


APPROVAL SHEET

Title of Dissertation: Organizational Learning and Network Adaptation
in Multi-Agent Systems

Name of Candidate: Matthew E. Gaston
Doctor of Philosophy, 2005

Dissertation and Abstract Approved:
Dr. Marie desJardins
Assistant Professor
Department of Computer Science and

Electrical Engineering

Date Approved:



Name: Matthew E. Gaston

Permanent Address: 947 Deerberry Court
Odenton, MD 21113

Degree and date to be conferred: Ph.D., 2005.

Date of Birth: August 11, 1976.

Place of Birth: Harrisburg, PA.

Secondary education: Bishop McDevitt High School, Harrisburg, PA, 1994.

Collegiate institutions attended:

2002-2005 University of Maryland Baltimore County Ph.D. 2005.
1999-2002 University of Maryland Baltimore County M.S. 2002.
1994-1998 University of Notre Dame B.S. 1998.

Major: Computer Science (Ph.D. and M.S.) and Mathematics (B.S.).

Professional publications:

Matthew Gaston and Marie desJardins. Agent-Organized Networks for Multi-
Agent Production and Exchange. InProceedings of the 20th National Confer-
ence on Artificial Intelligence (AAAI 05). Pittsburgh, PA, July 2005.

Matthew Gaston and Marie desJardins. A Simple Learning Approach for En-
dogenous Network Formation. InProceedings of the AAAI 2005 Workshop on
Multi-Agent Learning. Pittsburgh, PA, July 2005.

Blazej Bulka, Matthew Gaston, and Marie desJardins. Local Learning to Im-
prove Organizational Performance in Networked Multi-agent Team Formation.
In Proceedings of the AAAI 2005 Workshop on Multi-Agent Learning. Pitts-
burgh, PA, July 2005.

Matthew Gaston and Marie desJardins. Agent-Organized Networks for Dy-
namic Team Formation. InProceedings of the Fourth International Joint Con-
ference on Autonomous Agents and Multi-Agent Systems (AAMAS 05). Utrecht,
Netherlands, July 2005.



Matthew Gaston and Marie desJardins. Social Network Structures and their
Impact on Multi-agent System Dynamics. InProceedings of the 18th Inter-
national Florida Artificial Intelligence Research Society Conference (FLAIRS
05). Clearwater, FL, May 2005.

Matthew Gaston, John Simmons, and Marie desJardins. Adapting Network
Structures for Efficient Team Formation. InProceedings of the AAAI-2004 Fall
Symposium on Learning in Multi-agent Systems. Washington, D.C., October
2004. New York, N.Y., July 2004.

Matthew Gaston and Marie desJardins. Team Formation in Complex Net-
works. In Proceedings of the First North American Association for Compu-
tational Social and Organization Science Conference (NAACSOS). Pittsburgh,
PA, June 2003.

Matthew Gaston, Lara Diamond, and Miro Kraetzl. An Observation of Power
Law Statistics in the Dynamics of Communication Networks. InProceedings
of Information, Decision and Control (IDC 2002). Adelaide, South Australia,
Feb 2002.

Norm Curet, Jason DeVinney, and Matthew Gaston. An Efficient Network
Flow Code for Finding All Minimum Costs-t Cutsets.Computers & Opera-
tions Research. Vol. 29, Issue 3, 2002, pp. 205-219.

Professional positions held:

2002-Present Technical Leader
Advanced Analysis Laboratory, NSA.

1998-2002 Senior Operations Research Analyst (Officer, USAF)
Office of Modeling and Simulation, NSA.



ABSTRACT

Title of Dissertation: Organizational Learning and Network Adaptation
in Multi-Agent Systems

Matthew E. Gaston, Doctor of Philosophy, 2005

Dissertation directed by: Dr. Marie desJardins
Assistant Professor
Department of Computer Science and

Electrical Engineering

In both real and artificial societies, successful organizations are highly dependent upon

a structure that fosters effective and efficient behavior at both the individual and the or-

ganizational levels. In multi-agent systems, groups of agents must coordinate effectively

in order to solve problems, allocate tasks across a distributed organization, collectively

distribute knowledge and information, and achieve collective goals. The organizational

structure of a multi-agent system dictates the interactions among the agents, and can play

a significant role in the overall performance of a society of agents.

Given the importance of organizational network structures for multi-agent systems, dis-

tributed network adaptation is a promising approach for organizational learning. After re-

viewing related work in multi-agent learning, the structure and dynamics of networks, and

organizational learning in multi-agent systems, I present the concept ofagent-organized



networksas an approach for organizational learning by distributed network adaptation.

Supported by theoretical evidence of the complexity of organizational network design, a

general learning-based agent-organized network framework is proposed and applied to two

general environments: multi-agent team formation and a production and exchange econ-

omy. In addition, the general framework is used to develop distributed network adaptation

strategies for specific applications in supply network formation and wireless sensor net-

works. Experimental results for both the general and specific multi-agent environments

support the hypothesis that distributed management and adaptation of organizational net-

work structure leads to improved collective performance in multi-agent systems. Analyses

of the structural characteristics of the networks as they evolve are used to aid in understand-

ing the behavior of agent-organized networks and further support the utility of distributed

network adaptation for organizational learning in multi-agent systems.
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Chapter 1

Introduction

In life, its not what you know or who you know that counts – it is both!
Anthony J. D’Angelo

Jingshen is the Mandarin word for spirit and vivacity. It is an important word
for those who would lead, because above all things, spirit and vivacity set
effective organizations apart from those that will decline and die.

James L. Hayes

1.1 What is Multi-Agent Organizational Learning?

Organizational learning can be defined, or described, in many ways. One possible descrip-

tion is that “organizational learning refers to the increases in productivity that are observed

as firms gain experience in production” (Huberman 2001). Another description of organi-

zational learning is the collective ability of a multi-agent system to improve its global per-

formance based solely on the actions, decisions, and experiences of its constituent agents.

This second description of organizational learning focuses on the influences that individual

1
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behaviors have on global performance (Brown & Duguid 1996). In this second connota-

tion, global performance refers to the overall, macro-level, collective performance of the

entire system. The latter description of organizational learning is more appropriately a

description ofdistributed organizational learning.

In distributed organizational learning, the organization is not monolithic or centrally

controlled; rather, it is comprised of a collection of semi-autonomous, interdependent

agents with a common goal. Distributed organizational learning differs from centralized

learning, or single-agent learning, in that both information and decisions are decentralized.

That is, no single agent possesses complete information about the organization. Further-

more, all of the agents’ decisions and actions influence the organization’s behavior and

performance. This notion of distributed organizational learning is the one I adopt through-

out this dissertation.

The decentralization of information and decisions in distributed organizational learning

presents a set of interesting and unique challenges.

If one’s own actions are embedded in an ecology of the actions of many others

(who are simultaneously learning and changing), it is not easy to understand

what is going on. The relationship between the actions of individuals in the

organization and overall organizational performance is confounded by simul-

taneous learning of other actors (Levinthal & March 1993).

In situations where learning is distributed throughout an organization of agents, the agents
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must rely on local perception of global performance and partial information about the ac-

tions of other agents in the organization.

The challenges of distributed organizational learning are particularly apparent in large,

open multi-agent systems, where it is impossible for all agents to interact continuously with

all other agents. One example of a large-scale, open multi-agent environment is peer-to-

peer information retrieval (Yu & Singh 2003). In peer-to-peer information retrieval, agents

can come and go as they please and they are subject to failures. Obviously, the set of active

agents and the set of active interactions among the agents will change over time. In large,

open multi-agent systems of this type, the limited interactions among the agents can be the

result of cognitive, communications, or computational constraints. In very large systems,

it may be that the agents simply do not “know” about one another. I refer to collections

of agents where the agent interactions are limited by an agent social network asnetworked

multi-agent systems.

1.2 Networked Multi-Agent Systems: It is Both Who You

Know and What You Know

As multi-agent systems continue to grow and migrate to heterogeneous environments such

as the Internet and the Semantic Web (Hendler 2001), the structure of multi-agent societies

and the interconnections among the agents in these societies will be fundamental to the ef-
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fectiveness of agent organizations. Agents operating in these environments will be unable

to maintain working knowledge of all other agents, leading to a social network structure

induced by agent interactions. As the size and diversity of multi-agent systems grow, un-

derstanding the impact of agent social structures on the dynamics of multi-agent systems is

essential.

Recent research on real-world networks has revealed that social structures have a much

richer structure than regular or random networks (Newman 2003; Strogatz 2002). The types

of networks analyzed in these studies include the Internet and World Wide Web (WWW),

scientific collaboration networks, gene interaction networks, various social networks, and

neural networks (Newman 2003). Although much research in artificial intelligence has fo-

cused on agent-level cognitive mechanisms in multi-agent systems, little effort has been

devoted to understanding the impact that agent social structures have on the collective abil-

ity of a society of agents.

Recent findings suggest that the interaction topologies of multi-agent systems have a

significant effect on the overall behavior of agent organizations. Work in computational

organization theory (Carley & Gasser 1999; Carley 2002) highlights the importance of

social structure on organizational performance for various types of artificial societies. Such

studies have shown that clustered organizations, where agents have few connections but are

tightly connected, are more stable than organizations with high connectivity (Huberman

& Hogg 1995). Network structure has been shown to affect the rate of the adoption of
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social conventions in an agent society (Delgado 2002). In the context of multi-agent team

formation, networks that exhibit short average path length allow for greater diversity in

teams of agents as well as efficiency in forming teams (Gaston & desJardins 2003; Gaston,

Simmons, & desJardins 2004). More recently, research on multi-agent games in complex

network structures demonstrated that variations in network structure lead to significantly

different stabilities in agent strategies (Abramson & Kuperman 2001; Holmeet al. 2003;

Kim et al. 2002; Szolnoki & Szabo 2004). These findings highlight the importance of the

agent social network that constrains the agent interactions in a multi-agent system.

1.3 Major Contributions: Distributed Organizational

Learning by Network Adaptation

Given that the network structure of a multi-agent system can have a significant impact on

its organizational performance, there is a tremendous, unexploited opportunity for orga-

nizational learning in multi-agent systems. My work demonstrates, for the first time, the

significant potential of endowing individual agents with the ability to dynamically adapt

the structure of the agent social networks in large agent societies.

More specifically, I show that agents can improve organizational performance by adapt-

ing their network structures using only local information and relatively simple methods

based on statelessQ-learning. The claim that adaptive networks lead to increased perfor-
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mance, and the generality of the methods for local, agent-driven network adaptation, are

supported by empirical results in two generic multi-agent environments and two specific

application domains. The two generic environments are multi-agent team formation and a

distributed production and exchange network. The specific application domains are large-

scale supply chain networks and topology control for sensor networks.

1.4 Two Motivational Application Domains

There are many potential applications of agent-organized networks. These applications

center around large, open multi-agent systems, where the control of the agents does not

fall under a single authority. One such application domain is e-commerce. A well-known

issue for enabling agent-mediated e-commerce is the so-called “discovery problem” (He,

Jennings, & Leung 2003). The discovery problem is that of getting the right agents to

interact with one another. This problem becomes increasingly complex when the system is

open and the number of agents is large, such as in large-scale supply networks (Walsh &

Wellman 2000).

Another motivational application for agent-organized networks is the formation and

reformation of virtual organizations for Grid Computing (Foster, Jennings, & Kesselman

2004; Normanet al. 2004). Grid computing is “predominantly concerned with coordi-

nated resource sharing and problem solving in dynamic, multi-institutional, virtual organi-

zations” (Foster, Kesselman, & Tuecke 2001). The premise of Grid Computing is to enable
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effective use of data and computational resources spread over a wide-area network. Agent-

organized networks have the potential to provide an automated mechanism for coordinating

and dynamically interconnecting these resources on a large scale.

1.5 Chapter Overview

The rest of this dissertation is structured as follows. In Chapter 2, I briefly survey the state

of the art in a subfield of multi-agent systems and machine learning known asmulti-agent

learning. The focus of multi-agent learning is on learning schemes for individual agents

in situations where they interact with other (learning) agents. In this survey, I identify

several of the important differences between single-agent learning and learning when there

are many agents.

Chapter 3 is an overview of the structure, function, and dynamics of networks. In

this chapter, I survey the recent literature on “complex” networks. I also discuss several

statistical measures of network structure that are useful in understanding the behavior of

agent-driven adaptive networks discussed in later chapters.

Following the reviews of multi-agent learning and networks, Chapter 4 focuses on or-

ganizational learning. In this chapter, I survey related work on organizational learning. I

also describe in detail the concept ofagent-organized networks. The chapter concludes

with a description of a general learning-based framework for agent-organized networks.

In Chapters 5 and 6, I explore the behavior of agent-organized networks in two general
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multi-agent domains: team formation and a general market environment. In these chapters,

I develop and empirically analyze several different agent-organized networks. My analysis

includes the results of virtual experiments in each of the domains as well as analyses of the

network structures as they evolve under different adaptation regimes.

Moving from general multi-agent domains to more specific multi-agent environments,

I focus on applications of agent-organized networks in Chapter 7. Specifically, I apply

agent-organized networks to supply network formation and topology control in wireless

sensor networks. In this chapter, I demonstrate the utility of agent-organized networks by

showing that individual agents adapting their local connectivity structure can improve the

distribution of goods in a supply chain. I also demonstrate that agent-organized networks

can form power-efficient topologies in wireless sensor networks.

Finally, the dissertation concludes in Chapter 8, with a review of the major results. I

also provide a sampling of important future directions. Distributed network adaptation as

a means of organizational learning is a new area of study in multi-agent systems. While

this dissertation lays the ground work for the study of agent-organized networks, there are

many exciting directions for this research in the future.



Chapter 2

Multi-Agent Learning

Learning is not attained by chance, it must be sought for with ardor and at-
tended to with diligence.

Abigail Adams

Of the many cues that influence behavior, at any one point in time, none is more
common than the actions of others.

Albert Bandura

. . . [M]ulti-agent learning is not merely a matter of “straight” learning,
but a matter involving complex patterns of social interaction and cognitive
processes, which leads to complex collective functions.

Ron Sun (2001)

Machine learning is a subfield of artificial intelligence in which algorithms for learning

from training examples or experience are designed, studied, and applied. Many of the tech-

niques developed in machine learning (Mitchell 1997) can be transfered to settings where

there are multiple, interdependent, interacting learning agents, although they may require

modification to account for the other agents in the environment. In addition, multi-agent

9
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systems present a set of unique learning opportunities over and above single-learner ma-

chine learning. In particular, because of the nature of multi-agent systems, so-called “social

learning” (Alonsoet al. 2001; Conte & Paolucci 2001) opportunities abound. Examples of

social learning include imitation, observation, and social facilitation, where agents explic-

itly transfer knowledge among one another (Conte & Paolucci 2001).

In this chapter, I provide an overview of multi-agent learning, including its features, its

challenges, and several of the most commonly used techniques. Where possible, I attempt

to place the overview in the context of organizational learning by network adaptation in

multi-agent systems, the main topic of this dissertation.

2.1 Overview of Learning in Multi-Agent Systems

Learning is a fundamental part of intelligence. A typical characterization of the concept of

learning is the ability to improve performance based on experience. Of course, the use of

the term “experience” implies that the learning system is embedded within, able to sense,

and able to affect some environment. It is common practice to refer to a learning system in

an environment as anadaptive agent.

There is an enormous body of literature on the single-agent learning problem, in which

agents use supervised or reinforcement learning mechanisms to improve their performance.1

1See Mitchell (1997) for a review of supervised learning and Sutton and Barto (1998) for a thorough

review of reinforcement learning
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In supervised learning, an agent, or learning algorithm, is presented with a set of training

examples from which the agent builds a model for a specified decision or prediction prob-

lem. The model built from the training examples is then used to make predictions about

previously unseen instances or situations. In reinforcement learning, an agent uses expe-

rience, or an explicit model of the environment, in order to learn an optimal policy for

behaving in an environment. This optimal policy is based on discounted rewards received

for taking actions in the environment. Despite the continued expansion and innovation

in the field of machine learning, the single-agent learning problem remains an open and

challenging problem.

Given that the single-agent learning problem is challenging, the learning problem be-

comes increasingly complex when many (learning) agents are embedded within the same

environment. A system with more than one agent is referred to as amulti-agent system;

when the agents are learning, it is consideredmulti-agent learning. The primary reason

for the increase in complexity in environments where there are multiple learning agents is

the non-stationarity of the environment. From a single agent’s perspective in a multi-agent

system, the other agents can be thought of as part of the environment. When the other

agents are also learning, the environment is no longer stationary, but rather adaptive. This

results in the so-called “moving target” challenge of multi-agent learning: that is, learning

to behave or predict in a dynamically changing, perhaps non-deterministic, environment.

In this chapter, I survey the multi-agent learning literature in the context of the orga-
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nizational learning mechanism proposed in this dissertation. This organizational learning

mechanism performs decentralized network adaptation based on the individual decisions of

agents in multi-agent organizations, and is discussed in detail in Chapter 4. In the remain-

der of this chapter, I address some of the issues, ideas, and challenges that are uniquely

associated with multi-agent learning. The chapter continues with discussions of various

multi-agent learning paradigms and methods and concludes with a brief overview of the

focus of this dissertation: organizational learning by endogenous network formation.

2.1.1 Differencing Features for Multi-Agent Learning

Sen and Weiss describe a set of “differencing features” for characterizing learning in multi-

agent systems (Sen & Weiss 1999). Here, I present and describe each of these differencing

features and then characterize organizational learning by distributed network adaptation in

the context of these features.

1. The degree of decentralization. Is the learning centralized or distributed? The

two extremes are complete centralization and complete decentralization. In com-

plete centralization, only one agent in the system learns or there is a central adaptive

controller for all of the agents in the system. In complete decentralization, all of

the agents in the system learn and adapt in a distributed and possibly simultaneous

fashion.
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2. Interaction-specific features. What is the nature of the interactions among the

agents in the system? Sen and Weiss discuss the “level of interaction,” the “pattern of

interaction,” and the variability of the interactions. Interactions can be based on ob-

servations, indirect effects from the environment (i.e., the use of a shared resource),

or explicit relationships and interdependencies. Additionally, interactions can change

over time as agents move through an environment or modify their relationships with

other agents.

3. Involvement-specific features.How involved are each of the individual agents in the

learning process? The learning of individual agents can be local (i.e., the environment

is partially observable) or global. Sen and Weiss refer to local learning agents as

“specialists,” because they are trying to learn given only local, partial views of the

environment.

4. Goal-specific features. Are the goals of the agents selfish or collective? Multi-

agent systems can be competitive, cooperative, and, sometimes, both. In competitive

systems, such as games, agents are selfish, attempting to maximize their individual

reward regardless of the reward received by other agents. In cooperative systems,

agents work toward common goals where the reward structure is shared, or common,

among all of the agents. An example of a system that is simultaneously competi-

tive and cooperative is academia. The agents in academia compete with one another

for publications, promotions, tenure, and funding. At the same time, collaboration
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among the agents leads to the production of more papers, and therefore more publi-

cations, which in turn increases the likelihood of promotions and tenure.

5. The learning method. How does learning take place for agents in the system?

Learning in multi-agent systems presents possibilities for alternative learning meth-

ods to methods used in single-learner settings. One way to characterize these alterna-

tive methods issocial learning. Sen and Weiss present several social learning meth-

ods, including “learning by advice taking,” “learning by observation,” and “learning

by example.” Of course, many single-learner methods, such as “learning by discov-

ery” and “learning from examples,” are also applicable, possibly with modifications,

to multi-agent learning scenarios.

6. The learning feedback. How do agents know if their decisions and behaviors are

beneficial or detrimental? Feedback, in the form of correct answers, can be given

directly to learning agents, as in supervised learning. A more likely scenario for

multi-agent learning is feedback through reinforcement of behaviors. This reinforce-

ment is not necessarily “correct” answers, but rather dispositional information about

decision made or actions taken. This is the reinforcement learning model, which is

described in more detail later in this chapter.

Although a complete treatment of organizational learning by network adaptation is

given in Chapter 4, I characterize the problem of distributed organizational structure learn-

ing along these six differencing features here. (1) The learning problem is completely
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decentralized. (2) The interactions among the agents are the focal point of learning. These

interactions are dynamic, changing based on decisions of the individual agents, and these

dynamic interactions represent the only source of learning in the systems under considera-

tions. (3) Because the learning is completely decentralized, all of the agents are necessarily

involved in the learning process. (4) Because I focus on organizational learning, the goal

of decentralized network adaptation is to improve collective performance. (5) While many

learning methods are possible in the organizational learning by network adaptation prob-

lem, I primarily focus on learning by discovery and learning by advice taking (the latter

leading to the referral-based strategies discussed in Chapter 4). (6) The learning feedback,

in general, is based on local feedback. Further details of organizational learning by network

adaptation are given in Chapter 4-7.

2.1.2 Challenges in Multi-Agent Learning

In multi-agent systems, particularly systems containing agents that learn, there are several

well known social pathologies (Jensen & Lesser 2002). In multi-agent learning, social

pathologies arise when one agent’s adaptations lead to improved local performance for the

agent, but decreased collective performance across the organization of agents.

Perhaps the mostly widely known and widely studied pathology in multi-agent systems

is thetragedy of the commons(TOC) (Hardin 1968; Jensen & Lesser 2002). In the TOC,

one agent benefits from (over) accessing or utilizing part of the environment, usually a
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shared resource, at the expense of the other agents in the system. The abuse of a common

resource by a single agent leads to the abuse of the common resource by other agents in this

system. This snowballing effect leads quickly to an over-burdening of the shared resource,

diminishing the performance of the entire system.

Other pathologies found in systems of learning agents include (Jensen & Lesser 2002)

lock in, where agents are given incentives to conform when conformity may lead to sub-

optimal states;cycling, where one agent’s adaptations lead to another agent’s adaptations,

leading back to adaptations of the first agent and so on; andblocking, where the behavior

of one agent in the system prevents other agents from moving to higher-valued states or

behavioral modes.

Another challenge associated with multi-agent learning, which is a carry-over from

single-learner machine learning, is thecredit assignment problem. A succinct characteri-

zation of the credit assignment problem in multi-agent learning is “what action carried out

by what agent contributed to what extent to the performance change” (Sen & Weiss 1999).

The credit assignment problem is further compounded in completely decentralized systems

where there is no central controller and no uniform reinforcement signal. In the decen-

tralized scenario, agents must locally perceive changes in performance and appropriately

attribute these changes to the actions of others or themselves. The credit assignment prob-

lem, as well as the other challenges described above, are considerations I will address when

considering decentralized organizational learning by network adaptation in later chapters.
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2.2 Multi-Agent Learning Paradigms

There are many multi-agent learning paradigms. In this section, I briefly review several

of the most widely studied methods in multi-agent learning. The section on reinforcement

learning is given additional attention since reinforcement learning techniques are used in

many of the methods proposed in this dissertation.

2.2.1 The Individual Learner Perspective

One approach to multi-agent learning is to ignore the fact that there are multiple, adaptive

agents in the system. In this approach, an individual agent learns using any of the applicable

standard techniques from machine learning (Mitchell 1997) and simply treats other agents

in the system as part of the environment. The great benefit of this approach is the wide

variety of learning algorithms and techniques available.

While the individual learner perspective may prove useful in some settings, agents that

treat other agents simply as part of the environment are likely to suffer from the so-called

“moving target” problem. That is, when an agent is learning from the individual learner

perspective, the environment is non-stationary, but the learning agent is not accounting

for this non-stationarity. A likely scenario is that the agent learning from an individual

learner perspective will be continuously playing “catch-up” with a dynamic and adaptive

environment.
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2.2.2 Evolutionary Computation

Evolutionary computation is the discipline and practice of using the principles of Darwinian

(or Lamarkian) evolution to search for solutions or approximations to problems. These

principles include natural selection and the use of genetic operators such as crossover and

mutation of the genes of individuals in a population (Holland 1975). Popular techniques

in evolutionary computation include genetic algorithms (Holland 1975) and genetic pro-

gramming (Koza 1992). In these techniques, a population of individual solutions to the

problem is evolved using fitness-based selection techniques to drive the population from

one generation to the next.

Co-evolutionary algorithms extend the use of genetic algorithms and other techniques

to learning for multi-agent systems (Potter & Jong 2000). In co-evolutionary algorithms,

the individuals in the populations actually represent collection of agents. Using this rep-

resentation, the strategies of individual agents evolve, but they evolve in the context of the

strategies of their “teammates.” In order to improve the performance of multi-agent teams,

co-evolutionary algorithms provide reward, or reinforcement, to collections of agents as

opposed to each agent receiving its own reward. Essentially, agent strategies are directly

and explicitly coupled in co-evolutionary techniques.

Several studies have demonstrated the improvement that co-evolutionary algorithms

provide over simple evolutionary techniques. Using cooperative co-evolution, neural net-

work controllers for individual simulated agents in a predator-prey environment were evolved
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and shown to be more effective than an evolved central neural network controller (Yong &

Miikkulainen 2001). Co-evolutionary techniques have also been applied to the control of

multi-robot teams (Liu & Iba 2003). In another study, “adaptable auctions” based on co-

evolutionary techniques were used to provide team reward functions for role learning in

multi-agent systems.

While co-evolutionary techniques are designed for multi-agent systems, they remain a

centralized approach. The learning, including both adaptation and reinforcement, in co-

evolutionary algorithms is centralized, although the resulting behaviors of the agents in

the system may be distributed. Although co-evolutionary techniques have proven useful in

cooperative multi-agent domains, extending the paradigm to large-scale, open multi-agent

systems is a significant challenge.

2.2.3 Multi-Agent Reinforcement Learning

Reinforcement learning (RL) is one of the most widely studied learning mechanisms for

multi-agent learning. The RL approach to multi-agent learning focuses on agents learning

equilibrium strategies in (repeated) stochastic games. I first briefly introduce the concept of

a Markov Decision Process (MDP) and the widely studiedQ-learning algorithm for finding

an optimal policy for an MDP. I then discuss extending MDPs to stochastic games (and the

special case of matrix games) and provide a summary of several methods that have been

proposed for extendingQ-learning for multi-agent learning in stochastic games.
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A Markov Decision Process(MDP) (Bellman 1957; Sutton & Barto 1998; Kaelbling,

Littman, & Moore 1996) is a tuple, (S, A, T , R), whereS is the set of states,A is the set

of actions,T : S ×A×S → [0, 1] is a transition function, andR : S ×A → R is a reward

function. The transition function is a probability distribution that provides the probability

of transitioning to states′ given that the current state iss and the actiona is taken. The

reward function maps the current state and action pair to a real-valued reward. The goal of

solving an MDP is to find an optimal policy,π : S → A, which maximizes the discounted

future rewards. The discount factor is typically given asγ.

The basis for many existing multi-agent reinforcement learning algorithms is the much

studied (single-agent)Q-learning strategy for solving Markov Decision Processes (MDPs)

(Watkins & Dayan 1992; Kaelbling, Littman, & Moore 1996).Q-learning, which is used

to compute an optimal policy for an MDP, is based on the following equations:

Q(s, a)← (1− α)Q(s, a) + α[R(s, a) + γV (s′)], (2.1)

and

V (s)← max
a∈A

Q(s, a), (2.2)

whereQ(s, a) is the estimated value of taking actiona in states, V (s) is the estimated

value of states, R(s, a) is the reward for taking actiona in states, s′ is the resulting

state from taking actiona in states, α is the learning rate, andγ is the discount factor for

future rewards. It is well known thatQ-learning converges on the optimal policy,V ∗, under

certain assumptions about how the state space is explored (Watkins & Dayan 1992).
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heads tails

heads 1 -1
tails -1 1

rock paper scissors

rock 0 -1 1
paper 1 0 -1

scissors -1 1 0
(a) (b)

Figure 2.1: Examples of two common matrix games: a) matching pennies and b) rock-
paper-scissors (Ro-Sham-Bo).

Extending reinforcement learning to apply to multi-agent learning domains also in-

volves extending MDPs to that of stochastic games. Astochastic game(Bowling & Veloso

2002), orMarkov game(Littman 1994), is a tuple (n, S, ~A, T , ~R), wheren is the number

of players,S is the set of states,~A is the joint action spaceA1×A2× . . .×An whereAi is

the set of actions available to theith player,T : S × ~A×S → [0, 1] is a transition function,

and ~R is the set of reward functions withRi : S × ~A → R being the reward function

for the ith player. An MDP is a special case of a stochastic game withn = 1. Another

special case of the stochastic game is thematrix game. A matrix game is a stochastic game

with |S| = 1 (i.e., a stateless stochastic game). Figure 2.1 shows the payoff matrices for

several popular matrix games. Strictly cooperative stochastic games, or team games, are

games where all of the agents have the same reward function. Strictly competitive stochas-

tic games are zero-sum two-player games (Bowling & Veloso 2002). Much of the work

on “solving” stochastic games is focused on finding equilibrium strategies (i.e., strategies

where no agent will desire to deviate from the equilibrium strategy when all other agents

continue to play the equilibrium strategy).
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It is possible to have a multi-agent system where all of the agents simultaneously learn

using standardQ-learning, but this is simply the single-agent perspective (see above) (Sen,

Sekaran, & Hale 1994). In order to extend theQ-learning algorithm to the multi-agent

learning domain, an agent’sQ values can be made a function of all of the agents’ actions:

Q(s,~a)← (1− α)Q(s,~a) + α[R(s,~a) + γV (s′)], (2.3)

where~a is the vector of all agents’ actions (Littman 2001b; Hu & Wellman 2002). Once

theQ values are given as a function of all of the agents’ actions, the question remains as to

how to update the state value functionV . Many methods have been proposed, with several

of them briefly summarized here:

• minimax-Q (Littman 1994): One of the first multi-agent reinforcement learning al-

gorithms, minimax-Q is restricted to two-player zero sum games. The state value

function is updated by the minimax rule, which assumes a player’s opponent is fully

rational, and will choose the action that minimizes the players expected reward. The

update to the state value function is given as

Vi(s)← max
P1∈Π(A1)

min
a2∈A2

∑
a1∈A1

P1(a1)Q1(s, (a1, a2)), (2.4)

whereP1(a1) is the probability that player 1 selects actiona1 andΠ(A1) is the space

of all policies for player one.

• Joint Action Learner (JAL) (Claus & Boutilier 1998): In the JAL multi-agentQ-

learning algorithm, agenti learns a probability distribution of the actions of all of the
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other agents in the game. Agenti then selects the maximum-utility action, using the

learned probability distribution (i.e., its belief) to calculate expected value. The state

value function is updated following

Vi(s)← max
ai

∑
a−i∈A−i

Pi(s, a−i)Qi(s, (ai, a−i)), (2.5)

wherea−i represents the actions of all agents other than agenti. The probability

distribution over agent actions is based on past empirical frequency.

