is the average of ten simulations.
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Figure 3: Time to shift the entire network’s opinion, as a
function of leader strength, for scale-free networks (solid
red) and random graphs (dashed green).

Neither the lattice nor the small-world network ever
reached 90% of the agents agreeing with the leader. In both
of these network structures, agents exist that are far enough
away from the leader that the social noise diffuses the influ-
ence of the leader’s opinion.

The results for using the random graph and the scale-free
graph to define social distance are given in Figure 3. The
random graph requires a stronger leader than that of the
scale-free graph. This is explained by the fact that in the
scale-free graph, the leader has shorter average social dis-
tance to all other agents.

Team Formation
To explore the effects of network structures on team forma-
tion, we distill a simple agent-based organizational model



from previous work on multi-agent team formation (Nair,
Tambe, & Marsella 2002; Abdallah & Lesser 2004). Tasks
are generated and globally advertised to the agents in the or-
ganization, and agents form teams to accomplish the tasks.
The network structure restricts which agents can be on teams
together. The tasks are generic in that they only require that
a team of agents with the necessary skills form to accom-
plish the specific task.

The organization contains a set of N agents situated in a
specified social network. Each agent can be in one of three
states: uncommitted, committed, or active. An uncommitted
agent is available and not assigned to any task. A committed
agent has chosen a task, but the full team to work on the task
has not yet formed. Finally, an active agent is a member
of a team that has fulfilled all of the skill requirements for a
task and is actively working on that task. The agents are also
assigned a single skill, σ ∈ [1,Σ], where Σ is the number of
different types of skills that are present in the organization.

Tasks are introduced at fixed task introduction intervals,
where the length of the interval between tasks is given
by a parameter, µ. Tasks are globally advertised (i.e.,
announced to all agents). Each task T has an associated size
requirement, |T |, and a |T |-dimensional vector of required
skills, RT . The skills required for a given task T are chosen
uniformly from [1,Σ]. Each task is advertised for a finite
number of time steps proportional to its size (namely δ|T |,
where δ is a model parameter) to ensure that the resources
(i.e., agents) committed to the tasks are freed if the full
requirements of the task cannot be met. Similarly, teams
that form to fill the requirements of a given task are only
active for a finite number of time steps (namely α|T |, where
α is a model parameter).

Definition: A valid team is a set of agents {ai} whose cor-
responding set of nodes {vi} induce a connected subgraph
of G and whose skill set {σi} fulfills the skill requirements
for a given task T .

The restriction of a team forming a connected subgraph of
the organizational structure forces the agents to join teams
based on local knowledge using heuristics for the likelihood
of a given partial team’s success. The local knowledge avail-
able to each agent includes the number of positions filled on
the team, the number of uncommitted immediate neighbors
of the agent, and the number of immediate neighbors on a
specific team. In the experiments described here, when de-
ciding what team to join, agents joined teams based on the
definition of a valid team (i.e., one adjacent agent must be on
the team), with a probability proportional to the number of
filled positions on the team (i.e., agents prefer to join teams
that are nearly completely filled). Agents create teams for
new tasks probabilistically based on the number of uncom-
mitted immediate neighbors.

Results. We conducted a series of simulated experiments
to measure the effects of the agent interaction topology on
the dynamics of multi-agent team formation. Here, we focus
on the task introduction interval µ. In these experiments,

the number of agents is 100; the simulation length is 5000
iterations; and each data point represents the average of 100
simulations.

The measure that we use in our experiments for global
performance is the organizational efficiency of the agent so-
ciety, defined as:

organizational efficiency =
# of teams successfully formed

total # of tasks introduced
.

(8)

This measure of organizational efficiency captures the over-
all performance of the networked organization of agents, as
we are directly interested in the cooperative distributed per-
formance. Because tasks are introduced periodically at a de-
terministic rate, this measure is fair across all network struc-
tures and experiments.
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Figure 4: Organizational efficiency vs. task interval.

Figure 4 shows the organizational efficiency of the agent
societies as a function of the task introduction interval µ
for each of the four network structures: scale-free, random,
small-world, and lattice. Agents connected with a scale-free
network structure (–♦–) significantly outperformed the other
three network structures.2

Although the scale-free network dominates, there are sev-
eral important performance differences among the other
structures. First, in general, the more stochastic network
structures (i.e., the scale-free and the random networks)
consistently outperform the more regular network structures
(i.e., the lattice and the small-world). This pattern is repli-
cated in additional experiments. Second, within the “regu-
lar” graphs, the small-world network outperforms the lattice
network structure, despite their high degree of similarity. In
these experiments, the small-world network was constructed
by simply rewiring edges of the lattice network with a fairly
low probability, p = 0.05. Therefore, 95% of the edges in
these two network structures are identical. This 5% rewiring
led to a statistically significant improvement in organiza-
tional efficiency.

2These results are statistically significant at the 99th percentile
confidence level, using a student t-test.



Related Work
In the artificial intelligence community, a small selection
of studies have emphasized the importance of social struc-
ture on organizational behavior. The spread of social con-
ventions in a society of agents is affected by the com-
plex network structure among the agents (Delgado 2002).
Line-of-sight considerations affect the performance of mo-
bile robot teams (Arkin & Diaz 2002). In the study of so-
cial system dynamics and agent-based modeling, the under-
lying network structure of the system has been shown to
significantly impact the formation of firms (Axtell 2000).
More recently, research on multi-agent games in complex
network structures demonstrated that variations in agent
social networks lends itself to significantly different sta-
bilities in agent strategies (Abramson & Kuperman 2001;
Holme et al. 2003).

Conclusions and Future Work
We have demonstrated that the social network structure un-
derlying an agent organization can have significant impact
on organizational performance. Given this result, future
work should be devoted to identifying efficient network
structures and, in particular, decentralized organizational
learning techniques based on local network adaptation.

Preliminary investigations and findings include network
adaptation for distributed information retrieval (Yu, Venka-
traman, & Singh 2003), peer-to-peer networking (Ra-
manathan, Kalogeraki, & Pruyne 2002), and dynamic multi-
agent team formation (Gaston & desJardins 2004). In addi-
tion, other agent-level learning techniques may be developed
that allow agents embedded in a social network to learn from
experience an improve organizational performance despite
the network structure. For now, while traditional artificial
intelligence research focuses on what an agent knows, we
have shown that who an agent knows is also important.
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