• Nash-Q (Hu & Wellman 1998): In this algorithm, the agents select a Nash equi-

librium strategy based on the payoffs of all of the players in the game, and update

the state value function according to this Nash equilibrium. While applicable to

general-sum stochastic games, there can be many equilibria and they can be difficult

to compute.

• Friend-or-Foe (Littman 2001a): The Friend-or-Foe multi-agent reinformcement learn-

ing algorithm divides stochastic games into two classes. Friend games are games

where there is a globally optimal policy that maximizes the payoff for all agents. Foe

games assume competition between agent payoffs. For two-person games, the state

value functions are updated for the two classes of stochastic games as follows:

Friend: V1(s)← max
a1∈A1,a2∈A2

Q1(s, (a1, a2)) (2.6)

Foe: V1(s)← max
P1∈Π(A1)

min
a2∈A2

∑
a1∈A1

P1(a1)Q1(s, (a1, a2)). (2.7)
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It can be seen that the Friend update rule follows standardQ-learning and the foe

update rule follows minimax-Q.

Learning in stochastic games becomes even more difficult when the environment, from

the perspective of each agent, is partially observable. In this setting, each of the agents

in the game may have a different belief about the true state of the world. Such games

are calledpartially observable stochastic games(POSGs). Computing optimal policies for

POSGs is intractable (Emery-Montemerloet al. 2004). Most of the work on POSGs is

focused on algorithms for finding approximate solutions (Emery-Montemerloet al. 2004;

Peshkinet al. 2000) although, more recently, a dynamic programming algorithm for finding

optimal solutions has been proposed (Hansen, Bernstein, & Zilberstein 2004).

I have presented the standard formulation of reinforcement learning and surveyed ex-

tensions ofQ-learning to multi-agent reinforcement learning in stochastic games. The

primary focus of this dissertation, organizational learning by decentralized network adap-

tation, is not formulated as a multi-agent stochastic game for several reasons, including

the complexity of the problem, the size of the state space, the computational complexity

of solving the problem, and the uncertainty associated with the restriction to local infor-

mation. However, my approach to organizational learning by network adaptation has been

influenced by the previous work on multi-agent reinforcement learning.
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2.2.4 Computational-Mechanism Design

Computational-mechanism design(CMD) is a relatively new subfield of research in multi-

agent systems, with implications for multi-agent learning (Dash, Jennings, & Parkes 2003).

CMD has grown out of the economic theory of mechanism design, which is primarily fo-

cused on designing interaction methodologies for collections of individual actors so as to

achieve some desired system-wide behavior. I include CMD in the discussion of multi-

agent learning paradigms because recent work has focused on distributed mechanism de-

sign, learning mechanisms, and on-line mechanisms.

In CMD, agents have preferences, called the agenttype, which determine the agents’

utilities given certain observations (i.e., occurrence of an event). The agents select strate-

gies based on their types, attempting to maximize their utility (i.e., the agents are assumed

to be economically rational). CMD also includes a so-calledsocial choice function, which

maps the set of agent types to a desired observation, or outcome. The goal of CMD is to

design a social choice function that achieves some specific system-wide behavior, such as

Pareto optimality or efficiency (Dash, Jennings, & Parkes 2003). In essence, CMD is a

control mechanism for the collective behavior of a multi-agent system.

As described above, CMD is a centralized approach to governing the behavior of multi-

agent systems. It involves collecting information about all of the agents, solving (or ap-

proximating) a centralized combinatorial optimization problem, and distributing the result

to the individual agents. More recently, work on distributed mechanism design (DMD)
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has considered how to decentralize the selection of the optimal outcome (Parkes & Shnei-

dman 2004) and has been applied to various issues in communications networks (Feigen-

baum & Shenker 2002). Although possible, DMD presents a new set of challenges for

computational-mechanism design, including trust, communication complexity, and the topol-

ogy of the agent-to-agent interactions (Dash, Jennings, & Parkes 2003). In this light, CMD

and DMD are important application domains of the work presented in this dissertation.

Closely related to computational-mechanism design iscollective intelligence(COIN).

The goal of COIN is to assign credit to individual agents such that some global objective

is achieved (Wolpert & Tumer 1999; Tumer & Wolpert 2000). Essentially, COIN aims

at designing solutions to the credit assignment problem. In applications of COIN, reward

functions for individual agents in multi-agent systems are designed in an attempt to account

for other agents in the system and to promote individual behaviors that result in common,

collective goals.

There are also two emerging areas related to CMD that are directly related to learn-

ing in multi-agent systems. Moving from controlling multi-agent systems to multi-agent

learning,learnable mechanism design(Parkes 2004) involves the design of mechanisms

that aid agent learning of equilibrium strategies in multi-agent learning domains. Finallly,

automated mechanism design(Parkes 2004), where mechanisms are formed in an online

fashion and are adaptive, is also becoming an important issue for CMD (Dash, Jennings, &

Parkes 2003; Freidman & Parkes 2003).



Chapter 3

Networks: Structure, Function, and

Formation

As networks have permeated our world, the economy has come to resemble
an ecology of organisms, interlinked and coevolving, constantly in flux, deeply
tangled, ever expanding at its edges.

Kevin Kelley

Most people . . . would agree that a fundamental property of complex sys-
tems is that they are composed of a large number of components or “agents,”
interacting in some way such that their collective behavior is not a simple com-
bination of their individual behaviors.

Mark Newman

The importance of networks permeates the world today. From biology to social sys-

tems, from the brain to the Internet, networks play an important and central role in the way

the world works. In the last ten years, due in part to large increases in computational power,

large-scale, real-world networks have received much attention from a variety of fields of

27
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study. In this chapter, I present a brief introduction to networks, including an overview of

important properties observed in real-world networks, descriptions of several classes and

models of network structures, and definitions of statistical measurements for characterizing

network structures both statically and as they evolve. The chapter concludes by introduc-

ing the economic theory of network formation and a simple economic network formation

model. The model is used to present a first example of agent-organized networks and to

demonstrate the proposed statistical measurements for characterizing networks.

3.1 Properties Observed in Real-World Networks

Social networks, which have attracted the attention of scientists for many decades, are

traditionally analyzed with the tools of graph theory. AgraphG = (V,E) can be used as

a model of a social network, where the graph consists of a finite vertex setV , representing

individuals, and a finite edge setE, representing relationships between individuals. An

edgee ∈ E is a pair of vertices denoting the endpoints of the edge. The degree of a node

i, denotedki, is the number of edges connected to nodei. The number of vertices inG

is |V | and the number of edges is|E|. Since I am primarily concerned with networked

multi-agent systems, the terms node, vertex, and agent will all be used interchangeably to

refer to elements of the setV in networks.

Three of the most frequently observed properties of real-world graphs are short average

path lengths, excess clustering, and power-law degree distributions (Albert & Barabási
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2002; Newman 2003). Commonly referred to as the “small-world effect,”short average

path lengthwas first recognized by Milgram (1967) by analyzing the number of hops it

took for postal mail to arrive at a specific destination. In these studies, mail was sent among

people who knew each other on a first-name basis, with the goal of eventually getting the

mail to a specified destination. Although not comprehensive, the studies concluded that it

was possible for the mail to arrive at the specified destination and that it took, on average,

approximately six hops to get from origin to destination. Average path length is calculated

by taking the average of the lengths of the shortest paths between all pairs of nodes in the

graph (Watts & Strogatz 1998; Newman 2003).

Excess clusteringis found in networks that have more clustering than would be ex-

pected in a random graph of the same size (Newman 2003). The amount ofsimple clus-

tering in a graph is defined to be the number ofthree-cliques, or triangles, that exist in

the graph, normalized by the number of possible triangles.Transitivity is a generalized

form of clustering that can be summarized as nodes having multiple shared neighbors with

other nodes (e.g., in the two-dimensional lattice, the nodes on the opposite corners of each

“square” share two common neighbors). Excess clustering has been observed in many

real-world networks as a result of the fact that two nodes that are connected to a common

neighbor are more likely to be connected.

Thedegree distributionof a network is the frequency of occurrence of nodes with each

degree, or number of incident edges. Although there are many possible distributions for
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degree, it has been observed that many real-world networks have a highly skewed degree

distribution. These distributions have “heavy tails,” and in general follow a power law. That

is, the probabilityP (k) of a node in the network having degreek is proportional tok−γ for

some parameterγ. Such networks have a hub-and-spoke structure, with some nodes having

very large degree (Albert & Barabási 2002).

The three properties described above are used to understand the structure of complex

networks. Later in this chapter, these properties will be used to suggest statistics for char-

acterizing network structures and their evolution. In subsequent chapters, these properties

and the derivative statistical measures will aid in understanding the structure of networks

that evolve based on local decisions of agents in networked multi-agent systems.

3.2 Modeling Regular and Complex Networks

There are many models for the structure of networks. In this section, several network

models are briefly surveyed with an emphasis on models that attempt to reproduce the

properties of networks found in the real world.

3.2.1 Regular Networks

Regular graphs are best characterized as having a homogeneous connectivity pattern for

all of the nodes in the graph. In these graphs, the degree distribution is trivial: all agents

have exactly the same degree. Examples of regular graphs include lattices, hyper-cubes,
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and fully connected networks (i.e., all nodes are connected to all other nodes).

Lattice graphs are commonly used in understanding the behavior of agent-based sys-

tems (Epstein & Axtell 1996; Axtell 2000). In lattice graph topologies, nodes are given

a logical ordering and connections among nodes are limited to nodes that are within close

logical proximity. The dimension of a lattice determines the number of coordinates required

to specify the node positions. In order to prevent boundary conditions (i.e., different node

degrees for the nodes on the boundaries of a given lattice), a lattice can be wrapped upon

itself. In one dimension, wrapping a lattice results in a ring topology. In two dimensions,

wrapping a lattice results in a toroidal topology.

The other consideration in constructing lattice graphs is the coordination number,K

(Watts 1999). In a lattice of dimensiond, the coordination number determines the number

of connections an agent has with its spatial “nearest neighbors” in each of the2d directions.

To illustrate how the coordination number affects the construction of a lattice, consider the

one-dimensional lattice. The one-dimensional lattice withK = 1 is a simple connected

ring of nodes. Increasing the coordination number toK = 2 results in a graph in which

each node is connected to the four nodes with nearest proximity. An example of a one-

dimensional lattice withK = 2 is shown in Figure 3.2(a). In a one-dimensional lattice

with K = 2, each node is part of three triangles, or clusters. In this construction of lattices,

if d is the dimensionality of the lattice, a node will always have2dK edges. The amount

of clustering in such a network is described in the discussion of small-world networks.
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Lattice graph structures can exhibit excess clustering, but do not, in general, have short

average path length.

3.2.2 Random Graphs

Random graphs were first introduced by Erdös and Renyi (1959). Arandom graphGn,p

consists ofn nodes wherep denotes the probability of an edge existing between each pair

of vertices. Random graph models have been widely studied since their properties can

be computed analytically. For instance, the expected number of undirected edges inGn,p

is n(n − 1)p/2, and the average degree of a vertex isk = p(n − 1) ≈ pn, where the

approximate solution holds for largen.

Recent evidence suggests that random graphs are not representative of real-world net-

works (Albert, Jeong, & Barab́asi 1999; Albert & Barab́asi 2002). They do possess short

average path lengths (Albert & Barabási 2002): the average path length can be approxi-

mated as

lnn

ln k
≈ lnn

ln pn
. (3.1)

On the other hand, random graphs do not exhibit clustering or a power-law degree distri-

bution (the degree distribution follows a Gaussian distribution).
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Figure 3.1: An instance of a random geometric graph on the unit square with 400 nodes
andφ = 0.09.

3.2.3 Random Geometric Graphs

A random geometric graph is generated by randomly placingN agents in the unit square

and connecting two agents if they are within some specified distanced (Dall & Christensen

2002). More specifically, two agents,i andj are connected in a random geometric graph if

d(i, j) < φ, whereφ is a threshold parameter of the model. Figure 3.1 shows an instance

of a random geometric graph withφ = 0.09.

Random geometric graphs are useful in modeling agent-based systems when the envi-

ronment has an explicit geographic component (i.e., the agents are situated in a physical

environment). In such an environment, communications are usually restricted to nearby

neighbors due to line-of-sight and other considerations. An example of a multi-agent do-

main where random geometric graphs could serve to model the interconnectivity among

the agents is intelligent sensor networks (Culler, Estrin, & Srivastava 2004).
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A slight variation of random geometric graphs guarantees that every node will have at

least on connection. In this variation, a preprocessing step is added to the construction.

In order to produce network structures where all agents have connectivity, the minimal

distancedmin can be computed by

dmin = max
i

min
j
d(i, j). (3.2)

Oncedmin is computed, a random geometric graph withφ = dmin guarantees that every

node in the network will have at least one incident edge.

3.2.4 Small-World Networks

First proposed by Watts and Strogatz (1998), the small-world network model is an attempt

to produce networks that exhibit excess clustering (or transitivity) and short average path

lengths. A key observation is that small-world networks have properties that lie between

those of regular (lattice) networks and random graphs.

Lattices are the basic building block of small-world networks. Lattice models lend

themselves directly to increased clustering by increasing the coordination number. As de-

scribed previously, thecoordination number, K, of a lattice determines the number of

nodes, sorted based on physical proximity, with which a node has connections.

To demonstrate that lattice graphs possess excess clustering, we consider the one-

dimensional lattice and its corresponding coordination number. Given the description of

the coordination number, each node in the one-dimensional lattice is connected to exactly
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2K other nodes, with the potential (i.e., if all nodes were connected to each other) for

K(2K − 1) connections among the2K neighbors. Due to the regularity of the intercon-

nections in the one-dimensional lattice, there are actually3K(K−1)/2 connections among

the nodes in the neighborhood of any given node. The clustering coefficient for each node is

then the actual number of connections divided by the total number of possible connections:

Ci =
3K(K − 1)

2K(2K − 1)
=

3(K − 1)

2(2K − 1)
, (3.3)

which converges to3/4 asK goes to infinity (Albert & Barab́asi 2002; Barrat & Weigt

2000; Newman 2003). Since every node in the one-dimensional lattice has the same local

structure, the clustering coefficient of the entire graph, given by the average of all of the

clustering coefficients of the individual nodes, is exactlyCi. Constructing a lattice in this

fashion yields high clustering, but another mechanism is required to achieve short average

path lengths.

The mechanism for decreasing average path length in small-world networks is a random

re-wiring of a percentage of edges. This results in shortcut connections across the network,

as seen in Figure 3.2. The parameterρ is used to determine if an edge is replaced by a

shortcut through the graph.1 In this construction,ρ is the probability that each edge will be

randomly rewired. When edges are replaced with random shortcuts with probabilityρ = 1,

the resulting graph is a random graph.

1One caveat in this construction of a small-world graph is that the graph can become disconnected.
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(a)ρ = 0.0 (b) ρ = 0.1 (c) ρ = 0.3

Figure 3.2: Three increasingly random small-world networks: (a) a small world with no
shortcut links; (b) the same small world with a few shortcuts; and (c) a small world with
many shortcuts, which begins to resemble a random graph. All three of the networks are
constructed from a one-dimensional lattice where nodes are connected toK = 2 other
nodes in each direction, based on physical proximity.

3.2.5 Scale-Free Graphs

The scale-free graph model is motivated by the empirically measured degree distributions

of the Internet and the World Wide Web (WWW) (Albert & Barabási 2002; Albert, Jeong,

& Barab́asi 1999). The model is a highly intuitive model based on how networks are

believed to evolve and grow in the real world.

The generation of scale-free graphs has two simple rules:

1. growth: at each time step, a new node is added to the graph, and

2. preferential attachment: when a new node is added to the graph, it attaches prefer-

entially to existing nodes with high degree.

Preferential attachment is modeled by the equation:

P (eij) = mkj

∑
v∈V

(
1

kv

)β (3.4)
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Figure 3.3: An example of a scale-free network structure with 250 nodes: (a) a rendering
of the network that clearly shows the hub-and-spoke structure, and (b) a log-log plot of the
cumulative degree distribution of the network shown in (a). Note that a linear curve in a
log-log plot implies a power-law behavior of the underlying system.

wherei is a new node being added to the system andP (eij) is the probability of the cre-

ation of an edge between nodesi and j. As before,kv is the degree of nodev. There

must be an initial connected core ofm0 nodes, ensuring that at the beginning of the graph

generation process, nodes with non-zero degree exist. The model parameters are the num-

ber of expected initial connections that a new node will make,m, and a scaling factor for

the probability of connection,β ∈ [0,∞), which forces the graph to be more or less dense.

Note that whenm = β = 1, the probabilities of connecting to existing nodes in the network

sum to exactly one, so the expected number of edges in the graph is equal ton. Scale-free

graphs exhibit both short average path lengths and skewed degree distributions but, like

random graphs, lack excess clustering (Albert & Barabási 2002).

It is worth mentioning that the above sampling of models of network structures is just
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that: a sampling. There are many network structure models in the literature. This set of

models was chosen because they are widely studied, highly intuitive, and either model the

structure of real-world networks or have been traditionally used to model the interconnec-

tivity of agent-based systems.

3.3 Statistical Measures for Dynamic Networks

Many possible measurements can be used to understand and characterize the behavior of

dynamic networks. In this section, I introduce several measures that will aid in understand-

ing the behavior of the agent-organized networks studied in later chapters. Some measure-

ments are obvious, such as the number of edges in a network, the density of a network

(i.e., the ratio of edges to the number of edges in the complete graph with the same number

of nodes), and the number of components (disjoint subgraphs) in a network. I focus on

measures derived from properties observed in real-world networks.

3.3.1 Mean Path Length

Themean path lengthof a network is the average shortest path between all pairs of agents in

the network (Albert & Barab́asi 2002; Newman 2003). The mean path length of a network

is given by

D(G) =
1

n(n− 1)

∑
i

∑
j

d(i, j), (3.5)
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whered(i, j) is the distance, possibly weighted, of the shortest path between agentsi and

j in the network. Note thatd(i, i) = 0. With a slight abuse of terminology from the graph

theory literature, mean path length will also be referred to as networkdiameter.

Measuring the mean path length of a network that is disconnected (i.e., that has more

than one component) requires a slight modification to the normal notion of distance. It

is normal to say thatd(i, j) = ∞ if agentsi and j have no path between them. Using

this notion of distance results inD(G) = ∞ for all networks that have more than one

component. In order to preserve some of the information about the existing paths in the

network, an alternative is to assignd(i, j) = n when agentsi andj are not connected. This

results inD(G) ∈ [1, n], with the complete network having a mean path length of one and

the network withn agents and zero edges having a mean path length of exactlyn.

3.3.2 Clustering

The concept of clustering has been widely studied in real-world social, and other, networks.

The intuition behind clustering is to measure the frequency of transitive relationships in

networks (Newman 2003; Albert & Barabási 2002; Watts & Strogatz 1998).

There are two common measurements of clustering. The first measurement calculates

the ratio of triangles in a network to the number of connected triples. This is given by

C4(G) =
3× number of triangles in the network

number of connected triples in the network
, (3.6)

where the number of connected triples counts the distinct sets of two agents that are con-
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nected to a third agent (Newman 2003).

An alternative, which will be used to study agent-organized networks in later chapters,

is localized clustering:

C(G) =
1

n

∑
i

2|Ei
k|

ki(ki − 1)
, (3.7)

whereEi
k is the set of connections among theki neighbors of agenti, andki is the degree

of agenti (Newman 2003). Note thatC(G) ∈ [0, 1] where the complete network has

clustering of one and the empty network has clustering of zero.2

3.3.3 Deviation in the Degree Distribution

Since degree distribution is one of the properties used to characterize and understand the

structure of real-world networks, it is desirable to derive scalar network measurements that

help capture the nature of a network’s degree distribution. An obvious, and important,

measurement is to calculate the network’s average degree:

k̄ =< ki >=
1

n

∑
i

ki. (3.8)

Although average degree captures the amount of connectivity in the network, it provides

no information about the heterogeneity, or lack thereof, of degree among the agents in a

network.
2Network structures other than the empty network can also have zero clustering. One example is the star

topology.
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Standard deviation is the common statistic for gleaning information about how a value

varies over a distribution, and can therefore be used to partially characterize degree dis-

tribution. A slightly generalized form of standard deviation is the normalized standard

deviation. This value is a more informative measurement than average degree when com-

paring various networks. The normalized standard deviation of degree of a networkG will

be denotedNSD(G, k), wherek refers to degree. This value is computed according to the

formula (Zimmermann, Equiluz, & Miguel 2004):

NSD(G, k) =
< k2

i > − < ki >
2

< ki >
. (3.9)

WhenNSD(G, k) approaches zero for an evolving network, the network is moving toward

a uniform degree distribution. An example of this will be seen in the discussion of the

Symmetric Connections Model below (section 3.4.1).

3.3.4 Node (Degree) Correlation

Newman (2002) introduced a measure for assortativity, or degree correlation, of adjacent

nodes in a network based on Pearson’s correlation coefficient. We extend Newman’s for-

mulation to measure the correlation of any properties of adjacent agents in our networks:

ρ(x, y) =

1
m

∑
ij∈G xiyj −

[
1

2m

∑
ij∈G(xi + yj)

]2

1
2m

∑
ij∈G(x2

i + y2
j )−

[
1

2m

∑
ij∈G(xi + yj)

]2 , (3.10)

wherex andy are vectors corresponding to properties of the agents in the network,m = |E|

is the number of edges in the network, andij ∈ G denotes that agentsi andj are directly
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connected in the networkG. As stated above, this measure can be used to calculate the

correlation among any properties of adjacent nodes in a network. The degree correlation

will be denotedρ(k, k).

Note thatρ(k, k) ∈ [−1, 1], where a strong positive correlation means that neighboring

nodes have similar degrees. A strong negative correlation means the opposite: high degree

nodes are connected to low degree nodes. When there is little variance in degree, the

correlation is close to zero.

3.4 Network Formation Games in Economics

Network formation has recently become a topic of interest in the economics literature. Al-

though not directly applied to multi-agent organizational learning, economic network for-

mation provides a foundation for thinking about agent-organized networks and gives some

insight into theoretical results on endogenous network formation. In this section, a simple

economic model of network formation is introduced along with a discussion of the con-

cepts of stability and equilibria. I then briefly cover several of the major theoretical results

for the network formation model. The theory is demonstrated, along with the statistical

measurements discussed in the previous section, by the experimental results of a simulated

dynamic network formation process.
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3.4.1 The (Symmetric) Connections Model

First presented by Jackson and Wolinsky (1996),The Connections Model(CM) is a stylized

model that is representative of a larger class of network games. In such games, values are

given to network structures and to the positions of agents in the network. The CM was first

developed in order to characterize and study the nature of “social communications among

individuals” (Jackson & Wolinsky 1996).

In the model, agents directly communicate with the agents with whom they share an

undirected edge (i.e., a connection) in the network structure. The communications imply

value for information flow, so agents also benefit from the indirect communications repre-

sented by their neighbor’s direct connections and their neighbor’s neighbor’s connections.

The value of the indirect communications falls off as a function of the geodesic distance

(i.e., shortest path distance) in the network. In particular, the value allocated to agenti in

networkG in the CM is given as

Yi(G) =
∑
j 6=i

δ
d(i,j)
ij −

∑
j:ij∈G

cij, (3.11)

whereij ∈ G denotes a connection between agentsi andj in the networkG, andd(i, j)

is the shortest path distance betweeni andj. The parametersδij, with 0 < δij < 1, are

the values of the (possibly indirect) connections between agentsi andj discounted as a

function of the distance between the two agents. The parameterscij are the costs of direct

connections between agentsi andj. Agents benefit from being “close” to other agents,

discounted by distance, while they only suffer costs for their direct connections. The value
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of a network in the CM is

v(G) =
∑

i

Yi(G), (3.12)

which is commonly referred to associal welfarein economics.

The model allows agents to create or remove connections, with the goal of maximizing

Yi(G). The model assumes that connections must be added bilaterally (i.e., the agents at

both ends of the connection must agree to the connection), but that connections can be

removed unilaterally. TheSymmetric Connections Model(SCM) has homogeneous values

for all of the connections:∀ij ∈ G δij = δ andcij = c.

The CM and the SCM are representative of a larger set of network games that have

been considered in the economics literature. Network formation has also been studied

in the context of trade networks, labor markets, coauthor networks, and buyer-seller net-

works (Jackson 2003; Goyal 2003). Much of the economics literature is concerned primar-

ily with stability, efficiency, and equilibrium, and does not concern itself with the real-time,

dynamic behavior of agents in such models. Before considering the dynamic, real-time be-

havior of agents in the SCM, I first present the primary stability and efficiency results for

the SCM.

3.4.2 Stability and Efficiency

As mentioned above, the economic literature is primarily concerned with stable and effi-

cient structures in network formation games. The notion of stability captures whether or
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not agents in the network desire to make anysinglechange to the network structure.

Definition 1 (Jackson & Wolinsky 1996)3 A networkG is pairwise stablewith respect to

allocation ruleY if

(i) ∀ij ∈ G, Yi(G) ≥ Yi(G− ij) andYj(G) ≥ Yj(G− ij), and

(ii) ∀ij 6∈ G, if Yi(G+ ij) > Yi(G) thenYj(G) > Yj(G+ ij).

In the definition,G− ij andG+ ij represent the removal of the connection between agents

i andj and its addition, respectively.

Intuitively, pairwise stability implies that no agent desires to make anyonemodification

to the connections in the network (i.e., no agent desires to add or delete a connection).

The emphasis on asinglemodification, known in the game theory literature asmyopic, is

important since agent strategies that rely on the notion of pairwise stability can result in

locally stable network structures (see below).

A pairwise stable network is a network for which no agent desires to change any one of

its connections. Efficiency is a more strict notion.

Definition 2 (Jackson & Wolinsky 1996) A networkG is efficient if v(G) ≥ v(G′) ∀G′ ∈

G.

Here,G is the space of all network structures of a particular size (i.e., the number of agents

in the system). In essence, an efficient network has a value that is at least as great asany

3This definition is taken directly from Jackson and Wolinsky (1996) with a slight change of notation due

to the assumption that Equation (3.12) gives the value function of the network.
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othernetwork structure.

Given these definitions of stability and efficiency, theoretical results shed light on the

behavior of networks as they form. First, the concept of pairwise stability restricts the set

of network structures that network formation processes settle on under different parameter

regimes.

Proposition 1 (Jackson & Wolinsky 1996) In the symmetric connections model:

(i) A pairwise stable network has at most one (non-empty) component.

(ii) For c < δ−δ2, the unique pairwise stable network is the complete graph,

CN .

(iii) For δ − δ2 < c < δ, a star encompassing all players is pairwise stable,

but not necessarily the unique pairwise stable network.

(iv) For δ < c, any pairwise stable network which is nonempty is such that

each player has at least two links and thus is efficient.

Here, a star network is one with every agent connected to a central hub, and no other con-

nections. The proof of the proposition is given in the original study (Jackson & Wolinsky

1996), but the intuition behind the proof is included here. Whenδ − δ2 < c < δ, the star is

pairwise stable because (1) the hub would not delete any of its connections, becauseδ > c;

and (2) none of the other agents would form a direct connection, because for any two of

the agentsi andj: d(i, j) = 2, agenti gets theδ2 indirect benefit via its connection with
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the hub, andδ2 > δ− c (whereδ− c is the net cost of the new direct connection betweeni

andj).

The second major theoretical result from the economics literature considers the struc-

ture of efficient network structures.

Proposition 2 (Jackson & Wolinsky 1996) The unique efficient network structure in the

symmetric connections model is

(i) the complete graph,CN , if c < δ − δ2,

(ii) a star encompassing everyone ifδ − δ2 < c < δ + (N−2)
2

δ2, and

(iii) no links ifδ + (N−2)
2

δ2 < c.

The proof of the proposition can be found in the original paper (Jackson & Wolinsky 1996)

with the intuition for case(ii) presented here. The star is the unique efficient structure for

two reasons: (1) it has the minimum number of connections,(n− 1), to guarantee a single

component, therefore minimizing global cost; and (2) those connections are arranged so as

to minimize the average pairwise distance between all of the agents (i.e., the star minimizes

the mean path length, or diameter, of the network), maximizing the benefit to all of the

agents.

The theory described here is extremely useful in understanding the structure of net-

works and network formation. Although simple, the SCM presents a challenging problem

for distributed, multi-agent cooperations. Local decisions that increase local utility (i.e.,
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greedy decisions) can be suboptimal considering future decisions and may lead to collec-

tive network inefficiencies. A main concern of this dissertation is in designing strategies

(either designed or learned) that allow agents to make local decisions in real time as net-

works evolve in order to form efficient network structures in a variety of multi-agent set-

tings. The SCM provides an interesting backdrop for analyzing agent-organized networks

in more complicated domains.

3.4.3 A Dynamic Network Formation Process

Using the notion of pairwise stability, Watts (2001) proposed a dynamic model for the

SCM (Jackson & Watts 2002). The dynamic model starts with an empty network (i.e., no

connections), and then at each iteration, two agents,i andj, are chosen randomly from

a probability distributionp(i) and allowed to consider their connections (or lack thereof).

This mechanism for considering connections will be referred to as therandom meeting

mechanism. In order to analyze the dynamic network formation process, assume thatp(i)

is the uniform distribution over all of the agents in the network.

The deterministic dynamic network formation process (Watts 2001) is as follows. Let

G represent the graph beforei and j consider their connection. Ifij ∈ G, the agents

remove the connection ifYi(G− ij) > Yi(G) or Yj(G− ij) > Yj(G). If ij /∈ G, the agents

add the connection ifYi(G + ij) ≥ Yi(G) and Yj(G + ij) ≥ Yj(G), with the inequality

holding strictly for at least one ofi or j. That is, the agents establish the connection if it is
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mutually beneficial, and they remove the connection if either benefits from its removal.

In order to prevent the model from remaining in “uninteresting” stable states (e.g., the

network with no connections whenc > δ), a stochastic dynamic network formation pro-

cess was also considered. The stochastic model is the same as above, although decisions

to establish connections are randomly inverted with probabilityε. To liken this stochastic

approach to reinforcement learning, it can be considered anε-greedy exploration strategy.

This was meant to represent slight irrationality or small “tremors” in the deterministic pro-

cess (Watts 2001).

Note that the Watts formation process requires an individual agent making a local de-

cision to perform a global computation. That is, the agent computes the change in value

(which depends on the entire network structure) after adding or deleting a connection, and

then determines if the change to the connection should remain or be reversed based on

whether the value increased or decreased, respectively. This assumption, that agents have

global knowledge of the entire network structure for informing decisions, is not realistic

in many multi-agent environments. This is a key point in understanding the complexity of

multi-agent network formation. In the next chapter, the SCM is revisited to highlight the

challenges of distributed, multi-agent network formation even with the idealistic assump-

tion of perfect global knowledge.



50

3.4.4 An Experiment with the Symmetric Connection Model

Two of the central questions in this dissertation are:

1. How can agents organize networks in a dynamic and distributed fashion?

2. What are the structural properties of the networks that result from the distributed

organization of networks by many agents?

In order to begin the examination of these questions and to introduce the concept ofagent-

organized networks, which will be treated more thoroughly in the next chapter, this section

presents the results of operationalizing the Watts dynamic network formation process in

the context of the SCM. Additionally, the results demonstrate the utility and applicability

of the structural statistics for measuring changes in dynamic networks described above.

When the dynamic network formation process was first proposed, it was realized that

forming an efficient and pairwise stable network (i.e., the star whenδ − δ2 < c < δ) was

difficult when the number of agents grows large.

Proposition 3 (Watts 2001) Consider the symmetric connections model in the case where

δ − δ2 < c < δ. As the number of players grows, the probability that a stable state (under

the process where each link has an equal probability of being identified) is reached with

the efficient network structure of a star goes to 0.

The proof of the proposition is based on the fact that no agent wants to bear the burden of

being the hub node in the star network. The hub node in a star network has a much lower
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Figure 3.4: Results of an experiment with the Watts dynamic network formation process
for the SCM: (a) the normalized value of the network,v(G)/v(star), and (b) the network
after 5000 iterations of the Watts process. The SCM had 100 agents,δ = 0.9, andc = 0.8.

value than the other nodes in the network. The only way for the star network to form under

the Watts dynamic network formation process is for the agent that will be the hub to meet

every other agent sequentially, by chance, with no other nodes meeting each other until all

have met the hub. It is obvious that the probability of this occurring goes to zero as the

number of agents grows.

Given the finding that the unique, efficient, and pairwise stable network structure is

very unlikely to be discovered, the question remains as to what network structures are

found by the Watts dynamic network formation processes. A computational experiment

using the Watts dynamic network formation process serves as a first example of an agent-

organized network, demonstrates the evolution and structure of networks operating under

the Watts process, and highlights the utility of the statistical measures described in the
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previous section. The results of this computational experiments are shown in Figures 3.4

and 3.5.

Figure 3.4(a) shows the normalized value of the network –v(G) divided by the value

of the uniquely efficient star network – over time as the agents use the stochastic dynamic

network formation process of Watts (2001). In the experiment presented, there were 100

agents,δ = 0.9, c = 0.8, andε was initialized to 0.05 and slowly decreased over time.

We experimented with a range of parameters inδ − δ2 < c < δ and found similar results.

The figure shows that the agents rapidly form a connected network and then the value of

the network plateaus around 90% of optimal. The optimal value for the star network with

n = 100, δ = 0.9, andc = 0.8 is 7878.42. The structure of the network after 5000 iterations

of the Watts formation process is depicted in Figure 3.4(b), which is obviously distant from

a perfect star structure.

Recall that the Watts process is unlikely to find the optimal star network, because there

is simply too much competition among the agents for one of them to become the hub.

Even though all of the agents have access to perfect global knowledge of the network as it

evolves, all of the agents are locally maximizingYi(G). Nevertheless, the agents are able

to find a network structure that supports an even distribution of value and a large network

value.4 Of course, this is expected since the agents are making perfect decisions (1 − ε

percent of the time) with perfect, global information about the network structure.

4The sizes of the nodes in the network structure shown in Figure 3.4(b) are proportional to their value,

Yi(G). There is little deviation in the sizes of the nodes in the network.
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Figure 3.5: Measurements of the network structure taken during the evolution of the Watts
dynamics network formation process for the SCM. The measurements help to understand
the structure of the network as it evolves demonstrating the utility of the statistical mea-
surements for understanding the behavior of agent-organized networks.

In order to better understand the structure of the network as it evolves under the Watts

process, statistical measurements of the network structure, as described in the previous

section, were taken at every time step. The results of these measurements are shown in

Figure 3.5. As can be seen in the figure, the agents forming networks under the Watts

process in the SCM form networks with low amounts of clustering and low diameter. Low

clustering is desirable because the agents (locally) maximize their gain from having a direct

connection, and do not duplicate connections that their direct neighbors maintain. Simi-
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larly, a small diameter, or short average path length, means that the agents in the network

have short distances (i.e., greater benefit) to other agents. In addition, the figure shows that

the number of connections in the network reaches a plateau as does the average degree.

The values for normalized standard deviation of degree and degree correlation suggest that

the Watts process leads to a nearly homogeneous degree distribution (i.e., all agents tend to

have the same degree or bear the same cost in the SCM). The measurements taken in order

to understand the behavior of the Watts dynamics network formation process agree with

both the theory and intuition.

3.5 Concluding Remarks

Although simple, the SCM and the Watts network formation process provide an intuitive

and insightful first example of an agent-organized network. In the next chapter, agent-

organized networks will be more completely described, including many of the issues that

are central to designing effective agent network adaptation policies.

The discussion of real-world network properties, models of network structure, and sta-

tistical measures for characterizing networks will aid in discussing and understanding the

behavior of agent-organized networks in later chapters. The SCM is revisited in the next

chapter in order to understand the complexity of computing optimal organizational struc-

tures and the difficulties of distributed network adaptation in multi-agent systems.



Chapter 4

Organizational Learning and Network

Adaptation

Organizations learn only through individuals who learn. Individual learning
does not guarantee organizational learning. But without it no organizational
learning occurs.

Peter Senge

. . . [C]ollections of non-humans may come to seem more intelligent (i.e.,
show improved performance) even if the agents remain unchanged . . . if the
connections among the agents are dynamically altered.

Kathleen Carley

An organization that learns is a group of agents that improve their collective perfor-

mance based on experience. In this chapter, the concept of organizational learning through

local network adaptation is further considered and explored. I first define organizational

learning and discuss some of the major issues in using distributed network adaptation

as a mechanism for organizational learning. After reviewing the literature on organiza-

55
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tional learning in multi-agent systems, I consider the complexity of finding optimal and

near-optimal network structures in multi-agent systems. Finally, I propose the concept of

agent-organized networks and a general framework for designing local network adaptation

strategies.

4.1 Organizational Learning and Network Structures

The American Heritage Dictionarydefines the verborganize as “to put together into an

orderly, functional, structured whole,” and the nounorganization as “the act of organizing

or process of being organized.” Additionally,to learn is defined as “to gain knowledge,

comprehension, or mastery through experience or study.” Using these definitions, it is

possible to synthesize a definition oforganizational learning.

Definition 3 Organizational learning is the process of becoming an orderly, functional,

structured whole through collective experience.

The one additional word in this definition is “collective,” meaning the joint learning of all

of the actors, or agents, in the organization.

This dissertation is directly focused on organizational learning through the distributed

adaptation of the underlying agent social network in a multi-agent system. That is, agents

make local rewiring decisions about their connectivity with other agents in the organi-

zation, with the collective goal of improving organizational performance. Relating this
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method of organizational learning to the literature on dynamic organization and reorgani-

zation, distributed network adaptation may be categorized asshared control, or collabo-

rative organizational structure change (Dignum, Dignum, & Sonenberg 2004). This type

of organizational learning, the “automated formation and ongoing management of virtual

organisations in open environments,” is recognized as a major research challenge in multi-

agent systems (Normanet al. 2004).

There have been many studies of how organizational structures, and in particular, net-

work structures, affect the performance and behavior of multi-agent systems. Examples of

these studies include the effects of network structure on information processing organiza-

tions (Carley & Gasser 1999; Carley 2002), the spread of social conventions in an agent so-

ciety (Delgado 2002), distributed multi-agent team formation (Gaston & desJardins 2003;

Gaston, Simmons, & desJardins 2004), the formation of firms (Axtell 2000), and graphi-

cal economic games (Abramson & Kuperman 2001; Holmeet al. 2003; Kimet al. 2002;

Szolnoki & Szabo 2004; Kearns, Littman, & Singh 2001). These studies demonstrate that

the performance of a collection of agents is dependent upon the network structure that gov-

erns the interactions among the agents and that certain network structures perform better in

certain settings. These two findings directly motivate the need for autonomous, distributed

network formation in multi-agent systems.

In order to explore this type of organizational learning, in Section 4.4, I will introduce,

define, and develop the concept of agent-organized networks. In the following subsections,
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I first consider some of the issues associated with distributed network adaptation, including

local perception and learning, bottom-up versus top-down network formation, direct and

indirect cost of connections, and inter-agent protocols for adapting connectivity. In section

4.2, I survey related work on organizational learning. In section 4.3, I provide theoretical

results on the complexity of the design of organizational network structures that motivate

the agent-organized network framework I propose in Section 4.4.

4.1.1 Local Perception and Local Learning

Part of the motivation for studying agent-organized networks is the need for decentralized

adaptation in large, open multi-agent environments (Normanet al. 2004). In such environ-

ments, agents are unlikely to maintain or update information about the entire organizational

structure (i.e., information about all other agents in the environment and their behaviors).

Because of this, agents in large, open environments are required to make decisions based on

limited local information, including decisions about when and how to adapt their network

connectivity.

In addition to the local observability problem, local learning also presents a challenge

because agents are likely to have both short- and long-range correlations. That is, the deci-

sions made by agents in one part of the organization are likely to influence agents in nearby

and far-away parts of the organization. As described in Chapter 2, multi-agent learning is

a hard problem when there are few, or even two, simultaneously learning agents; the com-
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plexity is compounded by large numbers of learning agents who are coupled together in a

complex organizational network.

4.1.2 Bottom-up vs. Top-down Network Formation

One distinction in decentralized network adaptation is whether the formation process is top-

down or bottom-up. Intop-down network formationone assume, initially, that all agents

can interact with all other agents. Over time, in the top-down process, agents refine their

respective sets of interactions, arriving at a trimmed-down organizational structure.1

In bottom-up network formationthere are either no initial connections among the agents,

or there is an initial network topology restricting the interactions of the agents. Recall the

random mixture model described in the previous chapter in the context of the Symmetric

Connections Model. In the random mixture model, there are initially no connections among

the agents; at each iteration, two agents are randomly selected to meet and consider adding

a new connection or removing an existing connection. While the random mixture model

is reasonable when considering economic network formation, it may not be a reasonable

model of network formation in many multi-agent systems.

A more realistic model for network formation in multi-agent systems is what I refer to

as thebootstrap modelof network formation. In the bootstrap model, the number of con-

nections in an initial network topology represents the collective cognitive, communications,

1Of course, there is a full spectrum of network formation processes between pure top-down and pure

bottom-up processes.
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and resource constraints imposed on the organization.2 The agents in the organization must

“bootstrap” the initial network topology into a more efficient structure, given the initial

constraints on the network. That is, the agents can only performrewiring operations when

adjusting their local connectivity (i.e., agents can only redirect connections in the network

and are prohibited from either permanently deleting or creating new connections). The

bootstrap model is more realistic for networked multi-agent systems where the size and

complexity of the system prevents full and constant interaction among all of the agents.

In such settings, agents with finite computational and cognitive capacities must constantly

balance the use of resources for maintaining and utilizing their social connections. In an

effort to explicitly include computational and cognitive constraints on the agents, I will

use the bootstrap model of network formation to demonstrate agent-organized networks in

various multi-agent environments.

4.1.3 On the Cost of Connections

A third consideration in distributed network adaptation is the cost of searching, changing,

and maintaining connections. Again, recall the Symmetric Connections Model and the ex-

plicit cost associated with having a direct connection in the organizational network. This

explicit cost may represent resources, such as time or money, spent in maintaining connec-

tions. In multi-agent systems, cost is more likely to represent resource constraints such as

2Another interpretation of the bootstrap model is to consider the initial set of connections as the constraints

on individual agents.
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computational, communications, cognitive, or memory limitations.

An alternative to explicit cost for maintaining network connections is implicit cost,

such as in the bootstrap model of network formation described above. The collective cost

of connectivity is represented by the limited set of connections in the initial network struc-

ture. While the agents suffer no direct, explicit cost for connectivity, the organization is

collectively resource-bounded and must attempt to make the best use of the number of

connections with which it is initially endowed.

In addition to the cost of maintaining network connectivity, the cost of searching and

rewiring must also be considered. One method for representing the cost of searching and

rewiring is to define an explicit cost. This approach is difficult because of the variety

of multi-agent environments for which agent-organized networks are likely to apply. An

alternative is to simply analyze the amount of searching and rewiring required for different

network adaptation strategies in any specific environment. This latter approach is the one

adopted in the study of agent-organized networks in this dissertation.

4.1.4 The “Laterality” of Connections

When considering agents that will autonomously or cooperatively form connections in net-

works, it is important to consider the concerns of the agents on both sides of the connection.

This is true for the removal of a connection and the creation of a connection (or both in

the case of rewiring). In the economics literature, it is typically assumed that connections
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must be established bilaterally, but connections can be removed unilaterally (Jackson 2003;

Goyal 2003). That is, both agents involved in the creation of a connection must agree to

establish the connection, while a single agent can decide to remove a connection.

In general, the rules for how connections are established or removed can be considered

a social norm (i.e., dictated by the multi-agent environment, or by the creators of the en-

vironment). In the specific domains presented in later chapters, the nature of the creation

and removal of connections will be specified. In practice, the economic model (i.e., bilat-

eral creation and unilateral removal) is a good model. In some settings, various “laterality”

models will be considered and compared.

4.2 Related Work on Organizational Learning

The importance of organization in multi-agent systems is a widely studied topic. Multi-

agent system organization can be formal or informal; designed or emergent. In this section,

I briefly survey several of the most widely studied topics in multi-agent organizations. With

the exceptions of graphical games (Kearns, Littman, & Singh 2001) and peer-to-peer sys-

tems (Yu, Venkatraman, & Singh 2003), the role of networks, let alone network adaptation,

is rarely studied. In the next several subsections I cover the topics of coalition formation,

organizational self-design, graphical games, organizational evolution, and adaptive peer-

to-peer systems and relate these topics to organizational learning via decentralized network

adaptation.
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4.2.1 Coalition and Congregation Formation

In cooperative problem-solving environments, coordination and negotiation among the

many agents in a system are difficult. One solution to the challenges of coordination and

negotiation in large multi-agent systems iscoalition formation(Abdallah & Lesser 2004;

Sandholm & Lesser 1997). The process of coalition formation assigns agents to, or allows

the agents to form, smaller groups within which intra-group coordination and negotiation

may be easier. The goal of coalitions of agents is then to solve cooperative problem-solving

task. The process of coalition formation, especially when the formation is determined in a

decentralized manner, can be thought of as a form of organizational learning.

There are at least two approaches to coalition formation in multi-agent systems: cen-

tralized and decentralized. It is well known that the problem of finding optimal coalition

structures is NP-complete (Sandholmet al. 1998; Abdallah & Lesser 2004; Sandholm &

Lesser 1997). Centralized methods for coalition formation include a central manager and

auctioneer for determining coalition structures (Kraus, Shehory, & Taase 2003), bounded

partial search for finding approximate coalition structures (Sandholmet al. 1998), and

genetic algorithms for evolving near-optimal coalition structures (Sen & Dutta 2000).

As mentioned above, distributed coalition formation falls close to the realm of organi-

zational learning as defined in the beginning of this chapter. One approach to distributed

coalition formation is a hierarchical organization of agents where only the leaf agents par-

ticipate in coalitions and the higher-level agents decide on coalition structures. The agents
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at higher levels in the hierarchy can useQ-learning, for example, to learn to determine the

structure of effective coalitions (Abdallah & Lesser 2004). In the sensor network domain,

incremental and fully distributed negotiations have been used to form coalitions for task

completion (Sims, Goldman, & Lesser 2003). As a third example of distributed coalition

formation, a physics-motivated protocol has been proposed, where agents move randomly

in a physical space and make decisions regarding forming coalitions when they encounter

one another (Lerman & Shehory 2000). Although distributed coalition formation can be

thought of as organizational learning, there is not typically a notion of an “agent social

network” in the study of coalition formation.3

An special case of coalition formation is partnership selection, in which agents work

together, in pairs, to complete tasks. The approach is top-down: in the beginning, all

agents can work with all other agents, with the selection of partners refined over time

using a “simple reinforcement process” (Dutta & Sen 2003). An extension of this work

attempts to incorporate both historical information and future expectations for partnership

selection (Saha, Sen, & Dutta 2003).

In work closely related to coalition formation, reinforcement learning has been applied

to dynamically select coordination mechanisms in multi-agent systems (Excelente-Toledo

& Jennings 2003; Excelente-Toledo 2004). Like the partnership formation work, there is

no social network restricting the interactions of the agents; rather, all agents are able to

3The hierarchical structure used by Abdallah and Lesser (2004) is a control structure that does not impose

any restriction on which “leaf” agents can participate in coalitions together.
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interact with all other agents and the coordination mechanisms for specific interactions are

learned.

A related problem iscongregation formation(Brooks & Durfee 2003). Much like coali-

tion formation, in congregation formation, agents dynamically form groups in order to gain

economic advantage or efficiency. A typical application of congregation formation is mar-

ket formation (Brooks & Durfee 2002). In this setting, the benefits of congregations include

greater efficiency in clearing markets (i.e., the congregations are necessarily smaller than

the whole agent population) and greater commonality of interests among the agents within

the congregations. As with coalition formation, congregation formation does not take into

account an agent social network; the only structure of the organization is the individual

congregations, within which it is possible for all agents to interact with one another.

4.2.2 Organizational Self-Design

Another form of organizational learning in multi-agent systems isorganizational self-

design(OSD) (Corkill & Lesser 1983; Gasser & Ishida 1991; Ishida, Gasser, & Yokoo

1992). The key tasks in OSD are monitoring, design, evaluation and selection, and im-

plementation. OSD considers tasks, subtasks, agents, assignment of tasks to agents, work

flow structure, and resources to be part of the organization. Much of the emphasis in

OSD is on adaptive role allocation, task decomposition, and load balancing (So & Durfee

1993). One obvious approach to organizational self-design is a centralized, global, top-
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down designer (Corkill & Lesser 1983). An alternative is a decentralized, local, bottom-up

approach (Gasser & Ishida 1991). In both cases, the main focus is on allocation and re-

allocation of roles, decomposition and distribution of tasks, and distribution of load. In

OSD, some structure may be imposed on the agents (e.g., a hierarchy), but the nature and

constitution of that structure is not modified as part of the adaptive organizational design.

Applications of OSD include distributed network management (So & Durfee 1993)

and distributed production systems (Ishida, Gasser, & Yokoo 1992). OSD has been con-

sidered as a mechanism for adapting organizational structure forpartial global planning

(PGP) (Durfee & Lesser 1991). In this work, various small network topologies were con-

sidered and determined to have a significant effect on the performance of the system. The

networks were lateral (or flat – all agents can communicate with all other agents), one-level

hierarchies (centralized), and two-level hierarchies. The focus was on selecting from a

predetermined set of structural choices, since the effects of structure on organizational per-

formance were a concern: “. . . as the number of agents increases, choices of organizational

structures strongly impact the combinatorics of coordination” (Durfee 1993).

More recently, OSD has served as the basis for designing a general diagnostic subsys-

tem using the TÆMS modeling language, which was demonstrated for load balancing and

plan coordination in a producer-consumer-transporters domain (Horling, Benyo, & Lesser

2001). A similar approach was used to coordinate the organizational behaviors of sensors

in a sensor network for target tracking (Horlinget al. 2003).
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4.2.3 Evolving Organizations

In the management, economics, and social science literature, the structure of an organiza-

tion and its effect on organizational performance have been widely studied (Axtell 2000;

Carley 1998; Miller 2001; DeCanioet al. 2000). In much of this work, the structure of an

organization is modeled as a network that guides and restricts the interactions among the

member agents of the organization. The observation that organizational structure affects

performance (i.e., that some organizational structures are more effective than others) moti-

vates the question of how organizations adapt and evolve in order to improve performance.

Surprisingly, much of the work on studying organizational adaptation and developing

mechanisms for organizational learning through structural changes focuses on centralized

heuristic approaches. Genetic algorithms have been used to evolve information processing

organizations in order to find organizational structures that are more effective at dissem-

inating information among the agents (DeCanioet al. 2000; Miller 2001). In a simi-

lar study, simulated annealing served as an analogy for CEO decision making in order to

adapt organizational structure online, while agents in the organization continued to perform

tasks (Carley 1998). In both cases, the heuristic search techniques successfully improved

the performance of the organizations. While successful and insightful, these search tech-

niques are inherently centralized, in contrast with the distributed agent-organized network

approach presented and demonstrated in this dissertation.
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4.2.4 Adaptive Networks and Game Theory

Related to both economics and multi-agent learning, graphical games use an explicit net-

work structure (Kearns, Littman, & Singh 2001). In graphical games, agents that are em-

bedded within a network structure play repeated matrix games (e.g., the iterated prisoner’s

dilemma (IPD)). While such games are interesting in their own right, they become even

more interesting when the agents are allowed, or required, to adapt their connectivity along

with their strategy.

Most of the work on game theory and adaptive organizational structure focuses on

co-evolving cooperative strategies and the network topology that dictates the interactions

among the agents.4 An evolutionary rewiring algorithm (ERA), including the processes of

replication and mutation, has been applied to networks of agents playing fixed strategies in

the IPD (Hales & Edmonds 2005). Hales and Edmunds found that purely cooperative struc-

tures emerged due to network rewiring process even in the absence of strategy learning. In

similar studies, leadership and hierarchical structures emerged from distributed network

adaptation in an organization of agents playing the IPD (Zimmermann, Equiluz, & Miguel

2001; 2004; Anghelet al. 2004). In these studies, the network adaptations were mostly

parameterized, random rewirings.

Finally, a top-down, “urn-based” reinforcement scheme was applied to partner selection

in the stag hunt game (Skyrms & Pemantle 2000). “Top-down” means that initially all

4Perhaps surprisingly, most of this work is done by physicists.
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agents could interact with one another and mutually beneficial partnerships were refined

over time. In this study, there was no explicit concern for the network topology, since the

focus was on improving the performance of the players.

4.2.5 Referral Networks, Peer-to-peer Systems, and Information Re-

trieval

One of the functions of peer-to-peer systems is distributed information retrieval. In such

systems, agents are “peers” who can respond to or route the information request queries

of other agents. Much of the work on peer-to-peer systems focuses on effective searching

and routing algorithms for fixed peer-to-peer network topologies. The alternative to this

approach is to allow agents in a peer-to-peer network to evolve their network topology.

There is a limited amount of work on network formation in multi-agent peer-to-peer

systems, primarily focused on constructing networks that are efficient for distributed search.

One approach starts with a random network and proceeds by allowing each agent to re-

fine their neighborhood based on “context,” or similar interests (Zhanget al. 2004a). In

this “agent-view reorganization algorithm,” network formation is performed before the dis-

tributed informational retrieval dynamics begin in the network and they do not analyze the

resulting topology. In a second approach, a centralized monitor observes the network and

performs “edge-thinning” and “diameter folding” operations, emphasizing various network

properties in order to create a more efficient search topology (Silvey & Hurwitz 2004).
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The majority of work on distributed adaptation of network topologies in peer-to-peer

systems focuses on peer referrals and modeling the interests and expertise of other agents

in the network (Yu & Singh 2003; Yu, Venkatraman, & Singh 2003; Yolum & Singh 2003;

Ramanathan, Kalogeraki, & Pruyne 2002). The basic premise in this approach is that agents

monitor their neighbors (i.e., direct connections) and their acquaintances (i.e., indirect con-

nections that respond to their queries). As acquaintances begin to outperform neighbors

(e.g., provide more and better information), the agents adjust their connections to change

their acquaintances into direct neighbors. Note that the interests of agents are assumed to

be explicit and observable by all other agents in peer-to-peer systems (e.g., the agents can

learn other agents’ interests by observing which queries are responded to by which agents

over time). This assumption is one reason why network adaptation as a result of referrals

improves information retrieval in peer-to-peer systems.

While referrals have been shown to improve information retrieval in peer-to-peer sys-

tems, the topologies resulting from these network adaptation strategies are rarely studied.5

Another problem with some of the work on adaptive peer-to-peer networks is the lack

of concern for the network becoming disconnected (i.e., multiple disjoint graph clusters).

However, all of the studies to date have demonstrated that communities of agents with sim-

ilar interests emerge in referral networks, making information retrieval more efficient even

if the global network is not connected (Yu & Singh 2003; Yu, Venkatraman, & Singh 2003;

5The one slight exception is the inclusion of measurements of clustering in the study of thresholded

promotion of acquaintances (Yu, Venkatraman, & Singh 2003).



71

Yolum & Singh 2003; Ramanathan, Kalogeraki, & Pruyne 2002; Zhanget al. 2004a).

Referrals and network adaptation in peer-to-peer systems can be considered a form

of organizational learning in a multi-agent system. In the later sections of this chapter,

these ideas will be incorporated into a more general concept of agent-organized networks

applicable to a wider variety of multi-agent systems. Subsequent chapters will demonstrate

agent-organized networks in several, innately different multi-agent domains.

4.3 On The Complexity of Finding Optimal Network Struc-

tures

Before describing in detail the notion of agent-organized networks, I consider the complex-

ity of finding optimal, or near-optimal, organizational network structures. First, consider

the peer-to-peer networks described in the previous section. In these systems, the interests

of all of the agents are known and it is reasonable to assume that these interests do not

change quickly. In such an environment, it is easy to imagine a centralized algorithm that

computes the “interest” distance between all pairs of agents and then greedily assigns a

predetermined number of connections among the agents, ensuring that each agent receives

one connection, then two, and so on. The result of this algorithm would be a collection of

communities of agents, possibly globally connected, where the agents within a community

would share common interests. This organizational structure is similar to that found by
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the distributed network adaptation techniques based on referrals described in the previous

section. Clearly, the centralized algorithm proposed here is polynomial in the number of

agents.

While it is possible to describe a polynomial-time algorithm for finding a well-structured

peer-to-peer system, the situation is more difficult for finding optimal network structures in

arbitrary multi-agent domains. In this section, evidence will be presented that suggests that

finding optimal network structures is computationally complex.

The argument begins by considering evidence given in previous work. Recall the

process of coalition formation described above. It is well known that finding optimal

coalition structures is NP-complete (Sandholmet al. 1998; Abdallah & Lesser 2004;

Sandholm & Lesser 1997). While the problems of finding a network topology and find-

ing a coalition structure are qualitatively different, there is an intriguing analogy. In finding

an optimal coalition structure, an exponential number of combinations of agents must be

considered, since all possible combinations of agents are searched. For finding an optimal

network topology, all possible combinations of agents must also be considered, with the

further complication of considering the interconnectivity of the agents within each combi-

nation. While this is not a proof, it is at least suggestive of the challenge of finding optimal

network structures.

Further evidence that finding optimal network structures is hard is demonstrated by the

methods used to find good network structures. Consider searching the space of all possible
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network structures of sizen. This space isO(2
n(n−1)

2 ), or exponential in a polynomial of the

number of agents.6 Heuristic approaches such as simulated annealing (Carley 1998) and ge-

netic algorithms (Miller 2001; DeCanioet al. 2000) have been used to evolve organizations

in this very large search space. In two of the studies on evolving organizational network

structures, it is suggested that finding optimal organizational networks is NP-complete, but

no proofs of these claims are provided (Carley 1998; DeCanioet al. 2000).

Recall the Symmetric Connections Model discussed in Chapter 3, where the value given

to agenti in the networkG is

Yi(G) =
∑

j

δd(i,j) −
∑

j:ij∈G

c. (4.1)

In this model, agents receive a benefit (e.g., access to information) for connections to other

agents, discounted based on geodesic distance in the networkG. While agents receive

a benefit for all direct and indirect connections, they only suffer a cost for maintaining

their direct connections (i.e., their incident edges). This model will be used to provide

further evidence of the computational complexity of finding “optimal” network structures

for multi-agent domains. The argument begins by defining an agent’sbest responseto a

fixed network structure.

Definition 4 Given an arbitrary, fixed network structure, an agent’sbest responseto the

6A given network can be represented by a bit string where each bit corresponds to an edge either being in

the network (1) or not being in the network (0). Since there aren(n−1)
2 possible connections in a network,

there are2
n(n−1)

2 possible network structures.
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existing network structure in the Symmetric Connections Model is the set of direct connec-

tions that will maximize the agent’s value.

Now, consider the structure of an agent’s response under certain parameters in the SCM.

Lemma 1 In the Symmetric Connection Model withδ − δ2 < c < δ, the best response of

an agenti to an arbitrary, fixed network structureG is the minimum number of connections

such that∀j ∈ G : d(i, j) ≤ 2.

Proof. Let agenti be the agent joining the fixed network. The value of a three-hop indirect

connection in the SCM isδ3. The value of a direct connection isδ − c. For an agent’s best

response to contain a three-hop indirect connection, the value of a three-hop connection

must be greater than the value of a one-hop connection, requiring

δ3 > δ − c, (4.2)

and therefore,

0 > δ − c− δ3. (4.3)

The parameters stated in the lemma require thatc > δ − δ2. By substitution, this would

require

0 > δ − (δ − δ2)− δ3, (4.4)

or

0 > δ2 − δ3, (4.5)



75

which is a contradiction since0 < δ < 1. Therefore, an agent joining a fixed network will

always establish a direct connection whenever a three-hop indirect connection (or greater)

exists. From the stated parameters, it is clear that an agent prefers a two-hop connection

to a one-hop connection. Furthermore, because of the direct cost associated with a direct

connection, the agent will minimize the number of direct connections. Therefore, the best

response of an agenti to a fixed network topology is the minimum number of connections

such that∀j ∈ G : d(i, j) ≤ 2. �

As an example of Lemma 1, consider an existing network that is fixed in a star topology.

A new agent’s best response is to establish a single connection with the hub of the star

network. This single connection to the hub guarantees that the distance to all other agents

in the network is less than or equal to two.

The proof of Lemma 1 leads to the following theorem.

Theorem 1 Computing the best response of an agent to an arbitrary, fixed network struc-

ture in the Symmetric Connections Model withδ − δ2 < c < δ is NP-complete.

Proof. The proof is by reduction to the minimum dominating set. The minimum domi-

nating setD of a fixed graphG is the smallest set of nodes such that∀i ∈ G eitheri ∈ D

or ∃j ∈ D : ij ∈ G. That is, all nodes in a graph are either in the dominating set or adja-

cent to a node in the dominating set. By Lemma 1, finding the best response in the SCM

whenδ − δ2 < c < δ is equivalent to finding the dominating set in a graph. The minimum

dominating set problem is known to be NP-complete (Garey & Johnson 1979).
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A solution to the minimum dominating set, and therefore, the best response of an agent

to a fixed network structure, can be checked in polynomial time. The first step is to verify

that all nodes are either part of the minimum dominating set or adjacent to a node in the set,

which can be done inO(n) time, wheren is the number of nodes inG. Then, the solution

can be verified to be minimal, by sequentially checking to see if any of the nodes in the

solution can be removed from the set while still covering the graph. This second step can

be computed inO(sn) time wheres is the size of the solution set withs ≤ n. Therefore,

finding the best response of an agent entering the network in the SCM whenδ−δ2 < c < δ

is NP-complete. �

The theorem shows that it is computationally complex to compute an agent’s best re-

sponse to a fixed network structure for a very simple domain, even when the entire network

is completely observable. I conjecture that as the domain becomes more complicated and

the observability of the agents is decreased, the difficulty of finding optimal, or even near-

optimal, network structures is even harder.

4.4 Agent-Organized Networks

In this section, I introduce, define, and develop the concept of agent-organized networks

(AONs). The section concludes with a proposed, general, learning-based framework for

AONs.

Recall that the motivation for developing the concept of AONs is as a mechanism for
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organizational learning.

Definition 5 Anagent-organized network(AON) is an organizational network structure,

or agent-to-agent interaction topology, that changes as a result of local network adaptation

decisions made by the individual agents in a networked multi-agent system.

In this definition,networked multi-agent systemrefers to a multi-agent system where there

is an explicit agent social network that governs the interactions among the agents in the

system. Note that although the definition of AON is not restricted to bottom-up, top-down,

resource-constrained, or explicit-cost network formation, the remainder of this dissertation

will focus on bottom-up, resource-constrained AONs.

The two major considerations in the development of AON strategies are design ques-

tions and evaluation measures. The design questions include when and how the agents

will adapt their local connectivity structure. Evaluation measures include the examination

of network structures as they evolve under certain AON strategies and measuring perfor-

mance changes as a result of AONs. Before proposing a general AON framework, I discuss

these considerations in more detail in the following subsections.

4.4.1 When to Adapt Local Connectivity?

Agents operating within an AON must be able to determine when to adapt their local con-

nectivity. Deterministic, stochastic, and learned policies are all possible. An example
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policy may be to randomly decide to adapt local connectivity based on a prespecified prob-

ability.

There are many alternatives to random network adaptation decisions. For example, a

performance-basedpolicy uses accumulated historical performance information to decide

when to adapt. An agent using such a strategy may decide to adapt when its performance

drops prespecified threshold. An alternative would be for the agent to adapt when its local

performance drops below its neighbors’ performance levels. In the general AON frame-

work presented below, performance is the key value in determining whether an agent wishes

to change its connectivity or maintain its current position in the agent social network.

4.4.2 How to Adapt Local Connectivity?

There are many possibilities for determining how an agent will change its local connectivity

in an agent social network. In some contexts, agents may choose to remove or create

connections. However, because the emphasis here is on the bootstrap model of network

adaptation, this section will focus on the rewiring of connections as the primary method of

changing local connectivity. I start with several definitions.

Definition 6 The neighborhood of agenti in networkG, denotedNi(G), is the set of

agents{j|ij ∈ G}. The agents in the setNi(G) are called theneighborsof agenti.

Definition 7 A rewiring by agenti in networkG is the replacement of a single agent

j ∈ Ni(G) with an agentk 6∈ Ni(G). Initially, ij ∈ G andik 6∈ G. The rewiring byi from
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j to k, denotedij → ik, isG− ij + ik. Agentj is considered thelosing agent. Agentk is

considered thegaining agent.

Note that a rewiring affects the neighborhood of the agent that is performing the rewiring as

well as the neighborhoods of both the losing agent and the gaining agent. Clearly, rewiring

does not change the total number of connections in an agent social network.7

One form of rewiring israndom rewiring, where an agenti randomly selects a cur-

rent neighborj ∈ Ni(G) with whom to sever its connection. Agenti then randomly

selects a non-neighbor agentk /∈ Ni(G) with whom to establish a new connection. Ran-

dom rewiring seems like an unrealistic solution in many multi-agent environments, since

it implies the existence of a centralized agent registry or central broker. However, ran-

dom rewiring is a useful baseline for the experimental evaluations of AONs present in later

chapters.

Another, more realistic, candidate for a rewiring strategy is referrals. The following

definition is a generic definition for a referral.

Definition 8 A referral rewiring by agenti in networkG is the establishment of a new

connection between agenti and an agent

k ∈
⋃

j:ij∈G

Nj(G)−Ni(G), (4.6)

and the subsequent removal of a connection between agenti and an agent inNi(G)− k.

7Maintaining a constant number of connections preserves the resource, cognitive, and communications

constraints imposed by the initial network topology in the bootstrap model.
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The order of operations in the definition of referral is important, since the referral may

come from the losing agent. In practice, referrals are taken from a neighbor with particular

properties, who will nominate one of its neighbors based on particular properties. As a

naive example, one type of referral might be based on agent degree (i.e., the agent’s number

of connections). In such a referral, an agent deciding to adapt may remove its connection

with its lowest-degree neighbor, and take a referral from its highest-degree neighbor, based

also on degree. The criteria for selecting agents for referrals will almost always be tailored

to a specific multi-agent environment. While referrals are both intuitive and realistic in

large, open multi-agent systems, they should be used with caution.

Proposition 4 An AON operating solely under referral rewirings can result in the network

becoming permanently disconnected.

Proof. Consider a network in which the agents can be divided into two disjoint groups. The

agents in each group are only connected to other agents in their respective group, with the

exception of a single pair of agents, one from each group, that share a single connection.

This network is connected. Let the pair of agents with the single connection across groups

be i andj. If i removes its connection and takes a referral from an agent other thanj, the

network is divided into two disjoint subnetworks. This proves that it is possible for referrals

to result in disconnected networks. Once a referral disconnects a network, it is impossible

to reconnect, since referrals are based on connectivity. Agents taking referrals from other

agents in their group will never establish a connection with an agent from the other group;
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therefore, once a network is disconnected under referrals, it will remain disconnected.�

This proposition suggests that one must be careful when designing agent adaptation

strategies for AONs. Agents that adapt based only on referrals may lead to disconnected

agent social networks, which may be a detrimental occurrence in various multi-agent en-

vironments. For example, disconnected networks are viable in peer-to-peer informational

retrieval domains, as long as the disconnected components share common interests.

Although referrals can lead to permanently disconnected networks, refinements of the

referral concept can guarantee that a connected network will remain connected.

Definition 9 Let j ∈ Ni(G). A push referral by agenti in networkG is the establishment

of a connection with an agentk ∈ Nj(G) − Ni(G) and the subsequent removal of the

connection between agenti and agentj.

A push referral is a special case of referral. To illustrate push referrals, imagine going to a

store to buy a certain product. Upon learning that the store is out of the product of interest,

a reasonable action is to ask the store clerk for a recommendation of a nearby store that

might have the product of interest in stock.

Proposition 5 An AON that begins with a connected network and evolves as a result of

push referral rewirings alone will always remain connected.

Proof. Consider a single push referral where agenti is rewiring its connection with agent

j. Two cases exist: the removal of the connection betweeni andj (1) does not disconnect
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the network, or (2) disconnects the network. The first case is trivial. In the latter case,

the removal of the connection fromi to j breaks the network into two components (one

containingi and the other containingj and all of the agents inNj(G)). Therefore, when

i makes the new connection with one of the agentsk ∈ Nj(G), the network is again

connected. Finally, since a single push referral cannot disconnect the network, neither can

a sequence of push referrals. �

Referral-based adaptation strategies are appealing because they only require local infor-

mation. Agents are not required to have knowledge of other agents beyond their immediate

neighbors and there is no requirement for a central broker or manager. Additionally, agents

are not required to maintain a memory of past interactions, although maintaining such a

memory is not prohibited.

Another alternative type of adaptation is based on memory, or acquired knowledge,

of other agents in the system. Agents may “remember” other agents with whom they

have successfully interacted with in the past and adapt their network structure according

to this acquired knowledge. As an example, consider agents forming teams in a network,

where the team must be a connected component of the larger network. In such a setting,

agents participate in teams with agents beyond their set of direct connections. This situation

would allow the agents to keep track of successful “indirect” interactions through working

together on teams. A possible network adaptation approach, given this team formation sce-

nario, would be for agents to change their connectivity based on successful teamwork. This
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model of team formation will be considered in the next chapter.

Finally, in ahybrid rewiring strategy, an agent would mix any of the approaches de-

scribed above (and possibly other strategies). One example of a hybrid strategy would

use general referrals 90% of the time and random rewirings 10% or the time. Recall the

proposition that states that general referrals can lead to permanently disconnected networks.

Interestingly, the simple 90/10 hybrid strategy described above would not suffer from the

potential for perpetual disconnectedness. The random component of this hybrid strategy

would allow a disconnected network to eventually become reconnected.

4.4.3 Stability and Performance

The primary goal of AONs is increased organizational performance. In most cases, mea-

sures of organizational performance will be tailored to the specific domain of the AON.

When measuring organizational performance, it is important to distinguish between, or

control for, performance gains from the internal dynamics of the agents in the system and

performance gains from network adaptation. In many networked environments, agents can

learn or improve performance without adapting the network structure. Finally, in some sit-

uations, measuring the performance of individual agents or the fairness across the agents

can help assess the utility of AONs.

Another issue associated with AON performance is stability. Taking from the economic

theory of network formation, astablenetwork is one that stops evolving after reaching some
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operating point. That is, in a stable network, no agent desires to make any changes to its

local connectivity. The concept of stability raises several interesting questions related to

AONs:

• Is stability a desirable property of AONs?8

• Are stable AONs optimal, locally optimal, or neither?

• What are the stable networks under certain rewiring regimes in AONs?

General answers to these questions are beyond the scope of this dissertation, but partial

answers to these questions in the context of specific multi-agent domains will be considered

in Chapters 5, 6, and 7.

4.4.4 A General Learning-based AON Framework

In this section, I present a general learning-based AON framework. Later, in Chapters 5, 6,

and 7, I apply the general framework to develop domain-specific AONs.

The general AON framework is based on statelessQ-learning (Claus & Boutilier 1998),

in which the agents learn the value of taking actions online as they experience the results

of their actions. The function for updating the action value function for each agent is

Q(a)← (1− α)Q(a) + αRt, (4.7)

8It may be more desirable for an AON not to be stable, but rather to be continuously flexible.
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or equivalently,

Q(a)← Q(a) + α[Rt −Q(a)], (4.8)

whereRt is the “immediate” reward for taking the actiona andα is the learning rate. When

α is large, the agent learns fast; whenα is small, the agent learns slowly. The basic premise

is that agents will always choose the action that has the maximum value over all actions.

The design of rewardRt is domain-specific and should be tailored to reflect the behavior

as a result of the most recent action.

Extending statelessQ-learning to AONs requires defining the action set. If the AON

will adapt using rewirings alone, the action set isAR = {rewire, nothing}. Including

thenothingaction makes the general AON framework a multi-agent learning framework,

since thenothingaction allows an agent to monitor performance changes that result from

the actions of other agents. Although it appears simple, this general AON framework can

lead to a rich variety of behaviors.

By updating the value of doing nothing (i.e., taking no action), agents can “free ride”

on the behavior of other agents in the network. If agents in other parts of the network

(i.e., recall the discussion of long-range correlations in Section 4.1.1) are making changes

that are beneficial, an agent using the general AON framework will continue to allow these

beneficial changes to occur. At the same time, if decisions by other agents in the network

are detrimental to an agent, the value of doing nothing will decrease, therefore triggering

local network adaptation. While “doing nothing” seems like a useful approach, it can also
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be of great concern in complicated or excessively competitive domains. It is not difficult to

imagine a scenario where network adaptation improves the local performance of the agent

performing the adaptation, but decreases the performance of all other agents in the network

(i.e., a form of the tragedy of the commons). In this scenario, one agent’s changes cause

another agent’s changes and a ripple effect, or infinite regress, of adaptation ensues (see

Section 2.1.2).

As long as the “do nothing” action remains, it is possible to extend the action set to

include other types of network adaptations. If an AON allows for the removal and addition

(i.e., more than just rewiring) of network connections, the action set can be extended to

AS = {add, delete, nothing}. This is the action set for agents in the Symmetric Connec-

tions Model described in Chapter 3.

Another extension of this framework is to include state information, allowing the agents

to keep track of the value of taking certain actionsin certain states. Because the state space

of networks is large (i.e.,2n states, wheren is the number of agents), it may not be possible

to have state-action values for all possible combinations of states and actions. Because of

this, state abstractions are likely to be necessary when extending the statelessQ-learning

approach. An example of abstraction for AONs is for the agents to represent their state

to be their current number of connections. In the context of the Symmetric Connections

Model, an agent may want to remove connections when it has many, but may not want to

remove connections when it has few. In this setting, the agent’s actions are selected based
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on its current “state.”

Another extension to the basic framework is to allow for an adaptive learning rate.

With a fixed learning rate, agents might over-compensate by adding more connections,

or rewiring, more often than is desirable. This is especially true for small learning rates.

To counter this behavior, one approach, based on theWin or Lose Fast (WoLF)(Bowling

& Veloso 2002) concept, is to have two learning rates: one for when the agent receives

positive reinforcement and one for when the agent receives negative reinforcement. That

is, the agent learns slowly and cautiously when improving its performance, so as not to

over-improve. Alternatively, the agent learns rapidly when performance is decreasing, in

order to recover quickly from poor action selection.

Finally, a similar approach to assigning values to actions can be used to determine

the value of specific connections in an agent’s local neighborhood. An agent may use an

exponentially weighted moving average, such as

Vij ← Vij + β[Wij − Vij], (4.9)

whereβ is a smoothing, or learning, rate andWij is the current value of the connection

from i to j. The design ofWij must be domain-specific. If an agent uses this approach

for tracking the value of its connections, it may use a heuristic to select connections for

removal or rewiring.

The general AON framework is meant to serve as a template for designing AONs for

specific multi-agent environments. The focus of the framework is on determiningwhenan
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agent should adapt. While many generic strategies exist for changing the local connectivity,

it is likely that domain-specific network adaptation rules will be required. These rules can

be coupled with the generic framework to provide AONs for specific environments.

4.5 Concluding Remarks

The need for organizational learning in multi-agent systems is clear. One form of organi-

zational learning is distributed network formation based on local decisions of the agents in

an organization. This is motivated by the observation that the structure of an organization

of agents can have a dramatic effect on its collective performance.

In this chapter, after reviewing the literature on organizational learning, the concept

of agent-organized networks was introduced and developed. AONs are a proposed mech-

anism for supporting organizational learning through distributed, decentralized network

formation. The two major considerations in the design of agent strategies for AONs are de-

ciding when to adapt connectivity and deciding which connections to change. The design

of AONs will be domain-specific for most multi-agent systems.

Finally, a general framework for the design of agent strategies for agent-organized net-

work was presented. The framework is based on statelessQ-learning from multi-agent

learning. The key to the framework is endowing the agents with the ability to detect when

other agents are making network connectivity decisions that are beneficial (or detrimental).

This allows agents to benefit from the actions of other agents. Additionally, a mechanism
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for approximating the expected utility of a connection was suggested.

In the next several chapters, AONs will be designed and evaluated in various multi-

agent environments. First, two general multi-agent domains are considered, followed by

the application of AONs to two, more-specific, networked multi-agent systems. For the

general domains, several AONs with various levels of complexity will be considered.



Chapter 5

Networked Multi-Agent Team

Formation

People tend to work in teams, in a collaborative way, in an informal network.
If you create an environment like that, it’s much more effective and much more
efficient.

Jim Mitchell

Teams and teamwork are core problems in the study of multi-agent systems. There are

many areas of application for the theory of multi-agent teams and teamwork, ranging from

multi-robot systems, such as robotic soccer teams (Dias, Browning, & Veloso 2005), to

agent-mediated e-commerce (He, Jennings, & Leung 2003; Normanet al. 2004). In much

of the work on multi-agent teams, it is assumed that all of the agents in a system know about

and can interact with one another. With multi-agent systems moving to increasingly large

and complex domains, enabled by technologies such as the Semantic Web, peer-to-peer

90
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networks, and Grid technologies, the agents in such systems will be unable to continuously

interact with all other agents in the system. In such systems, the agent-to-agent interactions

will be governed by an implicit or explicit social network within which the agents will need

to dynamically form teams and collectively achieve joint tasks.

In this chapter, I apply agent-organized networks (AONs) to a general, distributed team

formation environment in which the agents are organized in an explicit social network. The

agents in the system must dynamically form teams without the intervention of a centralized

broker or decision maker. I begin the chapter by briefly reviewing the literature on team-

work and team formation. In Section 5.2, a generic model of team formation for joint task

completion is discussed, and the effects of network structure on dynamic, distributed team

formation are considered. Several AON strategies are developed for the team formation

environment and experimentally evaluated in Section 5.3.

5.1 Overview of Multi-Agent Team Formation

Work on multi-agent teams can be divided into the process of team formation and the dy-

namics of teamwork. Studies of multi-agent teamwork dynamics focus on the behavior of

multi-agent teams after they have formed. These studies address coordination and cooper-

ation protocols among the team members and are largely focused on individual and joint

cognitive capacities and behaviors (Cohen, Levesque, & Smith 1997; Grosz 1996; Tambe

1997). On the other hand, studies of the formation process focus on the agents’ reasoning



92

about how or when to join coalitions. Many methods have been applied to this problem,

including optimization and approximation methods for identifying near-optimal coalition

structures for a set of tasks coupled with an agent organization (Abdallah & Lesser 2004;

Caillou, Aknine, & Pinson 2002; Sandholm & Lesser 1997).

There has been a significant amount of research by the multi-agent systems community

on team formation and self-organization. Task allocation, coalition formation, team forma-

tion, and self-organization are different terms that have been used in studying how tasks

can be allocated to agents. Much of the work on team formation focuses on the mental

states of the agents and their willingness to form teams and collaborate (Cohen, Levesque,

& Smith 1997; Wooldridge & Jennings 1999). Several researchers have applied these the-

ories to implement frameworks in which teams coordinate closely to develop and execute

distributed plans (Tambe 1997; Durfee & Lesser 1991). In this work, there is no explicit

concern for the connectivity of the agent societies within which team formation takes place.

In distributed task allocation, or role allocation, many methods have been applied to

assign tasks to individual agents in multi-agent teams. These methods include distributed

constraint satisfaction (Modiet al. 2001; Nair, Tambe, & Marsella 2003), combinatorial

auctions (Hunsberger & Grosz 2000; Sandholm 1999), market-oriented methods (Walsh &

Wellman 1998), and distributed communicating partially observable Markov Decision Pro-

cesses (POMDPs) (Pynadath & Tambe 2002; Nair, Tambe, & Marsella 2002). Applications

of teamwork theories have been extended recently to address very large agent teams (Liao,
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Scerri, & Sycara 2004). This work on very large teams includes an information exchange

network among the agents for effective coordination and information diffusion, but does

not address how teams are formed in the large agent society (Scerriet al. 2004). The work

on role allocation in multi-agent teams primarily focuses on assigning subtasks to agents

within already formed teams. While role allocation within agent teams is closely related

to our work, agents must first form teams in order to allocate roles. The process of team

formation, and re-formation under agent failure, has been addressed from a formal per-

spective (Nair, Tambe, & Marsella 2002) without explicit concern for agent social network

structures.

As agents are embedded in larger and more diverse environments, the practicalities of

limited communication and spatial orientation may prohibit all agents from interacting with

one another at all times, therefore creating a much more sparse social structure among the

agents and a challenging distributed team formation environment. So and Durfee present

theoretical results indicating that organizational structure can affect the ability of a collec-

tion of agents to form teams (So & Durfee 1996). Here, I demonstrate the effects of the

network structure on organizational team formation performance and I show that agents

with the ability to adapt their local network connectivity can improve organizational per-

formance.
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5.2 A Model of Team Formation in Agent Networks

To explore the effects of network structures and AONs on team formation processes, I

use a simple multi-agent organizational model motivated by previous work on agent team

formation (Nair, Tambe, & Marsella 2002; Abdallah & Lesser 2004; Kraus, Shehory, &

Taase 2003; Gaston & desJardins 2003; Gaston, Simmons, & desJardins 2004; Gaston &

desJardins 2005). In this model, tasks are generated periodically and globally advertised

to the organization. Agents attempt to form teams to accomplish these tasks. The agents

in the organization are embedded in an artificial social network that restricts the set of

possible agent teams: specifically, for an agent to be on a team, the agent must have a

social connection (i.e., an edge in the social network) with at least one other agent on the

team. Since I am only concerned with the formation process, tasks are generic in that they

only require that a team of agents with the necessary skills form to accomplish the specific

task.

The goals of the model are to provide a dynamic team formation environment in which

agent teams form spontaneously in a completely decentralized manner and the agents’ de-

cision making is based solely on local information. In the team formation model:

• agents are not subject to failures (Nair, Tambe, & Marsella 2002), since I am focused

on the dynamics of team formation,

• teams must form in real time, as opposed to episodic optimization for task alloca-
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tion (Abdallah & Lesser 2004),

• the agents are embedded within an artificial social network that can be very large and

configurable; it is not limited to a specific hierarchical structure (Abdallah & Lesser

2004), and

• the model does not restrict agent team joining strategies to any particular bidding or

negotiation protocol (Kraus, Shehory, & Taase 2003).

The model is only concerned with the dynamic formation of teams and does not address

teamwork mechanisms or protocols, for which there is a large body of previous work (Modi

et al. 2001; Nair, Tambe, & Marsella 2003; Hunsberger & Grosz 2000; Sandholm 1999;

Walsh & Wellman 1998; Pynadath & Tambe 2002; Nair, Tambe, & Marsella 2002; Tambe

1997).

5.2.1 The Model

In the team formation model, the organization consists ofn agents, where each agent can

be considered as a unique node in an agent social network. The social network is modeled

as an adjacency matrixE, where an element of the adjacency matrixeij = 1 if there is

an edge between agenti andj andeij = 0 otherwise. The social relationships among the

agents are undirected, soeij = eji. The number of connections in the agent social network

is denotede = |E|. In the model, every agent is connected to itself (i.e.,eii = 1 for all
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agents). Each agent is also assigned a single fixed skill,σi ∈ [1, σ], whereσ is the number

of different types of skills that are present in the organization.

During the team formation process, each agent can be in one of three states:UNCOM-

MITTED, COMMITTED, or ACTIVE. An agent in theUNCOMMITTED state is available and

not assigned to any task. An agent in theCOMMITTED state has selected a task, but the

full team to work on the task has not yet formed. Finally, an agent in theACTIVE state

is a member of a team that has fulfilled all of the skill requirements for a task and is ac-

tively working on that task. Only uncommitted agents can commit to a new or partially

filled task.1 Committed agents cannot decommit from a given task. Upon task completion,

agents in the active state return to the uncommitted state. The state of agenti is si.

Tasks are introduced at fixed task introduction intervals, where the length of the interval

between tasks is given by the model parameter,µ. Tasks are globally advertised (i.e.,

announced to all agents). Each taskTk has an associated size requirement,|Tk|, and a

|Tk|-dimensional vector of required skills,RTk
. The skills required for a given taskTk are

chosen uniformly from[1, σ]. Each task is advertised for a finite number of time steps

γ|Tk|, ensuring that the resources (i.e., agents) committed to the tasks are freed if the full

1While it is a strong assumption to assume that agents can only be either active or committed to a single

task at any time, it is realistic to assume that the agents have some resource constraints limiting their ability to

be on any number of tasks. The model could be easily extended to allow agents to simultaneously participate

on multiple teams. One such method would be to duplicate the agents, including their network connectivity

in the organization.
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requirements of the task cannot be met. Similarly, teams that successfully form to fill the

requirements of a given task are only active for a finite number of time stepsα|Tk|.

The agent social network explicitly restricts the sets of agents that can form teams.

Definition 10 A valid team is a set of agentsM = {ai} that induce a connected subgraph

of the agent social network and whose skill set{σi} fulfills the skill requirements for a given

taskTk.

The requirement of a team to induce a connected subgraph of the agent social network

means that for some agent in the team,i ∈ Mk, there must exist at least one other agent,

j ∈ Mk, i 6= j, such thateij = 1. This implies that an uncommitted agent is only eligible

to commit to a task in two situations: (1)team initiation, when no other agents are com-

mitted to the task, and (2)team joining, when at least one neighbor of the agent is already

committed to the task. There are many possible heuristics for initiating and joining teams,

but in order to focus on network adaptation, two simple strategies are used.

During each iteration of the model, the agents are selected in a random order to update.

Each agent in theUNCOMMITTED state in turn considers each task in a random order. If a

task currently has no other agents committed to it, an agent can choose to initiate a team,

and does so with a probability equal to the proportion of the agent’s immediate neighbors

that are currently in theUNCOMMITTED state. The probability that an agenti initiates a

team for a task to which no agents are currently committed is the initiation probabilityIPi,
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where

IPi =

n∑
j=1

eijI(si, UNCOMMITTED)

n∑
j=1

eij

, (5.1)

andI(x, y) is an indicator function that returns 1 ifx = y and 0 otherwise. If an agent is

eligible for a team, it joins a team with a joining probability,JPi, equal to the ratio of filled

positions, including itself, on the team:

JPi =
|Mk|+ 1

|Tk|
. (5.2)

Note that agents can only be committed to, or active on, one team at a time. Figure 5.1

gives the pseudocode for theJoinTeamalgorithm used for each agent. The algorithm com-

bines team initiation and team joining. I have selected a simple team joining strategy to

ensure that the benefits of network adaptation are truly a result of network adaptation. The

problem of developing or learning effective team initiating and team joining policies is also

important (Bulka, Gaston, & desJardins 2005), but is beyond the scope of this dissertation.

The team formation performance of the agent organization is measured as the ratio of

number of teams successfully formed to the total number of tasks introduced to the system:

organizational performance=
# of teams successfully formed

# of tasks introduced
(5.3)

This measure of performance provides a global measure of how effective the agent organi-

zation is at forming teams to execute the advertised tasks. Each agent’s local performance

is
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Y (ai) =
# of successful teams joined

# of teams joined
, (5.4)

which is an estimate of organizational performance. This estimate will generally be pos-

itively correlated with true global performance, but for a particular agent, the correlation

may be low, or even negatively correlated.

Extending the model to include network adaptation, during each iteration, the agents

either attempt to join teamsor adapt their local network structure (but not both). I present

the details of the network adaptation strategies below.

Next, three important phenomena are introduced to aid in understanding the behavior

of the team formation process embedded in various network structures. One is an emergent

property of the dynamics of the model; the other two are characteristics of the network

structures within which the agent organizations are embedded.

Blocking. 2 A phenomenon I callblockingcan occur in the team formation model when

multiple tasks are introduced into the agent organizations within close temporal proxim-

ity. This phenomenon is illustrated in Figure 5.2 for a simple graph. In the figure, the list

on the right corresponds to tasks and their skill requirements. Each node is labeled with

its corresponding skill. Notice that if the shaded nodes form a team to meet the require-

ments of the first task, teams attempting to form to complete the second and third tasks are

blocked by the agents working on the first team. This phenomenon of blocking is central

to understanding the performance of the various networked organizations.

2This is different, but similar to, the social pathologies (Jensen & Lesser 2002) discussed in Chapter 2.
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Algorithm 1: JoinTeam

input:
i: an agent withsi = UNCOMMITTED,
T = {T1, T2, . . .}: the set of current tasks,
M = {M1,M2, . . .}: the set of teams, where
Mk is associated withTk,

R = {RT1 , RT2 , . . .}: the skill requirements for tasks inT
E: the adjacency matrix of the agent social network

begin
for all Tk ∈ T in random order

if |Mk| = 0 and si = UNCOMMITTED

with probability IPi // see equation (5.1)
if ∃r ∈ RTk

: r = σi

Mk ←Mk ∪ {i}
si ← COMMITTED

end if
else if∃j : eij = 1, j ∈Mk and si = UNCOMMITTED

if ∃r ∈ RTk
: r = σi and r is unfilled

with probability JPi // see equation (5.2)
Mk ←Mk ∪ {i}
si ← COMMITTED

end if
end else if

end for all
end

Figure 5.1: The algorithm used for each agent to decide which teams to initiate and which
teams to join.
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Figure 5.2: This figure shows an example of blocking in this team formation model for a
notional graph. The list on the right represents tasks and their respective skill requirements.

Blocking is a general phenomenon that can be the result of either an insufficient number

of skills in the organization or the “unreachability” of skills in the network. Figure 5.2

illustrates the latter case. The skills to simultaneously support the three tasks exist in the

organization, but the position of the team for the first task prohibits teams from forming for

the other two tasks. While both types of blocking are important, any discussion of blocking

will focus on the notion of unreachability to understand the dynamics of team formation in

networked systems.

Carrying Capacity. The number of simultaneous teams supported by a given network

structure affects organizational performance. Although it is difficult to compute carrying

capacity directly for many network structures, the concept of carrying capacity can help
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to illustrate and analyze the behavior of the team formation process, particularly in simple

graphs.

Definition 11 Thecarrying capacity of an organization of agents is the maximum number

of simultaneously active teams that can be supported by the agent organization.

The carrying capacity of networks ranges from 0 (e.g., a graph with no edges) ton/|T |,

wheren is the number of agents in the organization and|T | is the size of tasks (assuming

the task size is fixed). Carrying capacity is directly related to blocking: once the carrying

capacity of a network is met, blocking will occur for all additional tasks until some active

team completes a task. This type of blocking is a result of the organization having a finite

size. Blocking as a result of unreachability occurs when the carrying capacity has not been

met.

Diversity Support. The number of different skill combinations supported by an agent

organization also has a direct impact on organizational performance. The number of dif-

ferent skill combinations is based on the network structure and on the skill assignments of

the agents. In the experiments below, each agent’s skill is selected from a uniform random

distribution, as is each skill needed for the generated tasks.

Definition 12 Thediversity support of an organization of agents is the percentage of all

possible skill combinations that is supported by the agent organization.
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The diversity support is the ratio of skill combinations supported by an agent organization

to the number of all possible skill combinations that could be required by a task. This

percentage depends directly on the number of skills in the model (σ) and the size of teams

(|T |). Note that tasks are generated by creating a combination of skillswith replacement,

meaning that a given task can require more than one agent with a particular skill. Diversity

support is related to the likelihood of a team forming for an arbitrary task. Like carry-

ing capacity, diversity support is difficult to compute for many network structures. In the

next section, carrying capacity and diversity support are used to analyze two basic network

structures and to emphasize the fact that network structure dramatically affects organiza-

tional performance in networked multi-agent team formation.

5.2.2 The Effects of Network Structure

In many multi-agent systems, it is assumed that all agents are capable of interacting with

one another. While this is a valid assumption for many domains, as multi-agent systems

move toward open and large environments, it will quickly become impossible for all agents

to interact with all other agents all of the time. In such scenarios, there will be an agent

social network that governs the direct interactions of the agents. In this section, I examine

the effects of organizational network structure on multi-agent team formation. The section

begins by considering various characteristics of simple, static organizational structures,

then I present an empirical study of how organizational team formation performance is
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dependent upon organizational network structure.

Simple Static Structures

While it is difficult to formally analyze the behavior of the team formation process for agent

organizations embedded in complex network structures, it is possible to do so for simple

networks. Here, analytical results for two simple networks—the star and the ring—are

presented in order to understand the behavior of the team formation process and to support

the hypothesis that the social network structure of an agent organization has a significant

impact on its team formation efficiency.

The two networks considered are the star and the ring, each withn nodes andn − 1

edges. Figure 5.3 shows examples of these two graph topologies forn = 10 nodes. The

ring is a one-dimensional lattice withK = 1. The star topology consists of a single hub

node with edges connecting the hub to each of then − 1 remaining nodes. Part of the

motivation for selecting these two types of structures for analysis is that they have the same

number of nodes and edges and therefore do not introduce performance differences due

to different densities. The choice is further motivated by the fact that these two networks

represent the boundary cases of the networks considered in the empirical studies to follow.

The ring is a simple one-dimensional lattice. The star is an extreme form of a scale-free

graph, with a skewed degree distribution and a hub structure.

The total number of possible tasks that can be generated serves as the starting place for
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Figure 5.3: Examples of ring and star networks.

analyzing the simple network structures.

Proposition 6 Letσ be the number of possible skills and lett be the task size|T | (i.e., the

number of skills for each task). Then the total number of distinct skill combinations that

can be associated with a task is:

Ω(t, σ) =

 t+ σ − 1

t

 .

Proof. The skills for a task are chosen uniformly at random from the interval[1, σ] with rep-

etition. Therefore, the number of distinct skill assignments is the number oft-combinations

of σ skills with repetition. �

Given that each of these tasks is equally likely, it is possible to compute bounds on the

diversity support (i.e., on the probability that a random task can be supported by each of

the simple networked agent organizations).
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Proposition 7 Let t < n be the fixed task size for the team formation process. Then, an

upper bound on the diversity support of the ring ofn nodes isn/Ω.

Proof. The diversity support is the percentage of all tasks that are supported by the agent

organization, restricted by the network topology. Consider the team formed by starting

with any agent and following a path oft − 1 edges in one direction around the ring. This

construction leads ton unique teams oft agents (one team for each starting agent). Some

of these teams may not have distinct skill sets. (Consider the extreme case where all agents

have the same skill: in this case, then teams only have one distinct skill set.) However,

if the skills are optimally assigned for greatest diversity, then there are at mostn different

combinations of skills that the organization can support. It follows thatn/Ω is an upper

bound on the diversity support of the ring ofn agents. �

Proposition 8 Let t be the fixed task size andσ be the number of skills. Ifn ≥ σt, then the

diversity support of the star withn nodes is

t

t+ σ − 1
.

Proof. Whenn ≥ σt, there may be up tot of each of theσ skills in the agent organization.

For any team in the star topology, the hub (or central) agent must be a member of the

team. For the remaining team members, any of the remaining agents can be selected. In

the set of these agents, each of the skills is represented at leastt − 1 times. Therefore, to

count the number of different skill combinations that are supported by the star, I count the



107

number oft−1 combinations ofσ skills with repetition. The percentage of all possible skill

combinations supported by the star is this number divided byΩ. Therefore, the diversity

support of the star withn ≥ σt is(
(t−1)+σ−1

t−1

)(
t+σ−1

t

) =

(t+σ−2)!
(σ−1)! (t−1)!

(t+σ−1)!
t! (σ−1)!

=
(t+ σ − 2)! t! (σ − 1)!

(σ − 1)! (t− 1)! (t+ σ − 1)!

=
t

t+ σ − 1
.

�

The diversity support of a network structure can be interpreted as the probability that

an agent organization of uncommitted agentscan forma valid team to accomplish a given

task based on its requisite skills. Obviously, diversity support has a direct impact on the

team formation performance of an agent organization. Carrying capacity also affects an

agent organization’s team formation performance. Recall that carrying capacity is the total

number of simultaneous teams that the agent organization can support.

Proposition 9 Let1 < t < n be the fixed task size. Then the carrying capacity of the ring

of n nodes isbn/tc.

Proof. Teams must form such that the agents (nodes) in a team induce a connected sub-

graph of the network. The carrying capacity is the maximum number of simultaneous

teams supported by the network. Consider the first task of sizet requiring a team to form.

Since I am interested in the maximum number of simultaneous teams, I select an arbitrary
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(independent of skill) initial node to initiate the team and allow the team to form along

the edges going in one direction from the initial node. Once the team has formed, there

remains a connected set ofn − t agents that are uncommitted. For the next task, I repeat

the above process, starting from the node adjacent to the last member of the previous (and

now active) team, leavingn − 2t connected uncommitted agents. This process continues

until there arebn/tc active teams leaving fewer thant remaining uncommitted agents.�

Proposition 10 Let t < n be the fixed task size for the team formation process. Then the

carrying capacity of the star withn nodes is 1.

Proof. For a single team to form to accomplish a task, the team must induce a connected

subgraph. In the star topology, the single hub node must be on any team in order for the

team to induce a connected subgraph. If the hub node is active, no other nodes can form

a team because they cannot induce a connected subgraph without the hub. Therefore, the

maximum number of simultaneous tasks for the star withn nodes is 1. �

Consider a simple example of these two networks and a team formation environment

with n = 100 andt = σ = 10. In such an environment, the number of skill combinations

is Ω(10, 10) =
(
19
10

)
= 92, 378. Table 5.1 shows the calculated values of diversity support

and carrying capacity for the star and ring networks in the team formation environment.

With a slight modification to the model, it is possible to assume that 10 tasks arrive

at the same time and any of those tasks that acquire a complete team will be completed

before the next 10 tasks arrive. This simplifying assumption is made in order to calculate
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carrying capacity diversity support

ring 10 100
92,378

= 0.001

star 1 10
19

= 0.526

Table 5.1: The values of carrying capacity and diversity support for the static ring and star
network topologies in the team formation model whenn = 100 andt = σ = 10.

the performance of the two simple static network structures. A secondary simplifying

assumption is that teams form instantaneously and that the diversity support of the ring

is constant, even if the ring has active or committed agents. In a dynamic scenario, this

assumption does not hold, but this ideal case will be used to show the significant difference

in performance over various network structures of the same size. Note that an analysis

using this assumption will overestimate the performance of the ring.

First, consider diversity support. Diversity support can be interpreted as the probability

that a given task can be fulfilled by the agents in a specific organizational structure. It

can therefore be used to calculate the expected number of tasks that will be completed

in any batch of ten tasks in the example. Since the diversity support of the star is 0.526,

the expected number of satisfiable tasks (i.e., skill combinations) that can be fulfilled in a

batch of 10 is 5.26. For the ring, the diversity support is much lower, yielding an expected

number of supported tasks of 0.01.

Carrying capacity also affects organizational performance. Although the star can sup-
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port on average 5.26 tasks in any batch of ten, its carrying capacity limits the number of

tasks that can be completed to one, the maximum number of simultaneous tasks. Because

of its diversity support, the star is able to support on average more than half of the tasks,

but only one out of every batch of ten will be successfully completed. On the other hand,

the carrying capacity of the ring does not limit the number of simultaneous tasks that can

be completed in this example; all ten tasks in a batch would “fit” in the ring organization.

The limiting factor for the ring is its diversity support, which results in 0.01 tasks out of

every batch of 10 being completed.

Now, the number of tasks successfully completed can be used to compute an estimate

of organizational performance. Assume that a total of 100 tasks, 10 batches of 10, are intro-

duced to both of the organizations. Following the analysis above, the star will successfully

complete one task out of each batch and 10 tasks total out of the 100 that are introduced.

The ring-structured organization will complete on average 0.01 out of every batch of ten

tasks. Therefore, summing over the 10 batches of 10, the ring will successfully complete

0.1 tasks out of 100 introduced. Using the formula for organizational performance (i.e.,

number of successfully completed tasks divided by the total number of tasks introduced),

the organizational performances for the star and the ring are 0.1 and 0.001, respectively.

In this simple example, the organizational performance of the star dominates that of the

ring. The two networks are the extreme cases: the ring is limited by the lack of diversity

support and the star is limited by its carrying capacity, although the limitations of the ring’s
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lack of diversity support is far greater. Clearly, modifications to the ring to increase its

diversity support would be beneficial. Likewise, the star would gain significant benefits

from additional carrying capacity, especially to leverage its high diversity support. Next, I

experimentally examine the behavior of several complex organizational network structures

in the team formation model.

Complex Networks

The previous section provided theoretical evidence that the dynamics of team formation

can vary greatly over different network structures, even simple network structures. Here,

the results of computational experiments provide further evidence that network structures

have a dramatic effect on the team formation performance of agent organizations.

Figure 5.4 shows the average organizational performance over 50 simulations of the

networked team formation model for four different network structures as a function of the

task introduction intervalµ. The networks are parameterized so that they all have the same

number of agents and connections,n = 100 ande = 400, ensuring that all of the networks

make use of the same number of resources. The four network types are:

• regular two-dimensional lattices, where each agent is connected to the agents imme-

diately to its north, south, east, and west,

• small-world networks based on the two-dimensional lattice, with rewiring probability

p = 0.05,
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Figure 5.4: Organizational efficiency as a function of task introduction intervalµ for the
team formation model withn = 100, |T | = σ = 10, γ = {0.5(left), 2.0(right)}, α = 4.
The horizontal lines represent the average efficiency of the network structures assuming
that agents can be active or committed to any number of teams (i.e, no blocking), ordered
from the top down as scale-free, random, small-world, and lattice.

• random graphs where connectivity (i.e., a single component) is verified, and

• scale-free graphs.3

The figure is a sample of the experimental results that support the claim that network struc-

ture has a dramatic impact on team formation. The results of these experiments are in

line with the simple example considered above. The scale-free network is most like the

star topology in the example, and the lattice network is most like the ring topology. The

other two networks included in this section are in the region between the two extremes

cases. This suggests that scale-free networks have higher diversity support and that lat-

3For more details, see Chapter 3.
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tice structures, although possessing high carrying capacities, fail to capitalize on it because

of a lack of diversity support. The dramatic effect of network structure on organizational

performance in multi-agent team formation directly motivates the use of agent-organized

networks in team formation domains.

5.3 Agent-Organized Networks for Team Formation

This section demonstrates the use of the general AON framework discussed in the pre-

vious chapter for the team formation environment. This section begins by incrementally

improving on a purely random AON, arriving at an intelligent and effective learning-based

AON. Following an experimental demonstration of these AONs, alternative AON strate-

gies are discussed along with additional experimental results.4 All of the AONs discussed

in the context of multi-agent team formation areresource-constrained(i.e., the networks

are limited to a fixed number of connections and only rewiring adaptations are allowed).

5.3.1 From Random to Intelligent AONs

Recall that the three parts of an AON strategy are

1. decidingwhento adapt connectivity,

2. decidingwhichconnection(s) to remove (rewire), and

4Previous work on rule-based AON strategies that use performance and structural information contains

information on additional alternatives (Gaston & desJardins 2005).
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3. decidingwhereto make new connection(s).

Since the multi-agent team formation model has no explicit cost of connectivity, only

rewiring adaptations are considered. For simplicity, the assumption is made that each

agent can only rewire one connection during any single iteration of the model, although

the framework does not require this assumption. Additionally, only agents in theUNCOM-

MITTED state are allowed to rewire and an agent that decides to rewire during an iteration

is prohibited from either initiating or joining teams during that iteration. An AON strategy

will be referred to using the shorthandwhen/which/where, following the three parts of any

AON strategy.

An obvious baseline for AONs is a purely random strategy. In such a strategy, there

is no inherent intelligence, and at a minimum, a more intelligent AON should outperform

the purely random AON. In a random AON strategy, an agent decides to adapt connectivity

based on a prespecified probability, randomly selects a connection to rewire (without regard

for the agent on the other end of the connection), and establishes a new connection with

an agent randomly selected from the agent organization, with the exception of prohibiting

multiple connections between the same two agents. This strategy will be referred to as

random/random/random. Obviously, this strategy assumes that every agent “knows of”

all other agents or that there is a capability to randomly generate the name, location, or

address of all of the agents in the organization. While these assumptions are questionable

in many multi-agent system environments, particularly large and open environments, the
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random/random/randomstrategy will be used as a baseline AON.

In order to understand how adding intelligence to AON strategies improves perfor-

mance, several incremental modifications can be made to the random strategy in order

to arrive at a more realistic AON strategy. First, following the general AON framework,

statelessQ-learning with an adaptive learning rate replaces the random decision of when

to adapt. For team formation, the action set is simply{rewire, nothing} and the agent

updates itsQ values by

Q(a)← Q(a) + α[Rt −Q(a)], (5.5)

whereRt is thechangein local performance over a fixed number of iterations after tak-

ing a certain action. For the team formation model, in order to accumulate enough local

information about performance, theQ values are updated after 100 iterations. As such,

no actions (including thenothingaction) are taken during the 100 iterations. The value of

100 iterations was established through trial-and-error experimentation. Finally, this strat-

egy employs a variable learning rate withα = αmax = 0.4 whenRt is negative (i.e.,

learn quickly when performance is decreasing) andα = αmin = 0.05 whenRt is positive

(i.e., learn slowly when performance is increasing).5 Using this decision strategy, an agent

decides to adapt its connectivity ifQ(rewire) > Q(nothing) and otherwise maintains its

5Other values forαmin andαmax were considered. The behaviors were similar as long as the agents

learned sufficiently quickly when performance was decreasing and sufficiently slowly when performance

was increasing. Settingαmin = αmax generally resulted in poor AON performance, since the agents were

unable to learn quickly enough to stop rewiring after it was no longer valuable.
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current network connectivity. This strategy will be referred to asQ/random/random, since

decisions about which connection to remove and which connection to add remain random.

The next incremental improvement is in the way an agent decides which connection to

rewire. Perhaps the most obvious approach, and the approach taken here, is for each agent

to maintain a value for each of its connections. Then, upon deciding to adapt, the agent

selects the minimum-valued connection for rewiring. The value of a connection from agent

i to agentj is maintained using an exponentially weighted moving average:

Vij ← Vij + β[Wij − Vij], (5.6)

whereWij is one ifi andj are on a successful team completed during the current iteration

and zero otherwise. The values of connections are updated at every iteration. Using the ex-

ponential weighted moving average for updating the values of connections, when an agent

decides to adapt, it can rewire the existing connection with lowest value. This prevents an

agent from continuously rewiring the same connection and from dropping connections that

are highly beneficial. The value of a new connection (after rewiring) is set to one. The AON

strategy that uses the statelessQ-learning approach for deciding when to adapt, the expo-

nentially weighted moving average for removing minimally valuable connections, and the

random policy for establishing a new connection is referred to asQ/minNeighbor/random.

Continuing with the incremental improvements from the basic random strategy, the

final step is to add intelligence to the way new connections are established. There are many

possibilities, several of which will be discussed later. Here, an intuitive approach is adopted
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as a first pass at creating an intelligent AON strategy. First, the agent will use a push referral

to determine an agent with whom to establish a new connection. Recall that a push referral

from agenti to agentj requires thatj has decided to adapt and has decided to rewire its

connection withi. Subsequently, agenti tells agentj where to establish the new connection.

As described in the previous chapter, there are several benefits to push referrals including

the lack of a need for a central broker and the guarantee of organizational connectivity.

As a starting point for this strategy, the agents will give push referrals based on the

maximum-performance of their neighbors. That is, an agent providing a push referral will

deterministically refer its neighbor with the largest local performance estimate.6 There-

fore, the AON strategy that employs maximum performance push referrals and the other

incremental improvements isQ/minNeighbor/pushMax.

Complexity and Information Requirements

The complexity and information requirements vary over the four AON strategies proposed

above. The purely random AON strategy requires no information to be stored about other

agents or actions. As AONs are incrementally improved, the information requirements

increase. These increased information requirements include the values of actions and the

values of connections. Additionally, the more complex AONs assume some level of com-

munication of values among directly connected agents.

6Of course, this assumes that the agents can and do communicate their own estimates of local perfor-

mance.
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The search complexity of the various AONs follows the opposite ordering. Push referral-

based AONs only search over the neighborhood of a single node. Referral-based AONs

search over the neighborhood of all neighbors. Finally, the random AONs can be interpret-

ted as searching the entire set of agents in the organization.

As previously stated, there are many possibilities for determining how agents will es-

tablish new connections, and there are even many possibilities for how to provide push

referrals. Additional approaches will be considered in Sections 5.3.3, 5.3.4, and 5.3.5.

Now that AONs with various levels of complexity and intelligence have been presented,

the next step is to experimentally evaluate the behavior of these AONs and the structures

that the organizations tend towards when the agents employ the various AON strategies.

5.3.2 Experimental Results

The experimental analysis of AONs in the team formation domain begins with comparing

and contrasting the performance and structural trends of the four strategies described in the

previous section. The basic experimental setup for understanding the behavior of AONs is

to fix a set of parameters for the team formation environment and compare various AON

strategies in this fixed-parameter setting. The result presented in this section are represen-

tative of the behavior of AONs under other parameter regimes, although no claim about the

general applicability of specific AON strategies is implied.
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Static Baseline

The experimental evaluation begins by measuring the average team formation performance

of a multi-agent organization on a sample offixed network structures from a particular class

of networks. The parameters of the team formation model used in these experiments are:

n = 200, e = 300, µ = 2, |T | = σ = 10, γ = 1, α = 2. This parameter regime represents a

heavily loaded task environment intended to be a challenge for networked, distributed team

formation (i.e., high potential for blocking, etc.) (Gaston & desJardins 2005). The findings

presented below were found to be experimentally similar for other parameter regimes for

heavily loaded team formation environments.7

The class of fixed network structures used in these experiments is random graphs. The

type of random graph used is a slight variation on the Erdos-Renyi model of random graphs

where the networks are guaranteed to be connected (i.e., have a single component). Ran-

dom graphs were chosen as the base network type for experimentation since they are es-

sentially structureless, but have properties that help in heavily loaded team formation en-

vironments. For example, the lack of locality in random graphs provides high diversity

support (i.e., a wide variety of potential agent and skill mixes that can form valid teams in

7The claim of similar results for other parameter settings does not hold under varying network density

(i.e., when the organizational network gains or loses connections). This is intuitive because the number

of connections increase, the diversity support of the organization increases. The results here focus on sparse

organizational structures since it seems particularly desirable to allow the agents to organize themselves when

the network is significantly resource-constrained.
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Figure 5.5: The average performance of the team formation model withn = 200, e =
300, µ = 2, |T | = σ = 10, γ = 1, α = 2 over 20000 iterations averaged over 50 samples of
connected random networks. The value of the average performance over all time is 0.139
with a two-sided 95% confidence interval of approximately 0.004. The errors bars depict
the 95% confidence intervals.

Figure 5.5 shows the average performance over 50 different connected random net-

works for 20000 iterations of the team formation model. Note that the performance for the

specified set of parameters levels off quickly and that there is little deviation in the average

organizational performance. Also note that the overall performance is low – less than 0.14.

This implies that on average, a random network supports successful team formation for

14% of all tasks introduced into the system. This is a direct result of the heavily loaded

task environment and the complexities of distributed team formation in networks (Gaston
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statistic mean 95% confidence

diameter 4.86 ±0.025
clustering 0.009 ±0.002

normalized std. dev.k 0.967 ±0.009
degree correlation −1.7× 10−5 ±4.0× 10−6

Table 5.2: Mean and 95% confidence intervals for four of the structural statistics discussed
in Chapter 3 averaged over the 50 sample random networks.

& desJardins 2003; Gaston, Simmons, & desJardins 2004). Additionally, Table 5.2 con-

tains the average structural statistics averaged over the collection of 50 fixed, connected,

random networks. The performance of the multi-agent organization in fixed networks and

the structural statistics of these fixed networks will be used as baselines in the study of

AON behaviors.

AON Results

The experimental results for the four AONs described above in an identically parameter-

ized team formation environment are shown in Figure 5.6. The figure shows the relative

increase in performance over the team formation performance in the static network struc-

tures. In the AON experiments, the same 50 connected random graphs as used above were

the initial organizational structures. The experiments were organized such that the agents

were prohibited from adapting their connectivity until the 1000th iteration of the model.

In order to understand the differences in performance between the AON strategies and

the static structures, as well as the performance differences among the AON strategies, var-
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Figure 5.6: The relative performance of the multi-agent organizations when the agents
employ the four increasingly complex AON strategies. The performance is relative to the
average organizational performance over the 50 static, connected random graphs. All of the
increases in performance are statistically significant over the static network performance.
The large difference between theQ/minNeighbor/maxQstrategy and the rest of the AON
strategies is statistically significant at the 95% confidence level forQ/minNeighbor/maxQ
approximately equal to 0.034.

ious statistical measurements were taken as the networks evolved over time. The evolution

of these statistics is shown in Figure 5.7. The four statistics shown are network diame-

ter, clustering, the normalized standard deviation of degree, and degree correlation among

neighboring agents. Details of these statistics is provided in Chapter 3.

The discussion of the effects of AONs is further supported by the network structures

shown in Figure 5.8. The figure contains five networks: one of the initial random networks

and samples of network structures resulting from the AON strategies after 20,000 iterations.
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Note that the networks shown in Figure 5.8 (b), (c), (d), only show the largest component

of each network. Details of this are in the caption.

AON Discussion

The main, and most obvious, result is that as the AON strategies increase in sophisti-

cation, the performance increase as a result of the AON is much greater. That is, the

Q/minNeighbor/pushMaxAON strategy results in the greatest improvement in performance:

approximately a 55% increase in efficiency (see Figure 5.6). Note, howerver, thatall of

the AON strategies, including the purely random strategy, led to statistically significant

increases in organizational performance. This implies a significant benefit of adaptive or-

ganizational structures in networked multi-agent team formation and supports the claim

that distributed network adaptation is a form of organizational learning. While all of the

AONs improve performance, agents that discriminate among their current connections and

select the connection of least value to rewire outperform agents that rewire randomly. Fur-

thermore, agents that take meaningful referrals from the agent that is losing the connec-

tion outperform agents that randomly decide where to establish new connections. This is

suggestive that the benefit of decentralized network adaptation is largest when the agents

intelligently adapt their local connectivity.

Figure 5.6 shows that the structural evolutions of the first three AON strategies (ran-

dom/random/random, Q/random/random, andQ/minNeighbor/random) are quite similar.
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This is largely a result of the random rewiring common to all three strategies. The one

difference between the three is the diameter of the resulting networks. For all three strate-

gies, the diameter of the networks drastically increases compared to the static, connected

random graphs. This is a direct result of the strategies disconnecting the network structure

(i.e., breaking the structure into disjoint components). The difference in diameter for the

Q/minNeighbor/randomstrategy compared with the other two random strategies is that the

agents using theQ/minNeighbor/randomnever drop a connection with an agent that only

has one connection. That is, they do not abandon their neighbors that completely rely on

them for connectivity into the rest of the network. This fact, along with the slight differ-

ence in the other structural characteristics of the networks, accounts for the difference in

performance among the first three AON strategies.8

The fourth AON strategy,Q/minNeighbor/pushMax, produces the largest average in-

crease in performance and results in very different network structures than the other strate-

gies. In addition, the network structures that result from this AON strategy are significantly

different than the initial random networks. Unlike the other strategies, because it is a push

referral-based strategy,Q/minNeighbor/pushMaxguarantees that the network will remain

connected. In fact, the diameter shrinks. This phenomenon can be explained by considering

some of the other network characteristics.

8This finding is repeated in all of the experiments: namely, that slight structural changes often lead to

measurable changes in performance for networked multi-agent team formation.
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Figure 5.7: The evolution of the network statistics for the four AON strategies averaged
over 50 iterations. The four statistics shown are: (a) relative diameter, (b) relative clus-
tering, (c) relative normalized standard deviation (nsd) degree, and (d) absolute degree
correlation. The symbols used to represent the strategies in the figure were selected to
match the symbols of the three strategies in Figure 5.6.
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UnderQ/minNeighbor/pushMax, the agents push the degree distribution of the network

toward a more spread out (possibly, skewed) distribution. This is reflected by the dramatic

increase in relative normalized standard deviation of degree (nsd degree) (Figure 5.7 (c)).

An increase in normalized standard deviation in degree means that some agents in the net-

work are increasing their connectivity, while others are decreasing their connectivity.9 The

observed decrease in degree correlation is consistent with the decrease in diameter. As

with the star network studied above, decreasing the diameter of a network with a constant

number of connections is directly proportional to increased diversity support. Diversity

support is useful in a dynamic task environment in which there is a large number of pos-

sible skill mixes for the tasks (e.g., given the parameters of the environment used here, by

Proposition 6 there areΩ(10, 10) =
(
19
10

)
= 92, 378 possible task combinations).

The AON strategies, and in particularQ/minNeighbor/pushMax, increase clustering.

This is interesting for several reasons. First, increasing clustering and decreasing diameter

are contradictory in that clustering and diameter tend to be negatively correlated. If agent

i is already two hops away from agentk via a direct connection with agentj, and agent

i wants to decrease its average distance to all agents in the network, agenti can do so

most effectively by connecting to an agent other thank. Conversely, in order to increase

clustering in this situation,i would want to connect tok directly, creating the triangle

{i, j, k}. Second, I did not predict that increased performance would be correlated with

9Since the domain requires resource-constrained AONs, the number of total connections, and therefore

the sum of degrees, and average degree in the network remains constant.
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increased clustering. In hindsight, a plausible explanation may be thatincreased clustering

reduces competition and blocking. Given the parameters of the team formation environment

and the team joining and initiation strategies of the agents, a group of agents that are closely

connected (i.e., that exhibit excess clustering) are more likely to all join the same team.

Therefore, they reduce competition among various teams in their part of the organization

and likely reduce the effects of blocking.

Figure 5.8 shows that the representative networks for static structure and the first two

AON strategies are all similar. This changes when the agents useQ/minNeighbor/random,

for which some changes in structure are apparent. There is an increase in the number of

chains of nodes outside the core of the network. This is most obvious looking at the “tail”

at the bottom of the network shown in Figure 5.8(d). Finally, the structure of the network

resulting from theQ/minNeighbor/pushMaxis qualitatively different from the other four. In

this network, the hub and spoke structure is clearly discernible. This structure is consistent

with the evolution of the structural statistics described above.

AON Summary

The results presented in this section suggest that decentralized network adaptation driven

by the decisions of individual agents can significantly increase organizational performance

in networked multi-agent team formation. This section is concluded by considering why

the push referral-basedQ/minNeighbor/pushMaxstrategy overwhelms the remainder of the
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AON strategies. The “rich get richer” concept makes sense in considering the structure of

the network that results from this strategy. Agents that are losing a connection in this

strategy, refer high performing agents (i.e., agents that participate on a large portion of suc-

cessful teams) to the agents that are rewiring. The accumulation of connectivity only helps

the high performing agents perform better as their local diversity support increases with

the addition of the new connection. That is, the high performing agents are the high degree

agents and under this strategy, these agents accumulate more connections. Additionally,

this creates a dependency of low degree agents on higher degree agents which reduces the

amount of competition among different teams since the dependent agents are likely to join

the teams that the agent they depend on joins.

In this section, the utility of AONs was demonstrated by describing and experimenting

with four strategies that make incremental improvements from one to the next. The base

strategy was a purely random strategy that provided improved performance over no adapta-

tion, but was outperformed by more complex, more intelligent, agent adaptation strategies.

In the next several section, I consider various alternatives to the strategies discussed in this

section. These alternatives include other push referral methods, knowledge-based methods,

and bilateral adaptation.
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(a)

(b) (c)

(d) (e)

Figure 5.8: Representative network structures: (a) an initial, random, connected net-
work; (b) a network after 20000 iterations where the agents usedrandom/random/random;
(c) a network resulting fromQ/random/random; (d) a network resulting from
Q/minNeighbor/random, and (e) a network resulting fromQ/minNeighbor/pushMax. The
networks shown in (b) and (c) show only the largest component of the network; each has
12 missing agents. Similarly, the network shown in (d) is only the largest component with
four missing agents. The network in (e) contains all 200 agents (see text).
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5.3.3 Are Push Referrals Always Best?

One conclusion that could be drawn from the previous section is that push referrals will

always perform well since they are guaranteed to maintain connectivity. Here, this claim

is refuted by considering an alternative push referral strategy,Q/minNeighbor/pushMin. In

this strategy, agenti decides to adapt and decides to rewire its current connection with agent

j. Agentj provides a push referral just as before, but nowj refers its lowest performing

neighbor. In this scenario, agentj could be considered a philanthropist, trying to improve

things by connecting two agents having lower local performance.
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Figure 5.9: A comparison of the alternative push referral strategy,
Q/minNeighbor/pushMin, with two of the previously discussed AONs for team for-
mation. (a) compares the performance relative to no adaptation of the alternative strategy
with Q/minNeighbor/random, and (b) compares the diameter relative to no adaptation of
the alternative strategy toQ/minNeighbor/pushMax.

Figure 5.9 shows the experimental results forQ/minNeighbor/pushMin. To compare

the behaviors of this strategy with those discussed above, the new push referral strat-
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egy’s performance is compared toQ/minNeighbor/randomand the only structural com-

parison is in diameter compared toQ/minNeighbor/pushMax. As with the other strategies,

Q/minNeighbor/pushMinis able to increase performance, but on average much slower and

less thanQ/minNeighbor/randomover the 20000 iterations in the experiments. This sug-

gests that the added information in the new strategy is actually detrimental, since it per-

forms worse than random rewiring (i.e., no information). Figure 5.9 (b) shows the relative

change in diameter. When the agents useQ/minNeighbor/pushMin, the diameter decreases

and the network remains a single component. However, the diameter does not decrease as

much as that of the agents usingQ/minNeighbor/pushMax.

Figure 5.10: A network structure after 20000 iterations of the team formation model when
the agents employed the AON strategyQ/minNeighbor/pushMin. There is some hub-and-
spoke structure (left side of the network), but much less than seen in Figure 5.8 (e) for
Q/minNeighbor/pushMax.

This simple experiment shows that while AONs with push referrals can increase per-

formance and maintain a connected network, some push referral rewiring approaches are
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better than others. In addition, push-referral-based strategies will not always outperform

non-push-referral-based strategies.

5.3.4 History-Based AONs for Team Formation

Another method for the agents to rewire is based on accumulated knowledge. The AON

strategies considered so far have not used acquired knowledge for deciding where to make

new connections; instead, the strategies discussed above either make random rewiring de-

cisions or use information about the current network structure. The proposed alternative

in the team formation environment is for each agent to maintain a list of frequency counts

for the number of times it has been on successful teams with each of the other agents in

the organization. Note that the collection of this historical information gives the agents

the ability to see beyond their local network structure. The assumption is that the agents

working on a team know something about each other, regardless of whether they have a

direct connection or not.

There are at least two different ways that agents can use historical teammate informa-

tion in order to adapt their local connectivity. First, once an agent has decided to adapt and

has selected a connection to remove, the agent can choose an agent to connect to using the

acquired historical knowledge of teammates. One method for doing so is for an agenti to

select the agentj that has been on the most successful teams withi but is not currently di-

rectly connected to agenti. The AON strategy that uses the statelessQ-learning mechanism
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for deciding when to adapt, the exponentially weighted moving average for determining the

connection to break, and the selection of the maximum unconnected agent from the team-

mate history for determining a new connection is calledQ/minNeighbor/teammate.

re
la

tiv
e

ch
an

ge
in

pe
rf

or
m

an
ce

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  2000  4000  6000  8000  10000  12000  14000  16000  18000  20000

%
 in

cr
ea

se
 in

 p
er

fo
rm

an
ce

time

Q/minNeighbor/pushTeammate
Q/minNeighbor/teammate

re
la

tiv
e

ch
an

ge
in

di
am

et
er

 0

 1

 2

 3

 4

 5

 6

 0  2000  4000  6000  8000  10000  12000  14000  16000  18000  20000

%
 c

ha
ng

e 
in

 d
ia

m
et

er

time

Q/minNeighbor/pushTeammate
Q/minNeighbor/teammate

(a) (b)

re
la

tiv
e

ch
an

ge
in

cl
us

te
rin

g

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0  2000  4000  6000  8000  10000  12000  14000  16000  18000  20000

%
 c

ha
ng

e 
in

 c
lu

st
er

in
g

time

Q/minNeighbor/pushTeammate
Q/minNeighbor/teammate

re
la

tiv
e

ch
an

ge
in

ns
d

de
gr

ee

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  2000  4000  6000  8000  10000  12000  14000  16000  18000  20000

%
 c

ha
ng

e 
in

 n
sd

 d
eg

re
e

time

Q/minNeighbor/pushTeammate
Q/minNeighbor/teammate

(c) (d)

Figure 5.11: Experimental results for the history-based rewiring strategies averaged over
50 simulations of 20000 iterations of the team formation model: (a) relative average change
in organizational performance, (b) relative change in diameter, (c) relative change in clus-
tering, and (d) relative change in the normalized standard deviation of degree.

An alternative to the strategy above is to use a modified form of push referrals. In

this situation, agenti decides to adapt and chooses to remove its connection with agentj.
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Agent j then provides agenti with a push referral to the agent with whomj has been on

the most successful teams, say agentk. Agenti then establishes a connection with agentk,

provided thatk is noti andi is not currently connected tok. This strategy, in a slight abuse

of terminology, is referred to asQ/minNeighbor/pushTeammate. This is not a true push

referral, and therefore does not guarantee that the network will stay connected. In fact,

as the experiments show, the network can and does become disconnected when the agents

operate under this strategy. This is due to the fact that the new connections are to an agent

that washistorically connected to the losing agent, while a true push referral guarantees

that the losing agent and the gaining agent arecurrentlyconnected.

(a) (b)

Figure 5.12: Representative resulting networks for the two teammate history-based AON
strategies: (a)Q/minNeighbor/pushTeammateand (b)Q/minNeighbor/teammate. Note that
(a) shows the entire network and (b) shows the largest component with nine agents missing.

Figures 5.11 and 5.12 show the result of the same experiments as above for these

two history-based strategies. Interestingly, and surprisingly, the push referral teammate
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strategy performs very well, outperforming the best of the previously discussed strategies:

Q/minNeighbor/pushMax. One reason for this boost in performance is that the agents are

still giving referrals based on performance (i.e., the agent that has helped the most), but

now the pool of candidates for referral can be much larger than just the losing agent’s

immediate neighbors. In fact, over time, these histories may contain the entire agent orga-

nization. This is realistic in some, but not all, multi-agent environments. An alternative to

maintaining historical information about all agents may be to maintain a list of the topm

teammates.

The main reason for the increased performance of the referral approaches over the non-

referral history-based strategy is its ability to maintain a mostly connected network. Al-

though this modified push referral does not guarantee connectivity of the network, it comes

close to maintaining connectivity, as evidenced by the results shown in Figure 5.11 (b) and

the representative resulting network in Figure 5.12. Additionally, the teammate referral

strategy does not limit an agent to its own knowledge, but allows an agent to capitalize on

its neighbor’s knowledge. Finally, because the teammate strategies draw from a larger pool

of top performers, the skew in the degree distribution over the agents grows quickly. That

is, the “rich get richer” faster.
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5.3.5 On Bilaterally Stable AONs for Team Formation

Not mentioned in the descriptions of the experiments and AON strategies is the amount

of rewiring that occurs in each of the AONs. As it turns out, in the experiments above,

the average cumulative number of rewirings for all of the various strategies fall within

the standard deviations of each of the other strategies. That is, all of the strategies use

approximately the same number of rewirings on average; for therandom/random/random

strategy, the probability of rewiring was calibrated appropriately. Another similarity of the

strategies discussed above is that they do not converge. They continue rewiring over all

20000 iterations (and beyond).

As the quote in the beginning of this chapter suggests, an informal, adaptive, flexible

organizational network structure may be very productive. While this is the case, it may also

be desirable to achieve stability, or at least stability in the absence of shocks to the system.

One method for attempting to achieve stability in decentralized adaptive organizational

networks is to adopt the notion of bilateral network formation from the economic theory of

network formation. To summarize, bilateral network formation only creates a connection if

both agents involved in the connection agree to the connection, while either agent involved

in a connection can elect to remove the connection. To translate this to resource-constrained

AONs, an agent can unilaterally elect to attempt to rewire a connection, but the agent that

is selected to establish the new connection must agree to the connection. Most of the AON

strategies discussed previously in this chapter can be modified to provide bilateral network
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formation.

In order to test bilateral network formation for AONs in the team formation environ-

ment, theQ/minNeighbor/pushMaxstrategy was modified to guarantee bilateral connection

establishment. The rules are the same, but the agent selected to establish the new connec-

tion must agree to establish the connection with the rewiring agent. For the gaining agent

to agree to the new connection, the gaining agent must haveQ(rewire) > Q(nothing).

If the gaining agent declines the new connection, the rewiring is aborted and the original

connection (the one selected for rewiring) remains in place. This new strategy is referred

to asQ/minNeighbor/pushMaxBilat.
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Figure 5.13: The experimental results for the bilateral AON strategy: (a) the average rela-
tive change in organizational performance and (b) a representative resulting network struc-
ture. For details on the structure of the resulting networks see the text.

The expectation was that the bilateral AON strategy would have far fewer network



138

adaptations over the course of the team formation simulations. In fact, the organization of

agents usingQ/minNeighbor/pushMaxBilatperformed only154± 4 network rewirings on

average and stopped rewiring after approximately 1500 iterations from the start of adapta-

tion. This represents a 98.3% reduction in the number of rewirings, compared to the nearly

9000 rewirings over 20,000 iterations that occur on average in organizations of agents that

employ the other AON strategies.

Figure 5.13 (a) shows the average relative performance curve for the organization of

agents using the bilateral AON strategy. Even though the bilateral AON performs far fewer

adaptations, it outperforms all of the AON strategies described above except the teammate

history-based strategies andQ/minNeighbor/pushMax. The figure also depicts a represen-

tative network structure resulting from the bilateral AON strategy, within which can be

seen evidence of a hub-and-spoke type structure, similar to the high-performing AONs

discussed above. This is supported by an average relative decrease in diameter of approxi-

mately 7%. The brief period of adaptation, the small number of adaptations, and the rapid

increase in organizational performance suggests that the bilateral AON strategy considered

here allows the agents to learn quickly how and when to adapt and allows the agents to

make smart decisions about how to adapt.

As mentioned in the beginning of this section, stability is not always a desirable prop-

erty of an organization. However, bilateral, intelligent AON strategies may be useful when

the cost of adaptation is excessive. As demonstrated here, bilateral AONs can allow the
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agents to quickly learn how to adapt their connectivity; leading to significant increases in

organizational performance.

5.4 Concluding Remarks

Distributed, networked, multi-agent team formation in a heavily loaded task environment

represents a challenging cooperative, collaborative, and competitive domain. There are

many possibilities for organizational learning in such a domain. After demonstrating that

the network structure of a multi-agent organization has a dramatic effect on organizational

team formation performance through simple examples and computational experiments, this

chapter proposed and discussed multiple AON strategies for agents embedded in an orga-

nization attempting to complete tasks. The utilities of the AON strategies were studied

empirically through simulation and resulted in significant increases in performance over

static network structures. The experimental results support the claim that intelligent, de-

centralized network adaptation is a method of organizational learning.

The network adaptation strategies in this chapter were built from the general AON

framework presented in Chapter 4. In the next chapter, AONs are applied to another generic

multi-agent environment: distributed production and exchange. Various AON strategies are

considered, including several based on the general AON framework.



Chapter 6

Navigating Production and Exchange

Networks

We’re already on the way to an expanded economy full of new participants:
agents, bots, objects, and machines, as well as several billion more humans.

Kevin Kelly

In a networked environment increasing returns are created and shared by the
entire network. Although one networked entity may accrue more gains than
another, the real value resides in the greater web of relations.

Angus Matthew

In his article “New Rules for the New Economy,” Kevin Kelly emphasizes the role of

networks in today’s economy. Interestingly, Kelly includes agents and bots as key partici-

pants in the new, global, networked economy. As the number of agents and bots continues

to increase in the open market environment of the Internet, the ability of these agents to

maintain and dynamically update their economic social connections with other agents will

140
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become increasingly important. One factor will be limited cognitive and processing ca-

pacities hindering any single agent’s ability to interact withall other agents. Also, in open

market environments, agents will come and go without constraint, therefore requiring other

agents to adapt to a changing interconnected market.

In this chapter, I begin the exploration of AONs in multi-agent market environments.

After briefly reviewing some of the relevant literature, I present a model of multi-agent

production and exchange and demonstrate through computational experiments that the net-

work structure governing trading among the agents has a significant effect on organizational

performance. I then develop several AON strategies for agents operating in the production

and exchange environment and empirically demonstrate the utility of these AONs.

6.1 Overview of Multi-Agent Market Environments

One of the most promising, and potentially lucrative, application domains for multi-agent

technologies is in the automation of commerce and trading (Wellman 2004). Enabled by

global communications systems such as the Internet, electronic marketplaces are rapidly

becoming part of the global culture. The many applications of agent technology to e-

commerce include market clearing, automated matching of buyers and sellers, automated

trading agents, automated formation of supply chains,and management of distribution sys-

tems (Wellman 2004; He, Jennings, & Leung 2003).

In the multi-agent systems community, the importance of agent-enabled ecommerce
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is demonstrated by increasing participation in the Trading Agent Competition (TAC) held

in conjunction with the International Joint Conference on Autonomous Agents and Multi-

Agent Systems (Wellmanet al. 2003a; 2003b). Past competitions have included challenges

in the travel agent and supply chain domains. In the travel agent scenario, agents manage

the scheduling and purchasing of transportation and local arrangements for a set of specified

trips. In the supply chain scenario, agents are challenged with managing an inventory,

including taking orders, placing orders, and distributing goods in a multi-tiered supply

chain.

There is a large literature on multi-agent markets that is beyond the scope of this disser-

tation. Instead of surveying this large literature, I briefly survey some of the literature that

is most relevant tonetworkedmulti-agent market environments (i.e., distributed markets

where all of the agents do not necessarily know about all other agents in the market).

One of the central problems in distributed market environments is effectively pairing

buyers and sellers or, more generally, traders (Walsh & Wellman 2000). A common mech-

anism for matching buyers and sellers is auctions. Auctions are effective for pairing buyers

and sellers, but have certain drawbacks.

“In many large-scale economies, the problem of who to buy or sell from is

a significant one. Mechanisms that pair buyers and sellers, such as auctions,

can be used to do this when the number of agents is relatively small, but if the

population is large or the auction is combinatorial, both the allocation of goods
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and the selection of bids becomes a difficult computational problem.” (Brooks

& Durfee 2002)

Combinatorial auctions are auctions in which collections of goods can be bid on as bun-

dles (Cramton, Shoham, & Steinberg 2006; Sandholm 1999). A classic example comes

from the shipping industry. Consider a company bidding for the delivery of goods between

cities. If routes can only be bid upon one at a time, a company is likely to bid a relatively

high price for all routes. On the other hand, if routes can be bid upon in bundles (i.e. com-

binatorially), then a company can bid a lower average price per route for two routes, one

of which is a return trip to the starting city. When bidding on combinations of goods is

permitted, the complexity of market clearing algorithms greatly increases.

The solution to the “difficult computational problem” offered by Brooks and Durfee

is a variant on coalition formation called congregation formation (2002). In congregation

formation, agents move among a fixed set of smaller markets until they arrive in a market

where the interests of the agents are all similar. Once the agents organize into the smaller

markets, the computational problem of clearing combinatorial auctions is diminished due

to the smaller number of agents in any local market. Although there is no explicit repre-

sentation of an organizational network in congregation formation, congregation formation

serves as a motivational example to emphasize the importance of organizational structure

in multi-agent markets.

Until recently, there has been little work on the role of networks and their formation
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in economic situations. In the economics literature, the process of network formation has

been studied from a game-theoretic perspective (Jackson & Wolinsky 1996; Watts 2001;

Jackson & Watts 2002; Jackson 2003). One of the most widely studied models from the

economic network formation literature is the Connections Model (Jackson & Wolinsky

1996), in which there is no buying and selling; instead, there are costs for direct connections

and implied financial benefits for direct and indirect connections. For a detailed description

of this model and related theory, see Chapter 3.

At the intersection of economics and computer science, recent research has shown

that networks play a critical role in understanding and affecting the dynamics of market

economies. The existence of equilibria have been studied in economic networks, includ-

ing real-world international trade networks (Kakadeet al. 2004) and in generalizations of

the classic Arrow-Debreu economics to networks of consumers and economies (Kakade,

Kearns, & Ortiz 2004). Additionally, the structure of networks has been shown to affect

price convergence in a distributed production and exchange economy (Wilhite 2001).

Finally, in work most closely related to what I present in this chapter, partner selection

has been discussed within the fields of computational economics and multi-agent systems.

Studies of a trade network game have demonstrated that distributed partner selection can

improve efficiency in small-scale trade networks (Tesfatsion 1997). More recently, rein-

forcement learning has been proposed as a way to learn effective agent interactions based

on reputation in multi-agent market environments (Tran & Cohen 2003).
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In the remainder of this chapter, I present an adaptation of a model of a multi-agent

production and exchange economy, discuss the effects of various static network structures,

develop several AON strategies for the agents to adapt local connectivity in the production

and exchange networks, and present empirical results on the performance of organizations

of agents using the various AON strategies. The work presented in this chapter differs from

the related literature in two important ways: (1) the network formation process is bottom-

up: that is, the agents must reorganize an existing network structure with limited resources,

and (2) direct attention is given to the network structures that arise from the various AON

strategies and the correlations between structure and performance.

6.2 Modeling Decentralized Multi-Agent Markets

In order to study mechanisms for AONs in multi-agent economies, I selected a simple,

generic, yet realistic model of a production and exchange economy. In this section, I de-

scribe the model and discuss the effects of agent social structures on the organization’s

ability to distribute goods effectively.

6.2.1 A Model of Production and Exchange

The basis for the model was first presented by Wilhite (2001; 2003). Each agent is given

an initial endowment of two distinct goods, and has a fixed production capacity. At each

time step, each agent is allowed to choose whether to trade or to produce. The goal of
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the individual agents is to maximize their utility. The model assumes that agents’ trad-

ing behaviors are perfectly rational (i.e., they always select the action that maximizes their

utility) and completely truthful (i.e., they always provide perfect information during nego-

tiation and trade).

Let there ben agents in the economy and two goods,g1 andg2, whereg2 is infinitely

divisible andg1 must be traded in whole units.1 The utility of agenti is defined to be

U i = gi
1g

i
2. (6.1)

It follows that if an agent possesses a total ofG = g1+g2 goods, then the optimal allocation

is g1 = g2.

In the original model, the agents were given the ability to produce a set amount of both

goods. In order to promote trading among the agents and focus on the efficiency of the

trading structure, I restrict the agents to being able to produce only one of the two goods.

This restriction requires that agents trade to maximize utility. Assuming that agenti is a

producer ofg1, ∆gi
1 ∈ [1, q] and∆gi

2 = 0 (and likewise for producers ofg2), whereq is a

model parameter. The exact production capacity of an agent is drawn uniformly at random

from the interval. This allows for a society of heterogeneous agents, in which some are

effective producers and others are poor producers. The latter must rely more heavily on

trade to increase their utility.

1Forcingg1 to be traded in whole units is to simplifies the price formation and trading process. It is

claimed that this adds realism to the model (Wilhite 2003).



147

In the original model, during each iteration, the agents are selected in random order

and are allowed to negotiate (i.e., determine the price of trading) withm other agents.

The selected agent then chooses the action—trade with one of them agents or produce—

that maximizes its utility. In negotiation, each agent truthfully reveals itsmarginal rate of

substitution,

mrsi =
δU i/δgi

1

δU i/δgi
2

=
gi
2

gi
1

. (6.2)

When the two negotiating agents’ marginal rates of substitution differ, there is an opportu-

nity for mutually beneficial trade between the two agents (Wilhite 2003). Assuming that

agenti is negotiating with agentj, the next step in the negotiation process is to calculate

the exchange price:

pi,j =
gi
2 + gj

2

gi
1 + gj

1

. (6.3)

The price, as determined by Equation (6.3), is the amount of goodg2 that an agent is willing

to exchange for one unit ofg1. When agentsi andj are negotiating, ifmrsi > mrsj, then

agenti will be willing to tradepi,j units ofg2 for one unit ofg1. The agents must also take

into account a trading taxτ , which is given as a model parameter. Assuming that agenti is

trading one unit ofg1 for pi,j units ofg2 with agentj, the tax is applied to the transaction

such that

gi
1 = gi

1 − (1.0 + τ) and gj
2 = gj

2 − (1.0 + τ)pi,j. (6.4)

The agents repeatedly trade in this manner until the exchange no longer increases the utility

of either agent.
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During negotiation, the agents do not actually exchange goods; rather, the active agent

computes the change in utility∆U i(j) that would result from trading with each of them

agents with whom it has negotiated. The agent also calculates its change in utility after

production:

∆U i(g1) = (gi
1 + ∆gi

1)(g
i
2 + ∆gi

2). (6.5)

Finally, the agent selects the action that results in the largest∆U i and then all of the goods

are either exchanged or produced accordingly. To reiterate, an agent only takes an action

if it increases the agent’s utility (and similarly, a trade only occurs when it simultaneously

increases the utility of both agents).

This model was originally studied in the context of global price conversion and the roles

that individual agents adopted: heavy traders, heavy producers, and specialized producers.

The nature of the interactions in the initial study was based on each agent selectingm other

agents at random to interact with at each time step (Wilhite 2003). I refer to this interaction

paradigm asrandom mixture.

An alternative to random mixture is to embed the agents in a fixed network topology

and only allow agents that are directly connected to negotiate and trade. It has been shown

that network structure has a direct impact on the rate at which the economy converges on

a global price (Wilhite 2001) when the agents only trade (i.e., have no production capac-

ity). In the next section, I demonstrate the dependence of organizational performance on

network structure using both production and trading dynamics.
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6.2.2 The Effects of Network Structure

In order to evaluate the efficiency of the trading network, I extend the model toclear a

variable amount of goods from the system at the end of each iteration. In essence, I intro-

duce consumption into the model. At the end of each iteration, every agent “consumes” an

amount ofg1 andg2 equal to the lesser amount of the two goods. That is, after all agents

have finished either initiating trade or producing, each agenti updates its amounts of the

two goods such that

gi
1 = gi

1 −min(gi
1, g

i
2) and gi

2 = gi
2 −min(gi

1, g
i
2), (6.6)

whereci = min(gi
1, g

i
2) is theclear amountof agenti during the current iteration. This

clearing mechanism can be interpreted as the agents requiring one unit of each of the two

goods in order to accomplish one unit of some other task. An example of this may be a

collection of agents where some have processing capacity and others have storage capacity,

both of which are required in order to complete a large-scale data processing task. In

this example, agents are able to share (i.e., trade) their respective resources in order to

accomplish the collective data processing task.

The notion of an individual clear amount lends itself directly to a measure of organiza-

tional performance. Theaverage clear amount per agent,

C =
1

n

∑
i

min(gi
1, g

i
2), (6.7)

is an intuitive measure of organizational performance, since agents must trade in order to
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clear goods. Trading structures that support more effective trade among the agents lead to

a larger average clear amount per agent.

To motivate the need for AONs, I measured the average clear amount per agent after

10000 iterations of the model for each of five static network structures:

• one-dimensional lattices– agents organized in a ring, connected only to their nearby

neighbors,

• two-dimensional lattices– agents organized in a two-dimensional toroidal grid,

• one-dimensional small-worlds– one-dimensional lattice with a small percentage of

connections randomly rewired to provide “short-cut links” (Watts & Strogatz 1998),

• random graphs – connections exists between agentsi andj with probabilityp (Er-

dos & Renyi 1959), and

• star topologies– hub agents are connected to all other agents in the system, approx-

imating a scale-free network (Albert & Barabási 2002).

Figure 6.1 shows the average clear amount per agent over 200 simulations for each of

the five network structures as a function of the taxτ . (The error bars for the 95% confidence

intervals are within the size of the points.) All of the network structures were parameterized

to have the same number of nodes (i.e., agents) and connections as the two-dimensional

lattice (200 agents and 400 undirected connections).
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Figure 6.1: The effects of various network structures on the average clear amount per agent
after 10000 iterations over 200 simulations. The network structures were appropriately
parameterized to all have exactly 200 agents and 400 connections. The model parameters
follow those used by Wilhite in the original study:q = 30 and the initial endowment of
each of the goods for each of the agents was drawn uniformly at random from [1,60].

As expected, there is a statistically significant difference in the resulting average clear

amount for the different network structures in line with previous results (Wilhite 2001).

There are several interesting observations based on the results. First, and most obvious,

network structure directly affects organizational performance in the production and ex-

change network. Interestingly, the one-dimensional lattice structures perform the best. It is

conjectured that this is a result of less competition for goods within local regions of the net-

work, which is in turn a direct result of no (or few in the case of the small-world network)

long-range connections. The other observation is in the way the various network structures
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are affected by increases in the trade tax. The organization of agents embedded within the

star topology suffers the most as a result of increased trade tax. This is a direct result of all

trades having to go through a small set of hub agents that serve as clearinghouses for trades.

When the trade tax increases, these agents can no longer “afford” to serve as clearinghouses

for as many trades. On the other hand, the random network structure is most resilient to

increases in the trade tax, because of the lack of locality in the network structure.

The significant effect that the network structure has on the performance of the produc-

tion and exchange economy motivates the need for decentralized mechanisms that allow

individual agents to adapt their local network connectivity in order to improve organiza-

tional performance.

6.3 AONs for the Production and Exchange

Economy

In this section, I develop and evaluate various AON strategies for the agents embedded in

the production and exchange model. The section begins with an incremental development

of an intelligent AON strategy based on the general framework presented in Chapter 4.

Subsequent sections offer alternative, more specialized AON strategies and compare their

performance.
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6.3.1 Increasingly Intelligent AONs

Similar to the chapter on multi-agent team formation, I begin the discussion of AONs

for the multi-agent production and exchange environment by introducing a succession of

increasingly intelligent AON strategies. The AONs described in this section are named

using thewhen/which/wherenotation introduced in Chapter 5.

A purely random strategy serves as the base strategy for comparison. An agent using the

purely random strategy, denotedrandom/random/random, decides to adapt at random based

on a specified probability, randomly selects one of its connection to rewire, and randomly

selects a new agent with whom to establish a new connection. This “zero-intellignece”

strategy provides a benchmark for comparing the performance of more intelligent AON

strategies. While there is no intelligence in therandom/random/randomstrategy, it is pos-

sible that the organization will benefit from agents using this strategy. Clearly, agents

adapting their local connectivity according to this strategy will interact with a larger (and

changing) set of other agents, increasing the likelihood of finding high-payoff trades (i.e.,

mutually beneficial trades in which a large number of goods are exchanged).

Starting with therandom/random/randomAON strategy, several successive changes

are made in order to arrive at an effective AON strategy. While this approach is similar

to that presented in Chapter 5, the trajectory is different. The first change to the purely

random strategy is the rule for determining which connection to rewire. Employing the

general AON framework, each agent maintains a set of values for each of its connections
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using an exponentially weighted moving average:

Vij ← Vij + β[Wij − Vij], (6.8)

whereVij is the value of the connection from agenti to agentj,Wij ∈ [0, 2] is the number

of trades betweeni andj during the current iteration, andβ is the learning, or “age-off,”

parameter. The value ofWij ranges from zero to two, since each agent can initiate trading

during a single iteration.Wij can be interpreted as the usefulness of a connection. Using

these values, an agent selects the connection to rewire that currently has the lowest value.

The AON strategy based onrandom/random/randomthat selects the minimum-valued con-

nection to rewire is denotedrandom/minNeighbor/random. In all of the experiments below,

β = 0.1.

Fromrandom/minNeighbor/random, the next level of intelligence is to adopt a stateless

Q-learning strategy for learning when to adapt local connectivity. The basis for theQ-

learning approach was presented in Chapters 4 and 5. The action set is{nothing, rewire}

and the values of the actions are updated using

Q(a)← Q(a) + α[Rt −Q(a)], (6.9)

whereα is the learning rate andRt is the immediate reward. Following the general frame-

work, I use an adaptive learning rate withαmin = 0.05 andalphamax = 0.4 to avoid the

pitfalls of learning too slowly when decreasing performance and too quickly when increas-
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ing performance.2 Here,

Rt = ∆ci = cti − ct−1
i , (6.10)

which is the change in the cleared amount. Additionally, when an agent takes an action

using this strategy, the agent waits ten iterations before taking another action and accumu-

lates reward over the ten iterations for the action taken at the beginning of the ten iterations.

The value of ten iterations was determined experimentally. This strategy is referred to as

Q/minNeighbor/random.

The last step is to change how an agent decides to establish a new connection. Since the

agents are already keeping track of the values of each of their connections, a logical strategy

is to allow the agents to pass referrals based on these values. For the final incremental

change, the agents will use push referrals where the losing agent refers the agent on the

other side of its maximal-valued connection. More precisely, if agenti chooses to rewire

its connection with agentj, agenti then establishes a new connection with agentk, where

k = max
l∈Nj(G)

Vlj. (6.11)

An organization of agents using this strategy, denotedQ/minNeighbor/pushMax, is guaran-

teed to remain connected.

Next, I present experimental results for the four AON strategies and discuss the cor-

responding evolutions of the network structures. The base networks used in these exper-

iments are the same as those used for the team formation model in the previous chapter.

2See Chapter 4, Section 4.4.4 for details.
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statistic mean 95% confidence

diameter 4.87 ±0.010
clustering 0.011 ±0.001

normalized std. dev.k 0.950 ±0.004
degree correlation −1.2× 10−5 ±2.0× 10−6

Table 6.1: Mean and 95% confidence intervals for four of the structural statistics discussed
in Chapter 3, averaged over the 200 sample random networks.

All of the base networks are randomly generated graphs withn = 200 nodes ande = 300

connections. The base networks are a slight modification of random graphs to guarantee

connectedness. Structural characteristics of the base networks are given in Table 6.1. The

performance of the various AONs will be presented relative to the average performance of

the static base networks, which is 3.77 with a 95% confidence interval of 0.007, averaged

over 200 simulations of 20,000 iterations each. The parameters of the model for all exper-

iments, following Wilhite (2001), areq = 30, initial endowments drawn uniformly from

[1,60], andτ = 0.05.

Figure 6.2 shows the experimental results for organizations of agents using the four

AON strategies discussed above. As expected, with each additional level of intelligence

added to the AON being used, performance increases. The number of network adaptations

is approximately the same, at 52,000 adaptations, for all of the AON strategies.3 The num-

ber is so large because in all cases, agents continue to adapt in an attempt to increase local

performance. The increases in performance for all of the AONs are statistically significant

3The probability of adapting in the random strategies was calibrated so that the number of adaptations

was within the range of that of theQ-learning strategies.
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Figure 6.2: The relative performance of organizations of agents using the four AON strate-
gies. The 95% confidence interval forrandom/random/randomis 0.008 and the confidence
intervals for the other three strategies are approximately 0.006.

compared to the performance of the static structures. Similarly, the differences in perfor-

mance among the AON strategies are also statistically significant except, for the difference

betweenQ/minNeighbor/pushMaxandQ/minNeighbor/random. See the caption for details

on confidence intervals.

The increases in performance are intuitive. First,random/random/randomincreases

performance as a result of the agents interacting with a larger number of other agents over

time. In the static structure, agents are restricted to interacting with a fixed set of trading

partners. The agents usingrandom/minNeighbor/randomhave the added benefit of being

able to discriminate among the connections they rewire. These agents, based on experience,
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select the connection that is of least value to rewire. Even though the rewiring remains

random, the selection of the lowest-valued connection prevents an agent from rewiring a

high-valued connection, hence the increase in performance over the purely random strategy.

Next, the agents add the ability to learn when to make changes to local connectivity.

The random adaptation policy requires that the agents adapt based on a fixed probability,

regardless of current position or past performance. The simpleQ-learning mechanism al-

lows the agents to learn from experience and estimate when rewiring is more beneficial

than doing nothing. Finally, in the most intelligent of the four AON strategies, the agents

are also given the ability to discriminate among the agents when establishing a new con-

nection through referrals. In theQ/minNeighbor/pushMaxstrategy, the losing agent gives a

push referral to the adapting agent. This referral is the agent on the other end of the losing

agent’s highest-valued connection. This strategy performs better than randomly selecting a

new connection because an agent that is trading frequently4 is more likely than random to

have a high production capacity.

In addition to measuring changes in performance, I measured various structural prop-

erties of the networks as they evolved as a result of the four AON strategies. Figure 6.3

shows these measurements as a function of time. Other than the push referral-based strat-

egy, the AONs have a tendency to disconnect the network, evidenced by the large increases

in diameter shown in Figure 6.3 (a). Interestingly,Q/minNeighbor/pushMaxalso increases

4Recall that the value of connections is based on frequency of trading.
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Figure 6.3: The evolution of the network statistics for the four AON strategies averaged
over 200 iterations. The four statistics shown are: (a) relative diameter, (b) relative clus-
tering, (c) relative normalized standard deviation (nsd) degree, and (d) absolute degree
correlation. The symbols used to represent the strategies in the figure were selected to
match the symbols of the three strategies in Figure 6.2.
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the diameter of the organizational network even though it is guaranteed to maintain con-

nectivity. This increase in diameter can be interpreted as a “spreading out” of the network.

Presumably this spreading effect reduces trading competition outside of local areas of the

network.

For the three AON strategies other thanrandom/random/random, there is an apparent

downward trend in clustering. While decreased clustering may be indicative of increased

performance, the results are inconclusive, since the trends are not smooth even after being

averaged over 200 simulations. A stronger trend is observable in the degree distributions

and the degree correlations among the agents.

The strategies with higher performance decrease the normalized standard deviation of

degree, moving the organizational network toward a uniform degree distribution. This

effect is weaker when the agents useQ/minNeighbor/pushMax. Finally, the degree correla-

tion among the agents decreases when the agents use theQ/minNeighbor/pushMaxstrategy.

This suggests that, while the organization is moving toward a flatter degree distribution,

more lower-degree nodes are connected to more higher-degree nodes. This supports the

claim of a localizing, or buffering, effect. That is, pockets of trading activity are localized

with few connections to the rest of the organization. The spreading and localizing effects

of the Q/minNeighbor/pushMaxstrategy are further emphasized by the representative re-

sulting network shown in Figure 6.4 (c). In Figure 6.4, there is little discernible structure

in the networks resulting fromQ/minNeighbor/randomandrandom/minNeighbor/random,
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largely due to the random policy for establishing a new connection. By contrast, there is a

discernible hierarchical structure in the network resulting fromQ/minNeighbor/pushMax,

consistent with the localizing and spreading effects discussed above.

(a) (b) (c)

Figure 6.4: Resulting networks from three of the four AON strategies: (a)ran-
dom/minNeighbor/random, (b) Q/minNeighbor/random, and (c)Q/minNeighbor/pushMax.
The network resulting fromrandom/random/randomis not shown, since it is indistinguish-
able from the static structure shown in Figure 6.1. The fill of the nodes in the networks
represents which good is produced by the agent at that node; the size of the node corre-
sponds to the agent’s production capacity.

Before moving on to alternative AON strategies, there are two model characteristics that

support the discussion of performance increases resulting from AONs. Figure 6.5 shows

the evolution of two model-centric statistics over time, averaged over 200 simulations. The

first statistic is production correlation, which is calculated in the same way that degree

correlation is calculated. Production correlation measures the amount of complementary

production capacity among neighboring agents. That is, production correlation is high if

agents that produce good one are neighbors with agents that produce similar amounts of
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good two. Although the trends are not smooth, there is a noticeable increasing trend in pro-

duction correlation for the AON strategies other thanrandom/random/random. This result

suggests that the set of connections that result from the more intelligent AON strategies

may streamline the trading process. When production correlation is higher, there is more

opportunity for direct trading among the agents.
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Figure 6.5: Two model-specific characteristics as they evolve as a result of the four increas-
ingly intelligent AONs over time: (a) the production correlation between connected agents
and (b) the average surplus. See the text for details.

The second statistic is surplus (i.e., the number of goods that remain after the market

is cleared). Surplus corresponds to the amount of unused goods that remain in the organi-

zation after each agent clears its goods. Surplus can be used to support the performance

results of the AONs. Clearly, the higher-performing AONs are able to reduce the amount

of surplus in the organization, further suggestive of the trading efficiency of the resulting

network structures.
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I have shown that AONs based on the general AON framework increase the collective

performance of the multi-agent production and exchange economy. In the next two sec-

tions, I will develop and discuss additional AON strategies more tailored to the production

and exchange environment.

6.3.2 Using Agent Production Capacities

One of the properties of successful AONs discussed in the previous section was the ability

to increase the production correlation among the agents in the network, that is, the ability

to pair agents with complementary production capacities. Given this finding, it is easy to

design an AON strategy that exploits this behavior.

Building on the best strategy from the previous section, theQ/minNeighbor/pushProd

AON strategy usesQ-learning to determine when to adapt; removes its minimum-valued

connection; and takes a push referral from the losing agent based on the losing agent’s

neighbors’ production capacities. More specifically, if agenti, a producer of good one, is

rewiring its connection with agentj, then agentj refers its neighbork such that

k = max
l∈Nj(G)

∆g2. (6.12)

The performance of the organization of agents using this AON strategy is shown in

Figure 6.6. Note thatQ/minNeighbor/pushProdyields approximately a 4% increase in

performance overQ/minNeighbor/pushMax. This increase is due directly to the fact that

this AON is designed specifically for the production and exchange environment.
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Figure 6.6: The relative performance of the organization of agents using
Q/minNeighbor/pushProd. The 95% confidence interval forQ/minNeighbor/pushProdis
0.007. The results forQ/minNeighbor/pushMaxare replicated for convenience.

Table 6.2 shows the structural statistics of the networks resulting from the agents using

theQ/minNeighbor/pushProdAON strategy. The most significant structural property ob-

served is the large relative decrease in clustering. The 90% decrease in clustering means

that theQ/minNeighbor/pushProdstrategy removes almost all of the clustering in the net-

work. The removal of clustering from the network also corresponds with the slight decrease

in diameter and the large increase in normalized standard deviation of degree. All of these

measurements suggest that this strategy is removing local competition and moving the net-

work structure toward one with many long range correlations. The value of long range

correlations is the ability to shift goods around the network quickly since all of the network
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statistic Q/minNeighbor/pushProd Q/minNeighbor/pushMax

relative diameter -0.012 0.027
relative clustering -0.904 -0.021

relative nsdk 0.535 -0.084
degree correlation −9.2× 10−5 −5.8× 10−5

Table 6.2: Structural statistics for the networks resulting from agents using
Q/minNeighbor/pushProd. The statistics forQ/minNeighbor/pushMaxare shown for com-
parison. The bold value for clustering is for emphasis.

Figure 6.7: A sample resulting network from theQ/minNeighbor/pushProdAON strategy.
Note the absence of a closely connected core, compared to the networks shown in Fig-
ure 6.4. The fill of the nodes in the network represents which good is produced by the
agent at that node; the size of the node corresponds to the agent’s production capacity.

is “local.” This structure is seen in Figure 6.7, in which there is no closely connected core

of the network. For comparison, see Figure 6.4.

6.3.3 A Threshold-Based Alternative

In this last section on AONs for the production and exchange economy, I offer an alternative

to the statelessQ-learning mechanism that agents use for deciding when to adapt. Similar
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to the strategy used in the previous section for determining the agent with which to establish

a new connection, the alternative method for deciding when to adapt uses the values of the

current connections. Recall that the values of an agent’s current set of connections are

updated using an exponentially weighted moving average, where

Vij ← Vij + β[Wij − Vij], (6.13)

with Wij being the number of trades across the connection fromi to j in the current time

step andβ being the learning, or smoothing, rate.

Intuitively, an agent is likely to be productive (i.e., to regularly clear a large amount

of goods) if the agent trades with its neighbors frequently. When an agent trades with its

neighbors frequently, the values for the connections with these neighbors are high. Given

this, an agent can use a threshold on the values of connections to determine when to rewire.

That is, an agenti decides to adapt when∃j ∈ Ni(G) : Vij < Θ, whereΘ is a threshold

parameter. In essence, an agent using this strategy decides to adapt its connectivity when

one of its connections becomes effectively useless. The obvious method for subsequently

deciding which connection to rewire is the minimum-valued connection. Finally, because

of its high performance in the previous experiments, the adapting agent takes a push referral

from the losing agent where the losing agent refers its maximal-valued neighbor. This

combined strategy is denotedthreshold/minNeighbor/pushMax.

Figure 6.8 shows the performance of an organization of agents using the threshold-

based AON strategy. The figure replicates the results forQ/minNeighbor/pushMaxand
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Figure 6.8: The relative performance of the organization of agents using
threshold/minNeighbor/pushMax. The 95% confidence interval forthresh-
old/minNeighbor/pushMaxis 0.006. The results forQ/minNeighbor/pushMaxand
Q/minNeighbor/pushProdare replicated for comparison.

Q/minNeighbor/pushProdfor comparison. The threshold-based AON strategy outperforms

theQ-learning based strategy that uses the same criteria for selecting a connection to rewire

and determining where to establish a new connection. In hindsight, this is an obvious

result, because the agents using the threshold strategy are only required to learn the value

of connections, while agents usingQ/minNeighbor/pushMaxare required to learn both the

value of connections and when to adapt.

The major structural difference in the networks fromthreshold/minNeighbor/pushMax

compared with the networks fromQ/minNeighbor/pushMaxis the much larger decrease in
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statistic threshold/minNeighbor/pushMax

relative diameter 0.010
relative clustering -0.465

relative nsdk 0.037
degree correlation −6.0× 10−5

Table 6.3: Structural Statistics for the networks resulting from agents usingthresh-
old/minNeighbor/pushMax.

Figure 6.9: A sample resulting network from thethreshold/minNeighbor/pushMaxAON
strategy. Note the absence of a closely connected core, compared to the network shown in
Figure 6.4. The fill of the nodes in the network represents which good is produced by the
agent at that node; the size of the node corresponds to the agent’s production capacity.

clustering. This can be seen by comparing the values in Tables 6.3 and 6.2. The decrease

in clustering can also be seen in the representative network structure shown in Figure 6.9,

where there is a clear lack of a highly connected core (i.e., the “center” of the network

is not filled with nodes). Notice that the hierarchical structure observed in the networks

that result fromQ/minNeighbor/pushMaxis preserved in the networks that result from

threshold/minNeighbor/pushMax.
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By being direct about when to rewire, thethreshold/minNeighbor/pushMaxAON strat-

egy is able to match the performance of the highest-performing strategy discussed above:

Q/minNeighbor/pushProd. This is suggestive of the fact that domain-specific AON strate-

gies – strategies that exploit the inherent structure of the environment – are likely to be more

successful than AON strategies that are more general. At the same time, the generalized

approach leads to a statistically significant increase in organizational performance.

6.4 Concluding Remarks

In this and the previous chapter, I have demonstrated the ability of AONs to significantly

improve organizational performance in two general multi-agent environments: a team for-

mation environment and a production and exchange market. In both environments, AON

strategies based on the general AON framework presented in Chapter 4 provided significant

gains in organizational performance. The results are suggestive of what is possible in many

other multi-agent system domains, many of which are analogous to team formation or a

market economy. In the next chapter, I develop and apply AONs in two specific application

domains: supply chain management and sensor networks.



Chapter 7

Applications of Agent-Organized

Networks

To achieve the oft-expressed visions of dynamically forming and dissolving
business interactions requires automated support forsupply chain formation,
the process of bottom-up assembly of complex production and exchange rela-
tionships.

Walsh & Wellman (2000)

The real goal is to explore the uses of intelligent sensors, a technology whose
promise suddenly seems huge. The applications for this ”embedded intelli-
gence” are vast and profound. Eventually large swathes of the earth will com-
municate with the digital realm using millions of miniature sensors.

Benjamin Fulford

7.1 Supply Chain Networks

In recent years, supply chain management has enjoyed a renewed interest from researchers

in economics, operations research, information science, and computer science. This is

170
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largely a result of large-scale communications systems, such as the Internet, that are re-

defining the way supply chains can be managed and the role of information in managing

supply chains. In addition, increased computational power facilitates the automation of

many supply chain management functions.

A central problem in improving supply chain management is mitigating the “bullwhip

effect” (Lee, Padmanabhan, & Whang 1997), where distortions in supply and demand prop-

agate and increase upstream in a supply chain. Various approaches have been proposed for

mitigating the bullwhip effect, most based on methods for improving information sharing

across the stages of a supply chain. A noteworthy example of how artificial intelligence

has been applied to mitigating the bullwhip effect is in the use of genetic algorithms (GAs)

for evolving ordering rules based on past performance in the MIT Beer Game (Kimbrough,

Wu, & Zhong 2001). The GAs discover effective ordering policies for deterministic de-

mand, stochastic demand, and stochastic lead time in a linear, four stage supply chain.

Supply-chain management is an ideal environment for the application of agents and

multi-agent systems (Fox, Barbuceanu, & Teigen 2000). Agents can provide many func-

tions in supply chains, including acquiring orders from customers, coordinating the internal

logistics of a factory, assigning and scheduling transportation resources, and managing in-

ventories and purchasing.

Further evidence for the utility of autonomous software agents in supply chains is pro-

vided by the Supply Chain Trading Agent Competition (Arunachalamet al. 2004). This
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competition, held annually over the past several years, provides a proving ground for agent

technology. To date, the competition has focused on the design of a single agent to serve

as an automated intermediate level agent in a supply chain.

Another widely studied problem related to supply chains is supply network formation.

As mentioned above, research on multi-agent systems and supply chain management fo-

cuses on the behavior of individual agents and how they can better handle order processing,

inventory management, and logistics at a single location in a supply chain. Supply network

formation, and reformation, is the study of how collections of interconnected supply chains

form, interoperate, and adapt. Motivating the need for understanding supply network for-

mation are concerns for efficient distribution of goods in supply networks and survivability

of supply networks that are subject to failures or unexpected changes (Thadakamallaet al.

2004).

In much of the literature on supply network formation, the network formation process

is top-down. That is, most studies assume that all of the agents in two adjacent stages, or

levels, of the supply network are connected, and the use of these connections is refined over

time. Another trend in the literature is the study of relatively small supply networks. After

surveying the existing literature on supply network formation, the remainder of this section

will focus on the bottom-up formation of relatively large supply networks.
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Related Work

One approach to supply network formation is termed supply chain configuration (Emerson

& Piramuthu 2004). In this approach, agents use a classifier system1 to select an agent

in the adjacent upstream stage with whom to place orders. The experiments demonstrated

the approach on a two-stage supply network with three-agents and a three stage supply

network with six agents. While the networks examined were small in scale, the study

motivates adaptive configuration of supply networks.

System dynamics have been used to study emergent supply networks, where suppliers

and customers have heterogeneous preferences for short- or long-term performance (Akker-

mans 2001). This is one of the largest studies of supply networks, with 1000 nodes and

four stages. The model successfully replicates the bullwhip effect. The major finding

is that preferences for both short- and long-term performance result in stable relationships.

Again, this study focused on top-down supply network formation by specifying preferences

for performance and refining the set of all possible connections over time.

The effects of various order-filling policies were examined for refining a full set of

connections among the agents in adjacent stages of a small-scale supply network (11 agents

and five stages) (Schieritz & Grobler 2003). The results are similar to many other studies

in that the various order-filling policies led to refined sets of connections over time.

In two studies closely related to supply network formation, specific algorithms were

1The decision tree classifier C5.0 was used in this particular study (Emerson & Piramuthu 2004).
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applied for determining the interconnectivity among the agents in supply networks. In one,

algorithms for selecting among suppliers based ona priori lead times demonstrate im-

proved performance for single agents, but no network-wide studies were conducted (Zeng

& Sycara 1999). In the other,hierarchical task decompositionwas applied to determine

the participants and structure of a supply chain given an initial set of supply and demand

requirements (Walsh & Wellman 2003). The two methods provide strong theoretical foun-

dations for supply chain formation and hold promise for application to large-scale supply

network formation.

7.1.1 Modeling Multi-Agent Supply Chain Networks

To evaluate the usefulness of AONs for bottom-up supply network formation, I synthe-

sized several models from the recent literature (Zeng & Sycara 1999; Akkermans 2001;

Schieritz & Grobler 2003; Kimbrough, Wu, & Zhong 2001). For various reasons, no sin-

gle model supports the study of AONs for supply chain formation. The reasons include

the assumption of top-down supply chain formation; overly complicated price formation,

bidding, or ordering dynamics; and scale. My goal is to demonstrate that the efficiency of

a supply network can increase as a result of individual agents autonomously adapting their

connectivity online in a large supply network.

The model consists ofL levels, or layers, of a supply network, where each layer con-

tains some number of agents. In all of the experiments described below,L = 4, with the
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Figure 7.1: A characterization of a large-scale supply network. The network has four
stages, or levels. Orders flow upstream from retailers to manufacturers. Goods, based on
orders, flow downstream.

layers comprising retailers, wholesalers, distributors, and manufacturers (Kimbrough, Wu,

& Zhong 2001). Each agent in each layer except the final layer, manufacturers, is connected

toE agents in the next layer of the supply chain. Direct interactions among the agents only

occur across these direct connections.

The demand in the model is generated by the retailers, where the demand for each

retailer is stochastic (i.e., a random walk, with a “step” taken at each iteration, capped

by a maximum value) (Kimbrough, Wu, & Zhong 2001). This demand is passed through

the network in the form of orders, which can be aggregated at intermediate levels (i.e.,
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Figure 7.2: A rendering of a relatively large-scale supply network. At each level, or stage,
there are 50 agents. The connections among the agents in adjacent levels are assigned
randomly.

wholesalers and distributors). That is, a retailer agent generates an order based on its current

demand and passes it along to one of its wholesalers. For simplicity, orders are not split,

but switching among upstream agents based on performance is included (Zeng & Sycara

1999). Orders can only be sent from one agent to another if there exists a direct connection

between the two agents. As depicted in Figure 7.1,upstream is the direction in which

orders flow anddownstreamis the direction in which goods flow.

During each iteration of the model, the agents in the retailers level update, followed by

the agents in the distributors level, and so forth upstream. Within each level, the agents

update in a random order. When the retailer agents update, they simply generate orders
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based on their current demand. Upstream, the update process is more complicated.

The agents in all of the upstream levels maintain an inventory of goods. An agent’s

inventory is directly related to the way in which orders are processed and generated. For

all agents, orders are processed in “first in, first out” (FIFO) order (Schieritz & Grobler

2003). All upstream agents keep track of the total quantity of the goods ordered from them

during the current time step. I will call this valueoin(t). After receiving all incoming orders

for the current time step (recall that all agents downstream have already updated), orders

are processed using the existing inventory until there is not enough inventory to fill an

order. Once inventory is depleted during a time step, the agent orders goods from one of its

upstream connections. The amount an agent orders is based on an “exponential smoothing

of recent customer orders” (Akkermans 2001):

o(t) = o(t− 1) · θ + oin(t) · (1− θ). (7.1)

The assumption here is that an agent should order enough goods to meet its expected de-

mand. When an agent has an inventoryi after processing orders, the amount of the inven-

tory is subtracted from the expected demand to arrive at the size of the outgoing order to

avoid ordering more goods than are necessary:

oout(t) = o(t)− i. (7.2)

Another component of ordering is the way in which agents select among their providers

for placing orders (recall that orders are not split). Following other models (Akkermans
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2001; Schieritz & Grobler 2003), the agents decide which agents to order from based on

reputation. In my model, this reputation is measured aslag timeor the time it takes an agent

to fill an order. In this model, lag time is highly dynamic (especially when the topology of

the network is changing); as a result, the agents require only a very short memory of the lag

times of their suppliers. In particular, the agents keep track of the most recent “time to fill”

an order for each of their suppliers.2 The agents place an order with one of their connected

suppliers by selecting the supplier with the smallest lag time. Ties are broken randomly.

In considering the method just described for selecting suppliers with whom to place or-

ders, outstanding orders (i.e., orders that have not yet been filled) cause a problem. Suppose

an agent’s chosen supplier is able to fill its first order immediately. The agent will select that

same supplier again, assuming that the other suppliers are at least slightly slower in filling

orders. Now suppose that the “quick” supplier is selected again, but that that supplier is no

longer able to fill orders at all (perhaps because of failure or disconnection). If the ordering

agent does not factor outstanding orders, the ordering agent will continue to order from the

same “quick” supplier based on the one order that the supplier was able to fill quickly. To

alleviate this problem, the lag times tracked by ordering agents are incremented at every

time step for every supplier with whom there is an outstanding order.

The last component of the model is production by the manufacturers. The manufac-

turers, or more generically, the agents in the most upstream level of the supply network,

2At first, this may seem like a large assumption, but a large number of experiments support this as an

effective method for placing orders.
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have no agent with whom to place orders. As a result, these agents are endowed with the

ability to directly produce goods. These agents produce goods using the same method as

the intermediate-level agents use to order goods (Equation (7.2)). The two differences are

that each manufacturer has a maximum production capacity per time stepX and produced

goods are available after only one iteration. This is in contrast to the orders placed by

agents in the middle levels of the supply network. Those agents can order any number of

goods during an iteration, but the time to fill those orders is indefinite.

The Bullwhip Effect

As mentioned in the introduction to this section, the “bullwhip effect” is a commonly ob-

served phenomenon in supply networks. The bullwhip effect is a phenomenon where vari-

ances in orders increase upstream in supply chains (Lee, Padmanabhan, & Whang 1997).

To qualitatively validate my synthesized model of a supply network, I conducted experi-

ments to determine if the bullwhip effect was observable in the model.

Figure 7.3 shows evidence of the presence of the bullwhip effect when the model is set

in motion. The demand curve represents the sum of the actual demand (i.e., the sum over

all of the demands of the individual retailers) which are determined by a random walk. This

demand curve is equivalent to the orders of the retailers.

Clearly, the orders of the wholesalers are more variable than the orders of the retail-

ers. Similarly, the orders of the distributors are more variable than the orders of both the



180

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 0  500  1000  1500  2000  2500

or
de

rs

time

distributors
wholesalers

retailers (actual demand)

Figure 7.3: An observation of the bullwhip effect for a supply chain with four layers and
50 agents in each layer. The topology of the supply network was generated randomly (see
Figure 7.2).

wholesalers and the retailers. The production of the manufacturers is omitted, since their

production capacities are limited. The result suggests, qualitatively, that the model reflects

behavior of real supply networks.

Measuring Performance

Many different measurements could be used for evaluating performance in supply chain

formation. In the experiments below, because of the focus on the efficiency of supply net-

work structures, I usethe ratio of cumulative consumption to cumulative demand. This

ratio directly measures how effective a supply network is at distributing goods and alleviat-
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ing bottlenecks or choke points (i.e., agents where many incoming orders are received but

few outgoing orders are filled).

When the ratio of total consumption to total demand is one, all of the demand at the

retailer level has been satisfied by goods flowing downstream from the manufacturers. De-

viations from unity in the ratio of consumption to demand result from the various dynamics

at work in the supply network model. First, the stochastic nature of demand introduces

variability in demand over time, with increasing variance at upstream levels of the network

(e.g., the bullwhip effect). Additionally, the topology of the supply network in conjunction

with the decisions that agents make about where to send orders also introduce variability.

If many wholesalers all attempt to order from the same distributor, this can cause increased

lag time if the distributor’s inventory is low. Furthermore, the distributor is reliant upon

manufacturers that may be ill prepared for increased demand, or overwhelmed with current

orders.

7.1.2 An AON for Supply Network Formation

The supply network model moves from a static supply network with interesting dynamics

to a supply networkformation environment when the agents are given the ability to au-

tonomously adapt their upstream connectivity. This extension to the supply network model

above lends itself to the general AON framework described in Chapter 4. In fact, I apply the

general AON framework directly to allow the agents to learn and to adapt their connectivity
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based on what they learn over time.

The general AON framework described in Chapter 4 requires additional information to

be useful in any specific domain. In particular, the reward function used for updating the ac-

tion value function must be specified. As with several other environments examined in this

dissertation, the action set for the supply chain formation model isA = {rewire, nothing}.

Given this action set, the agent employs statelessQ-learning to maintain values for taking

each action. The reward function used in the application of the general framework to supply

network formation is simply the minimum lag time for any upstream provider. Therefore,

an agent adapts when rewiring historically results in lower lag time (for the “best” provider)

than the lowest historical lag time while the agent is not rewiring.

An additional detail required to understand the AON learning and rewiring is the du-

ration of time during which the agents give credit to the rewiring action. To reiterate, an

agent that decides to rewire must adjust its value for rewiring for some period of time

following the rewiring, after which the agent switches back to the “nothing” action until

another rewiring action takes place. This durationDr is a free parameter. Through exten-

sive experimentation and exploration of the model, I arrived atDr = 10 for all agents. Note

that many other values result in effective AON strategies.3

In addition to the learning and rewiring methods, it is also necessary to specify how an

agent selects connections to remove and establish. To prevent the development of and need

3This is an area left for future work: developing a systematic methodology for determining when the value

of a rewiring action is no longer the value of rewiring, but rather the value of doing nothing.
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for additional information, a rewiring agent removes its connection that has the longest lag

time. This information is already being acquired and used for placing orders. Therefore, us-

ing this information for the AON adaptation policy requires no extra effort or computation

on the part of the agents.

Finally, agents select agents for new connections randomly. There are various reason for

choosing this simple method. First and foremost, the agents within any level of the supply

network do not interact or know about one another in the supply network model. This

prevents any sort of referrals for network adaptation. While other methods are possible,

such as using information about old suppliers, the simple random strategy is employed

here to demonstrate the utility of AONs.

7.1.3 Experimental Results and Discussion

In this section I describe experiments and present several results for applying AONs to the

supply network formation model described above. All of the results presented in this sec-

tion are the average over 25 simulations of a parameterized version of the supply network

formation model. Due to the special, layered, structure of supply networks, the network

structural statistics used to to understand the behavior of AONs in previous chapters cannot

be applied to understanding AONs for supply network formation. This is discussed further

in the presentation of the experimental results.

To understand the utility of individual agents using the learning-based AON strategy,
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two benchmarks were included in the experiments. The first benchmark is the network

with no adaptation. When there is no adaptation, the agents do not adapt their connectivity

structure, but they do select among their existing connection for order placement. The sec-

ond benchmark is a purely random AON. As was done for previous experiments presented

in earlier chapters, the random adaptation policy was calibrated to cause approximately the

same number of adaptation as the learning-based AON. Recall that an agent employing the

random AON strategy adapts with a specified probability and rewires a randomly select

existing connection to a randomly selected, unconnected agent.

Another control function included in the experiments was to start the networks in “equi-

librium.” That is, the network is initialized so that the sum of the inventory at a level in the

network equals the sum of the demand of the downstream level. This initial equilibrium

was validated by creating a set of independent, path unique supply chains (i.e., one retailer

connected to one wholesaler connected to one distributor connected to one manufacturer

with no overlapping connections). When such a network was initialized in equilibrium,

the performance never deviated from perfect (i.e., supply always equaled demand). While

the networks in the experiments start in equilibrium, the decisions of individual agents for

placing orders in more interconnected networks quickly move the system out of equilib-

rium.

The first of the two representative experiments begins with a network configuration

similar to that shown in Figure 7.2. In this experiment, there are equal numbers of retailers,
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wholesalers, distributors, and manufacturers, and every agent has the same number of up-

stream connections, assigned at random, initially. Table 7.1 gives the values of the various

model parameters for each of the two experiments discussed in this section.

description symbol value (Ex. 1) value (Ex. 2)
network levels L 4 4

agents per level N 50 50/60/80/100
upstream connections per agent E 3 4

initial demand D0 20 5
maximum demand Dmax 40 10

(uniform) initial inventory i0 20 10
expected demand weight θ 0.9 0.9

(uniform) max production capacity X 20 10
AON learning rate (min) αmin 0.05 0.05
AON learning rate (max) αmax 0.4 0.40

Table 7.1: The values of the various model parameters for each of the two experiments
discussed in this chapter. The main difference between the two experiments is the structural
constraints of the networks.

Recall that the agents that do not adapt their network connectivity are still able to learn.

In particular, they can learn which of their connections to rely on for the timely delivery

of goods. This is observable in the experimental results shown in Figure 7.4. There is an

initial increase in the ratio of consumption to demand, but this increase is quickly overrun

by order backlogs. That is, as time goes on, the static supply network is not able to keep up

with the demand generated by the retailers. This is evidenced by the decreasing trajectory

of the performance curve over time.

Unlike the network of agents that do not adapt their network connectivity, the networks
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Figure 7.4: The experimental results comparing networks of agents using AONs for adapt-
ing connectivity to networks of agents that do not adapt connectivity. These results are for
a model with equal numbers of retailers, wholesalers, distributors, and suppliers. The pa-
rameters for the underlying model are given in Table 7.1. Each point represents the average
of 25 simulations with the errorbars showing 95% confidence intervals.

of agents that do adapt their network connectivity are able to increase performance over

time. This is obvious from the results shown in Figure 7.4. Notably, agents using the

random AON strategy are able to provide a statistically significant increase in performance

over the static networks. This suggests that flexibility, or fluidity, in the network is more

beneficial than static long-term relationships among the agents. I conjecture that this is a

result of the spreading around of demand by random adaptation.

While the random AON strategy allows the agents to improve the collective efficiency

of the supply network, the learning-based AON strategy provides an even greater increase
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in performance. As seen in Figure 7.4, the network of agents using the learning-based

AON yields a 27.2% increase in performance over the static network. This is a significant

increase in its own right, but may be even more significant given the economic implications

of supply networks.

As mentioned above, the structural statistics used to understand the behavior of the

AONs in previous chapters are not applicable in the supply network formation model. The

one measure that had some promise was the normalized standard deviation of degree for

incoming connections. I hypothesized that the random initial configurations were creating

skew in the distribution of the number of incoming connections for agents in the upstream

levels of the supply network. As it turns out, measurements of normalized standard devia-

tion refuted this hypothesis. Furthermore, the measurements taken provided no evidence of

structural trends for the supply networks that were adapted by the agents. Therefore, at this

point, little can be said about the structural properties of the supply networks with increased

performance. The results for the random AON provide evidence of the fact that increased

performance may be more of a result of adaptation than of the structure that results from

adaptation. This is an area that is left as future work.

In conducting experiments with the supply network formation model, I thought it im-

portant to include experiments on supply networks with variable numbers of agents in each

level. Figure 7.5 shows the result of one such experiment where the number of agents in

each level decreases moving upstream. The results are qualitatively similar to those of the
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Figure 7.5: The experimental results comparing networks of agents using AONs for adapt-
ing connectivity to networks of agents that do not adapt connectivity. These results are for
a model with decreasing numbers of agents in each upstream level of the supply network.
The parameters for the underlying model are given in Table 7.1. Each point represents the
average of 25 simulations with the errorbars showing 95% confidence intervals.

first experiment discussed above. One observable difference between the two experiments

is that overall performance levels are higher in the second experiment. This suggests that

the structure where the number of agents decreases with each upstream level of the supply

network has simpler dynamics. This makes intuitive sense, because the demand is aggre-

gated moving upstream in the network and there are fewer choices in the upstream levels.

The experimental results for AONs applied to the supply network formation domain

demonstrate the benefit of agents adapting their connectivity in dynamic supply networks.

While these experiments support the use of AONs for supply networks, the results are not
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surprising, since the model is in some ways similar to the production and exchange model

considered in Chapter 6. In the next section, I apply the AON concept to the problem of

topology control in wireless ad hoc networks, an environment that is significantly different

from any environment considered thus far.

7.2 Topology Control in Sensor Networks

Sensor networks are rapidly becoming an important area of research for the multi-agent

systems community. Applications of sensor networks include environmental monitoring,

structural modeling, disaster management, health care, manufacturing, and vehicle moni-

toring (Culler, Estrin, & Srivastava 2004; Horling, Mailler, & Lesser 2004). Sensor net-

works can be either wired or wireless. Wireless sensor networks present several unique

challenges, including network connectivity among sensors (i.e., agents) situated in some

physical space. Although the physical space largely determines the connectivity of a sen-

sor network, there are aspects of connectivity over which the agents have control, such as

transmission power.

Some sensor networks are comprised of homogeneous agents, but more realistic en-

vironments are made up of heterogeneous agents. Many different types of agents can be

included in sensor networks, including sector managers, data collectors, data routers, and

end point sensors. In these situations, the role that an agent takes on and the interconnec-

tivity of the agents is important for the overall efficiency of the network. Understanding
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the effects of interconnectivity will be essential to designing and ensuring the effectiveness

of multi-agent sensor networks. Furthermore, strategies and policies for adjusting network

connectivity among heterogeneous agents in a sensor network may lead to improved per-

formance, fault tolerance, and extended network lifetime (Horling, Mailler, & Lesser 2004;

Culler, Estrin, & Srivastava 2004).

There are many aspects of wireless sensor networks that can benefit from agent-based

approaches. One such area is agent-based routing (Gan, Liu, & Jin 2004), where agents

manage the flow of data through the wireless topology. Another aspect of sensor networks

that can benefit from agent-based approaches is topology control. For the remainder of this

section, I will focus on the problem of distributed topology control. Topology control is the

problem of distributed management of the connectivity among the sensors, or agents, in an

ad hoc network

7.2.1 Overview of Topology Control

There are several important goals in the design of wireless ad hoc sensor networks, in-

cluding ad hoc deployment, energy constraints, and unattended operation (Cerpa & Estrin

2004). Each of these design goals implies constraints on the behavior of individual sensors,

or agents, in wireless networks.

First, the way in which the sensors, or nodes, are placed in physical space is assumed

to be random. That is, in many applications, the designers of a wireless sensor network do
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not have direct control over the locations of the individual sensors (Cerpa & Estrin 2004;

Rodoplu & Meng 1999). Additionally, the sensors randomly deployed into a physical

space must also be equipped to deal with environmental factors that may result from their

positioning or changes to the environment.

Another major concern with wireless sensor networks is energy efficiency (Joneset

al. 2001; Rajaraman 2002). Energy efficiency is desirable primarily because lower con-

sumption of power allows for extended network lifetime without outside intervention. The

sensors deployed in a wireless network have limited battery power; the longer they can

preserve that power, the longer they can function as members of the network.

Energy efficiency is closely related to the third design goal, unattended operation. Typi-

cal applications of sensor networks are for monitoring areas where it is difficult for humans

to stay or frequently visit. Therefore, it is highly desirable that sensors in wireless networks

are able to autonomously adapt to changing conditions such as failures or environmental

changes.

In addition to the design goals described above, connectivity is an important property

in many applications of wireless sensor networks (Rajaraman 2002; Ghoshet al. 2004;

Pishro-Nik, Chan, & Fekri 2004). Connectivity is necessary in many applications because

the sensors need to exchange information or need to forward information out of the sensor

network to other locations. The task of distributed vehicle monitoring (Horling, Mailler, &

Lesser 2004) is an example of a situation in which the agents must exchange information
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for success.

The problem of distributed topology control in wireless sensor networks is primarily

focused on providing energy efficiency while maintaining connectivity in the network. Dis-

tributed topology control is also constrained by unattended operation and the arbitrary posi-

tioning of the sensors in the network. The problem of controlling topologies can be further

compounded in heterogeneous networks where different sensors have different maximum

transmission powers (Li & Hou 2004). Distributed topology control algorithms provide

sensors in wireless networks with methods for managing their power consumption based

on their perceived relative position in the network.

One class of topology control techniques is position-based algorithms (Rodoplu &

Meng 1999; Li & Hou 2004; Songet al. 2004). The position information for each node is

generally assumed to be acquired by the Global Positioning System (GPS), but other meth-

ods can provide position information (Songet al. 2004). One position-based approach is

CTBC(α) (Li et al. 2001), a two-phase cone-based approach in which the region around

a sensor is broken into cones. Power is increased until a neighbor sensor is within com-

munication range in each of the cones. The second phase removes redundancy from the

initial increase in power. CTBC(α) is representative of a class of topology control methods

that use local distance information for controlling the transmission power and the topology

of wireless networks. The basic premise in distance-based algorithms is for the sensors

to initially transmit at maximum power and exchange position information. The sensors



193

then use this position information to establish their transmission power to guarantee some

level of connectivity and minimize power consumption (Wattenhofer & Zollinger 2004;

Ghoshet al. 2004).

While position-based topology control is viable in many application domains, GPS

or other positional information is not always available or reliable (e.g., inside buildings, in

dense forests, or underwater) (Songet al. 2004). More general topology control techniques

do not assume, or rely upon, positional information. The assumption of no positional

information is the approach I will take later in this section in describing a topology control

model and in applying AONs to general, distributed topology control.

Another approach to topology control is to allow sensors to move between states of

being asleep (passive) and awake (active). So called “stochastic” sensor networks make a

trade-off between connectivity and energy efficiency by allowing sensors to randomly move

between the two states (Zhanget al. 2004b). In a similar approach, schedules for moving

between the asleep and awake states are designed into the sensors (Erramilli, Matta, &

Bestavros 2004). Another algorithm, ASCENT, prescribes methods for agents to move be-

tween passive and active routing regimes based on perceived information flow (i.e., packet

throughput) in the network (Cerpa & Estrin 2004). Finally, Geographic Adaptive Fidelity

(GAF) combines position-based topology control techniques with the asleep/awake state

switching methods (Xu, Heidemann, & Estrin 2001).

As with position-based methods, the state switching techniques are useful in many
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applications. These application environment do not typically include highly dynamic en-

vironments and environments that require all agents to potentially pass information to one

another regularly. In this light, for the remainder of this chapter, I focus on a general

version of the topology control problem. This general model assumes that no positional

information is available and that all agents must remain in active mode at all times.

7.2.2 The Topology Control Model

In order to study the application of AONs to topology control in wireless (sensor) networks,

I have selected a generic model of multihop wireless networks. In this section, I describe

the model. In subsequent sections, I describe one centralized algorithm and one distributed

algorithm that will be used for comparison.

The basis for the model of topology control in multihop wireless networks is a graph

where two nodes are connected if and only if the corresponding nodes can communi-

cate. Following Ramanathan and Rosales-Hain (2000), I extend this base model to also

include properties of the radios and an environmental propagation function. This is a

widely adopted model in the sensor network and wireless network research community,

although most other studies include the ability of the nodes to know and share positional

information (Wattenhoferet al. 2001; Rodoplu & Meng 1999; Li & Hou 2004; Songet

al. 2004). In the model used here, in order to preserve generality, there is no positional

information available to the individual nodes in the network (Ramanathan & Rosales-Hain
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2000). Additionally, the model used here for topology control is independent of the routing

protocol (Rajaraman 2002) used for communication over long distances as that protocol

has no impact on the topology control algorithms discussed below. Finally, I use the terms

node, sensor, and agent interchangeably to refer to the computational components of the

networks.

Definition 13 (Ramanathan & Rosales-Hain 2000) A multihop wireless network is repre-

sented asM = (N,L), whereN is a set of nodes andL : N → ([0, 1], [0, 1]) is a set of

coordinates on the unit square denoting the location of the nodes.4

The nodes, or agents, in the network also have an adjustable parameter for transmit

power, where the transmit power of agenti is denotedpi. The transmit powers of a pair of

agents along with the propagation model for the environment determines if two agents can

directly communicate in the wireless network.

Definition 14 (Ramanathan & Rosales-Hain 2000) The propagation function is repre-

sented asγ : L × L → R, whereL is the set of location coordinates on the unit square.

γ(li, lj) gives the loss due to propagation at locationlj ∈ L, when a packet is originated

from locationli ∈ L.

Direct communication between two agents in the network depends on their correspond-

ing transmit powers, the propagation function, and the receiver sensitivityS. That is, two

4In the original model, the coordinate space was(Z+
0 , Z+

0 ). The change is for convenience with no

consequence as either coordinate space can easily be mapped to the other.
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agents,i andj, can communicate directly if and only if

pi − γ(li, lj) ≥ S and pj − γ(li, lj) ≥ S. (7.3)

Without loss of generality, I assume perfect receiver sensitivity (i.e.,S = 0.0) in all of the

experiments described below.

In the model, it is assumed thatγ is a monotonically increasing function of the geo-

graphical distance,d(li, lj) between two points. This assumption holds true in the “free

space propagation model” or when clutter in the environment results in a uniform loss in

all directions (Ramanathan & Rosales-Hain 2000; Rappaport 1996). In all of the experi-

ments below, I use the propagation function based on the “well-known generic model of

propagation” (Rappaport 1996):

γ(d) =


0.0, if d < dthr, and

10 · ε · log10(
d

dthr
), if d ≥ dthr,

(7.4)

wheredthr is a threshold distance, and there is no loss for smaller distances (Ramanathan

& Rosales-Hain 2000). In my experiments,dthr = 0.01. Using this equation for loss due

to propagation, the loss varies as the powerε of distance (i.e.,1
dε ). In all of the experiments

presented below,ε = 2.

Definition 15 (Ramanathan & Rosales-Hain 2000) Given a multihop wireless network

M = (N,L), a set of transmit powersP = {pi}, and a propagation functionγ, the

induced graph is represented asG = (V,E), whereV is the set of vertices corresponding
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to nodes inN , andE is a set of undirected edges such that(u, v) ∈ E if and only if

p(u) ≥ γ(d(u, v)), andp(v) ≥ γ(d(u, v)).5

Finally, the topology control problem in multihop wireless networks is the problem of

finding a set of transmit powersP = pi that optimizes a cost metric over the set of transmit

powers and that satisfies some constraint on the induced graph. There are several possibili-

ties for the cost metric over the set of transmit powers, from which I have selectedaverage

transmit power. Minimizing average transmit power means maximizing energy efficiency

and average lifespan of the individual agents in the network. The obvious constraint in

topology control isconnectivity. For a network to be connected, there must exist a (possi-

bly multihop) path from every node to every other node in the network. As will be seen in

the experiments presented below, guaranteeing a connected network in distributed topol-

ogy control is difficult. Therefore, the constraint will be relaxed to a performance measure

where the number of agents in the largest component of the network will be used to as-

sess performance. Obviously, in a connected network, all of the agents are in the largest

component.

5This is a slight modification of the definition given by Ramanthan (2000) with no change in meaning. It

is also a slight abuse of notation.
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7.2.3 A Centralized Algorithm: CONNECT

Before considering distributed topology, I present a centralized topology algorithm known

as CONNECT (Ramanathan & Rosales-Hain 2000). I use this algorithm to aid in under-

standing the topology control problem and to serve as a baseline in the experiments below.

The CONNECT algorithm essentially computes a minimum spanning tree over all of

the nodes in a wireless network, where the cost of a connection is the power needed to

establish the connection. The algorithm starts by sorting all pairs of nodes based on dis-

tance. Initially, each node is considered its own cluster. Then, iteratively following the

sorted order of node pairs, the power of the nodes that are closest is increased to establish

a connection if the two nodes under consideration are not in the same cluster. When there

is only one cluster, the algorithm stops. Figure 7.7 gives pseudocode for CONNECT.

One complication of the greedy approach of CONNECT is so-calledside-effectedges (Ra-

manathan & Rosales-Hain 2000). Side-effect edges occur when a nodei increases its power

in order to connect with a particular nodej and as a consequence establishs a connection

with a third nodek (which may already be in the same cluster asi). An obvious approach to

removing side-effect edges is to post-process the network, and reduce the power of nodes

involved in side-effect edges. In CONNECT, this is done with the post-processing method

perNodeMinimalize, shown in Figure 7.7. This post-processing step guarantees that the

topology isper-node-minimaland that the CONNECT algorithm finds an optimal solution

to the minimum average power topology control problem and guarantees connectivity (Ra-
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Figure 7.6: A network resulting from applying the centralized topology control algorithm
CONNECT. It is clear that the network is a minimum spanning tree.

manathan & Rosales-Hain 2000).

Figure 7.6 shows an example topology resulting from the CONNECT algorithm with

N = 200 sensors randomly distributed in the unit square. In this example,ε = 2 and

dthr = 0.01. The figure demonstrates that CONNECT finds a minimum spanning tree over

the set of nodes.

While CONNECT is an exemplar of a centralized topology control algorithm, it is un-

realistic and does not apply to many real-world applications. Due to its centralized nature,

all information about all agents in the network must be located, or aggregated, at a single

location, including perfect information about the locations of each of the agents. In ad hoc,

mobile, or faulty networks, aggregating information is difficult and is further complicated

by the fact that the information is constantly changing. Additionally, CONNECT results
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Algorithm: CONNECT

input:
M = (N,L): a multihop wireless network
γ: a propagation function

output:
P = {pu}: a set of transmit powers

begin
sort node pairs in non-decreasing order of distance
initialize |N | clusters, one per node
for each(u, v) in sorted order

if cluster(u) 6= cluster(v)
pu = pv = γ(d(u, v))
merge cluster(u) with cluster(v)
if number of clusters is 1

end for
perNodeMinimalize(M , γ, P )

end

procedure: PerNodeMinimize(M ,γ,P )
begin

for each nodeu
for eachv wherep(u) > γ(d(u, v))

if graph withp(u) = γ(d(u, v)) is not connected
end for // end inner loop

elsep(u) = γ(d(u, v))
end

Figure 7.7: Pseudocode for the CONNECT algorithm (Ramanathan & Rosales-Hain 2000).
ThePerNodeMinimizesubroutine removes redundant connectivity.
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in a fragile topology, since a single node failure will result in the network becoming dis-

connected. This may also happen when a node moves (i.e., agent mobility). One way of

alleviating this effect is to requirebiconnectivity– where all pairs of agents have at least

two edge-disjoint paths connecting them (Ramanathan & Rosales-Hain 2000).

7.2.4 A Decentralized Algorithm: LINT

The CONNECT algorithm guarantees an optimal (i.e., maximum energy conservation that

guarantees connectivity) topology, but the centralized nature of the algorithm is unrealistic.

More realistic topology control algorithms for ad hoc wireless networks are decentralized.

In decentralized algorithms, individual nodes make decisions about their transmit power

based on locally observable information.

Whereas most distributed topology control algorithms use positional information, LINT

(Ramanathan & Rosales-Hain 2000) is a distributed algorithm that does not rely on GPS

or some other positioning system.6 For this reason, I selected LINT as a baseline for com-

paring AONs for topology control. The basic premise of LINT is that a designer specifies

a desired degree, as well as an upper threshold and lower threshold on degree. If a node’s

degree is higher than the upper threshold, it reduces power. If a node’s degree is lower than

the lower threshold, it increases its power. The complexity of the LINT algorithm is in how

the nodes change their power.

6Even CONNECT uses distances to calculate transmission powers.
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LINT assumes a “generic model of propagation by which the loss function varies as

someε power of distance” (Ramanathan & Rosales-Hain 2000). Lettingd be the distance

between two nodes, recall that the loss function is

γ(d) = 10 · ε · log10(
d

dthr

). (7.5)

Now, let kd be the desired, designer-specified, degree of each node in the network.

Likewise, letkl andkh be the high and low thresholds for degree respectively. Following

the same convention, letkc be the current degree of a node and letpc be the current power

of a node. LINT provides a formula for computingpd, the desired power, givenpc, kc, and

kd. The main assumption in the derivation of the formula for adjusting power is that theD

nodes are distributed uniformly at random in the plane. Under this assumption, the degree

k of a node is related to its ranger, the maximum distance over which it can communicate,

by the equation

k = Dπr2. (7.6)

Recall thatS is the receiver sensitivity, and for a node to communicate with another

node at a current distance (i.e., current range) ofrc

pc − 10 · ε log10(
rc

rthr

) = S, (7.7)

and, likewise for desired degree:

pd − 10 · ε log10(
rd

rthr

) = S. (7.8)
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Notice that I am usingrthr as equivalent todthr from above, which is the threshold for

which there is no loss for smaller distances.

Finally, by equating Equation (7.7) and Equation (7.8) and substituting Equation (7.6),

a node can use the following equation to adjust its power:

pd = pc − 5 · ε · log10(
kd

kc

). (7.9)

Given this formula for adjusting power, the LINT algorithm is simple. In a wireless network

using LINT for topology control, if a node senses that its degree is larger thankh or smaller

thankl, it adjusts its power using Equation (7.9) for both increasing and decreasing its

power (Ramanathan & Rosales-Hain 2000).

Of course, the order and nature of the node updates is important in the LINT algo-

rithm. In the original presentation of the algorithm, updates were synchronous: a node is

selected at random during each iteration to update its power. This method for updating is

preserved in the experiments conducted below. The LINT topology control algorithm runs

continuously until there are no changes in the transmit powers of the nodes in the network.

The benefit of LINT is that it is a complete decentralized algorithm. Each of the nodes

in a wireless network using LINT for topology control individually adjusts its power based

on locally sensed information about other nodes in the network. A major downfall of LINT

is that it does not guarantee connectivity, as can be seen in Figures 7.8 (a) and (b).
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(a) (b)

Figure 7.8: Two networks resulting from the distributed topology control algorithm LINT:
(a) kl = 2, kd = 3, andkh = 4; and (2)kl = 3, kd = 4, andkh = 5. The algorithms does
not guarantee connectivity.

7.2.5 An AON for Topology Control

Distributed topology control is an obvious application of learning-based AONs. In this

section, I develop an AON for topology control based on the general AON framework pro-

posed in Chapter 4. Unlike the other multi-agent domains considered in this dissertation,

agents for topology control in wireless networks do not have the ability to control or adapt

individual connections. Rather, agents for topology control only have the ability to in-

crease or decrease their transmission power, which subsequently affects their connectivity

with other agents in the network.

Without the ability to control individual connections (and as a result thewhen, which,

and whereof connection adaptation), agents using AON strategies for topology control
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require a more complex approach. In particular, the AON for topology control is a stateful

Q-learning approach, where the state of an agent is its current degree (i.e., the number

of bidirectional connections with other agents). This is an abstraction of true state, but

it provides the agents with additional information and discrimination power for deciding

when and how to adapt their transmission power.

The action set isA = {increase, decrease, nothing}, where thenothing action allows

an agent to monitor and make use of the changes that result from other agents. As a result

of extending the general AON framework from stateless to stateful, I now use the fullQ-

learning update function for assign value to state and action pairs:

Q(s, a)← Q(s, a) + α[R(s, a)−Q(s, a) + βV (s′)], (7.10)

whereα is the learning rate,R(s, a) is the reward for taking actiona in states, β is the

discount factor,s′ is the resulting state from taking actiona in states, and

V (s) = max
a
Q(s, a). (7.11)

Following the general AON framework, a variable learning rate is used:α = αmax when

R(s, a) < 0; otherwise,α = αmin. Last is the design of the reward function, which is

critical to AONs for topology control.

With the goal of establishing maximum connectivity with minimum power consump-

tion, the reward function provides reinforcement forunique local connectivity and low

power consumption. By unique local connectivity, I mean non-redundant connectivity
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within local areas of the network. That is, ifi andj, j andk, andk and i all have suf-

ficient power levels to communicate with one another, then the local connectivity is not

unique. In such a situation, it is preferable for at least one of the agents to reduce its

power. To determine the unique set of neighbors, agents that can communicate must share

information about their neighbors with one another.

Let P be the maximum power level for each of the agents. Letki, ui, andpi be the

current degree, number of unique neighbors, and transmit power, respectively, for agenti.

There are many possibilities for a reward function based on local information; here, I use:

R(s, a) =


−1 if ki < kmin, and

ui

ki
+ P−pi

P
otherwise.

(7.12)

In this reward function,kmin is a parameter that specifies the minimum degree required. By

setting the reward to -1 below the minimum degree, the agent is driven to increase power

until its degree increases above the minimum degree threshold. This reward function was

chosen because of its simplicity and intuitive nature.

The last component of the AON strategy for topology control is the method the agents

employ for determining how much to increase or decrease power. Again, I implemented a

simple and intuitive power adjustment method. I choose an adaptive method to allow the

agents to adjust more quickly when when large changes in power are necessary and more

slowly when small changes in power are necessary. Each agent maintains a step sizeσ

that is multiplied by a constant factorψ if two increase actions or two decrease actions are
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taken in consecutive iterations. Likewise,σ is divided by the constant factorψ ≥ 1 when

an increase action is followed by a decrease action or a decrease action is followed by an

increase action. The adjustment to step size is made after the second action is decided

upon, but before it is actually taken.

7.2.6 Experimental Results and Discussion

To evaluate the AON described in the previous section for topology control in wireless

networks, I conducted a serious of experiments in order to compare the performance of

the various topology control algorithms. The experiments compare the AON strategy with

LINT and CONNECT.

description symbol value
maximum power P 25

propagation loss exponent ε 2
AON learning rate (min) αmin 0.05
AON learning rate (max) αmax 0.4

AON discount factor β 0.9
AON step size constant ψ 1.5

Table 7.2: The parameters used to configure the topology control model for the experi-
ments.

Figure 7.9 shows the network topology if there is no topology control and each of the

agents maintains a constant transmission powerP . The value of the maximum transmission

power and all other parameters that do not vary over the experiments are shown in Table 7.2.

In the experiments, I measured the performance of each of the topology control methods



208

Figure 7.9: A wireless sensor network topology when the sensors are communicating at
maximum power given the parameter settings provided in Table 7.2.

for networks with 200, 300, and 400 agents. All of the measurements presented in the

results below are averaged over 25 simulations. For LINT, two sets of parameters were

used for low, desired, and high degree:{2, 3, 4} and{3, 4, 5}. Two versions of the AON

for topology control were used:kmin = 2 andkmin = 3.

During the experiments, measurements were taken foraverage transmission power,

number of components, size/ratio of the largest component, andaverage degree. All mea-

surements were taken when the various topology control methods converged (i.e., when

there was little or no change in the power distribution over the agents).

Figure 7.11 shows the results of the experiments. The results for average transmission

power (Figure 7.11(a)) show that the AON strategies outperform LINT in all cases. Cer-

tainly the AON withkmin = 2 has significantly less power consumption that LINT with

both of the two parameter sets tested. To provide an optimal baseline for power consump-
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(a) (b)

Figure 7.10: Networks resulting from application of AONs for topology control: (a)kmin =
2, and (b)kmin = 3.

tion, the results for CONNECT are also shown in Figure 7.11(a). While average power

consumption of the AON is lower than LINT, this result should not be considered indepen-

dently of the size of the largest component.

Ideally, the ratio of the number of nodes in the largest component would be 1, but nei-

ther LINT nor the AON topology control method guarantee connectivity, largely due to

their distributed control with local nature. While this is true, the AON strategies, which

resulted in lower average power consumption, result in as large or larger sizes of the largest

component. The AON withkmin = 2 yields significantly larger largest components over

LINT with low, desired, and high degree set to 2, 3, and 4 respectively. This is a promising

result given that the AON withkmin = 2 has significantly lower average power consump-

tion. Similarly, the AON withkmin = 3 sustains a largest component that is nearly the same

size, on average, as LINT with the degree settings 3, 4, and 5, although the AON consumes
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Figure 7.11: Experimental results of the AONs for topology control for three different
size networks (200, 300, and 400): (a) average power consumption, (b) size of the largest
component, (c) average degree, and (d) the total number of components.

less power on average. Finally, the number of components results show that there is no

significant difference, although LINT tends to have few components on average.

The experimental results demonstrate that there is a gain to be made in using a dis-

tributed learning technique such as AONs to organize a network of wireless sensors, or

devices. Additionally, I conjecture that the AON techniques are useful when the agents
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(i.e., sensors) are mobile or faulty. The AON topology control method would allow agents

to detect unexpected changes as a result of movement or failure and then to adapt accord-

ingly. Experiments to test this conjecture are beyond the scope of this dissertation and are

left for future work.

7.3 Concluding Remarks

In this chapter, I demonstrated the ability of AONs to improve performance in two very

different networked multi-agent domains: supply chain management and wireless ad hoc

sensor networks. In demonstrating the application of AONs, I highlighted the necessary

design decisions required to tailor AONs to a specific environment. When using the general

learning-based AON framework, the design decisions include developing a reward function

for updating the values of actions, tailoring specific types of changes to connectivity, and

customizing a performance measure for evaluating the specialized AONs. In both of the

application domains, I demonstrated AONs that provide significant performs increases over

static networks or other adaptation mechanisms.



Chapter 8

Summary and Conclusions

Learning is any change in a system that produces a more or less permanent
change in its capacity for adapting to its environment.

Herb Simon

8.1 On The Design and Dynamics of Multi-Agent

Organizations

In many studies and applications of multi-agent systems, it is assumed that all agents can

interact with one another all of the time. While this is a realistic assumption in most small-

scale multi-agent systems, this assumption becomes less valid as agent systems grow in size

and complexity. The problem is further complicated in open multi-agent systems where the

control of the agents does not fall under a single authority.

In large, open multi-agent systems, the agent-to-agent interactions can be limited by

212
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cognitive, communication, computational, or locality constraints. When these constraints

are present, the agents are limited to interacting with a subset of all of the agents in the

system, leading to the emergence of an agent social network. In this dissertation, I have

demonstrated that endowing agents with the ability to manage and manipulate their connec-

tions in an agent social network can lead to substantial increases in collective performance.

The findings presented in this dissertation have important implications for the design of

multi-agent systems. First, the findings emphasize that the structure of agent-to-agent inter-

action networks can have a dramatic effect on the dynamics of multi-agent systems. There-

fore, designers of multi-agent systems, or designers of agents to be embedded within open

multi-agent systems, should consider the structure of the interactions among the agents in

the system and the ability of the agents to modify this structure.

In Chapter 4, I provided evidence that the design of optimal, or near-optimal, network

structures for multi-agent organizations is computationally complex. This translates to in-

tractability for many large multi-agent organizations. Although it is difficult to design op-

timal organizational networks for multi-agent systems, I have shown that agent-organized

networks can discover, or continue to adapt, efficient organizational structures.
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8.2 Navigating Social Structures in Networked

Multi-Agent Systems

One observation from my experimental results presented in Chapters 5, 6, and 7 is that

adaptive organizations tend to outperform static organizations. This observation holds true

even when the adaptation strategies are completely random. I conjecture that this is true

because random, agent-driven, network adaptations are able to spread resources and com-

putational load throughout the system.

While it is true that random network adaptations provided increased performance over

static networks in both the team formation and market environments, adding intelligence

to the agents’ network adaptation strategies systematically increased performance over the

organizations of agents using random adaptation policies. In both environments, increasing

the sophistication, or intelligence, of the agents’ network adaptation strategies was directly

correlated with increased organizational performance. These levels of sophistication were

proposed as components of a general learning-based agent-organized network framework

presented in Chapter 4. The experimental results support the hypothesis that endowing the

agents with the ability to learnwhenandhowto adapt their connectivity leads to substantial

gains in organizational performance.

Another common theme throughout this dissertation is the need to tailor agent-organized

networks for specific multi-agent environments. The general AON framework provides a
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methodology for developing and implementing domain-specific AONs, but there are sev-

eral components of any AON that must be tailored for a specific environment. These in-

clude the design of local performance estimation methods and methods for determining

the value of specific connections. The ability to perceive local performance provides the

agents with a reinforcement signal for determining the value of adaptations. Methods for

determining the value of specific connections allow the agents to wisely determine which

connections should be removed or maintained.

Finally, by demonstrating that agent-organized networks increased performance in two

general multi-agent environments and two specific multi-agent applications, I have pro-

vided evidence for the wide applicability of agent-organized networks in networked multi-

agent systems. Furthermore, my results suggest that agent-organized networks are useful

in broad ranges of systems, as shown by the diversity of the application domains studied

in Chapter 7: topology control in wireless sensor networks and supply network formation.

These two application domains are very different in their structure and dynamics, and I

showed that extensions of the general AON framework from Chapter 4 improved organiza-

tional performance in both applications.

8.3 Future Directions and Final Thoughts

In this dissertation, I have shown that agent-organized networks are a general method for

organizational learning in networked multi-agent systems. While I have developed a foun-
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dation for agent-organized networks, there are many opportunities for the development of

AON theory and the application of AONs.

The Economic Theory of Network Formation Network formation is a relatively new

area of study in economics. The early work on the economic theory of network formation

has assumed rational, selfish, and myopic individual network formation strategies (Jackson

& Wolinsky 1996; Jackson 2003). There are several promising future directions related

to the economic theory of network formation including: the application of advanced plan-

ning techniques to non-myopic, or farsighted, network formation; the study of cooperative

(i.e., non-selfish) network formation processes; and more detailed examinations of the non-

equilibrium dynamics of network formation games.

Stability of Agent-Organized Networks The concept of stability is important to both

the theory of distributed network adaptation and the design of AON strategies. It may be

possible to develop theory that predicts which features of agent-organized networks lead

to stable network structures. There are also interesting theoretical questions related to

the correlation between stable and efficient agent-organized networks. Answers to these

theoretical questions could provide useful guidelines for the design of distributed network

adaptation strategies.

A Theory of Network Structure The study of agent-organized networks may help in

developing a theory of efficient network structures. Such a theory may be able to develop
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correlations between network structure and general organizational principles or organiza-

tional performance. If a theory of network structures were developed, if would have to

deal with both global network structures and locally perceived network structures. This

type of theory would help both system designers and agent designers. System designers

could use the theory to design organizational network structures. The designers of agents

for agent-organized networks could use the theory for developing local network adaptation

policies.

Faulty Networks and Autonomic Computing A promising application domain of agent-

organized networks is to the self-management and self-healing of networked multi-agent

systems. These type of properties have recently been associated with autonomic com-

puting (Ganek & Corbi 2003). While not studied in this dissertation, the application of

agent-organized networks to such problems is obvious.

Other Applications of Agent-Organized Networks There are many potential applica-

tion domains for agent-organized networks. These domains include distributed information

retrieval, consumer profiling, recommender systems, automated on-line social networking,

automated trading systems, intelligent routing in computer networks, and grid computing.

In addition, the applications of agent-organized networks to wireless sensor networks and

supply chain management can be further refined and developed.
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As agent technology continues to develop and expand, the need for well designed dis-

tributed network adaptation strategies will become increasingly important. The adoption of

the concepts of ubiquitous computing, autonomic computing, and grid computing will also

promote the development of large, open multi-agent systems. In such systems, agents that

can manage, maintain, and adapt their own social networks will thrive both individually

and collectively.

Finally, the interdisciplinary foundations of agent-organized networks makes them broadly

applicable. In computer science, agent-organized networks will likely be used to increase

the collective performance of socially-intelligent, distributed software systems. Beyond

computer science, the theory and concepts of agent-organized networks may be used to

understand economic behavior and the behavior of dynamic social networks.
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