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ABSTRACT. The objective of these informal notes is to communicate in
an informal concise fashion that part of the theory of Lie groups relevant to the
understanding of quantum mechanics. No claim is made as to the competeness
of these notes.

1. INTRODUCTION.

We begin with the definition of a topological group.

Definition 1. A set (G is a topological group if

1. G is an abstract group

*(© Copyright 1996
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2. (G is a topological space

3. 'The group operations of GG are continuous, 1.e.

(a) The multiplication map

GxdGd — G
(91792) = g192

1s continuous.

(b) The inverse map
G—G
g =g

1s continuous.

Definition 2. A Lie group G is
1. A C¥ (i.e., real analytic) manifold
2. A topological group

such that the group multiplication and inverse maps are C*.

Remark 1. Hilberts Fifth Problem (1900) How are Lie’s concepts of continuous
groups of transformations of manifolds approachable in our investigation without the

assumption of differentiability?

The answer to this question was given by Gleason, Montgomery-Zippin:

Theorem 1 [Gleason, Montgomery-Zippin|. Every locally euclidean group is a Lie

group.

As a consequence, we can replace each C* in the above definition of a Lie group

with a O .
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2. SOME EXAMPLES OF LIE GROUPS

Let V denote an n-dimensional vector space over the real numbers R with the standard
vector inner product which we denote by (, ).

e (GL(n,R) The real general linear group of all automorphisms of the vector
space V. This can be identified with the group of all nonsingular n X n matrices
over the reals.

e O(n) The real orthogonal group is the group of all automorphisms which
preserve the inner product (, ). This can be identified with the group of or-
thogonal matrices , i.e, matrices A of the form

AT =471
where the superscipt “I” denotes the matrix transpose.

e SL(n,R) The real special linear group is the group of all real n x n matrices
of determinant 1. SL(n,R) is the group of all rigid motions in hyperbolic n-
space.

e SO(n) = O(n) N SL(n,R) The special orthogonal group is the group of all
orthogonal real n x n matrices of determinant 1. This group can be identified
with the group of all rotations in R" about a fixed point such as the origin.

Let W denote an n-dimensional vector space over the complex numbers C with
the standard sesquilinear inner product which we also denote by ( | ).

e (GL(n,C) The complex general linear group of all automorphisms of the
vector space W. This can be identified with the group of all nonsingular n X n
matrices over the complexes.

e SL(n,C) The complex special linear group is the group of all complex n.xn
matrices of determinant 1.

e U(n) The unitary group is the group of all n X n unitary matrices over the
compex numbers C, i.e., all n X n complex matrices A such that

Al = A1

where AT denotes the conjugate transpose.
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e SU(n) =U(n)NSL(n,C) The special unitary group is the group of all unitary
matrices of determinant 1.

The only connected abelian Lie groups are:

e R" Euclidean n-space under vector addition

e T" =U(1) x U(1) x ... x U(1) The n-dimensional torus. Please note that
U(1) is the same as the unit circle group S, i.e., all complex numbers of unit
norm.

e And all direct products R™ x T".

There are many other Lie groups. We mention only four more.

e O(3,1) The Lorentz group which is the group of all automorphisms of V' (n =
4) which preserve a nondegenerate positive definite bilinear form of signature 2
on V', such as

(,Y) = T1y1 + ToYo + T3Y3 — Tals

e [1(n) The group of orientation preserving euclidean motions in n-dimensional
euclidean space. This can be identified with the semidirect product SO(n)xR".

e Spin(n) The spin(or) group is the Universal covering group of SO(n). This
group can be constructed in terms of Clifford algebras.

e Sp(n) The symplectic group is the group of all n x n matrices over the quater-
nians H such that .
A =41
where A denotes the conjugate in the quaterians of each element of A, and
where the superscript “I” denotes the transpose.
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3. AN EXAMPLE: THE RELATION BETWEEN THE LIE GROUPS SU(2) = Spin(2)
AND SO(3)

3.1. SO(3) = RP?. TLet S? denote the standard 2-sphere of radius 1, as a rie-
mannian manifold. We identify S? with the set of all unit length vectors 7" in R?
that are based at the origin. SO(3) can be identified with the group of orientation
preserving isometries of S2, i.e., with the group of all rotations of S? about its center.
The rotations of S? can also be identified with the vectors

on

where 7 € S? denotes the direction of the axis of rotation, and where § denotes the
angle of rotation. We use the convention that positive 6 correspond to a rotation in
which 07 represents a right handed screw. We next note that the following rotations

are the same:
(O+2m)n =00

(—0)7 = 0(—7)

Hence,
T =7(="n)

From this it follows that SO(3) can be identified with
{97 ] WGSQandOSQSW}
modulo the identifications
T =n(—-n) Yn €5?

But this is the same as the standard 3-ball B? of radius = with antipodal points on
its boundary B? identified. Thus, SO(3) can be identified with projective 3-space
RP3.

Thus the fundamental group 7 (SO(3)) of SO(3) is the cyclic goup of order 2,
L.e., Zy. Any simple closed curve in SO(3) of the form

Y (0) =01, where — 1 <0<

represents the generator of 7 (SO(3)). The reader should note that v corresponds
to continuously rotating S? through a full angle 2m about the axis 7, i.e., one
continuos full rotation about 7.



INFORMAL SEMINAR NOTES ON LIE GROUPS© 6

4. PARAMETRIZATIONS OF SO(3).

4.1. Euler angles. Fvery rotation A in 3-space can be written as the composion
of three separate rotations

where
cos ¢ sinp 0
R.(p)=| —sing cosp 0

0 0 1

is a counterclockwise rotation about the Z-axis through the angle ¢, which transforms
the XY7 axes into the X'Y’7 axes, where

1 0 0
R (0)=1| 0 cos 0 sin 6

0 —sin cos

is a counterclockwise rotation about the X’-axis through the angle 6, which transforms
theX’Y’7 axes into the X’Y”7’ axes, and where

cos sin 1 0

R,(¢)=] —siny cosyy 0

0 0 1

is a counterclockwise rotation about the 7’-axis through the angle ¢, which transforms

the X’Y”7’ axes into the X" Y7’ axes.
Definition 3. The angles ¢, 0, ¢ are called the Euler angles of the rotation.
Thus, in terms of the Euler angle, an element A = R, ()R, (0)R,(y) of SO(3)

can be written as:

cos 1 cos ¢ — cos f sin @ sin ¢ cossin @ + cos @ cos @ siny sin 1 sin @
—siny cos —cosfsinpcosyy  —sinysingp + cosfcospcosy  cossin b

sin @ sin —sin f cos ¢ cost
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4.2. SU(2) = S3. The Lie group SU(2) can be identified with the group of all

2 X 2 unitary matrices, i.e., all matrices of the form

o g

where « and 3 are complex numbers such that
jol” + 16" = 1,

and where o* and (3* denote the complex conjugates of a and 3 repectively.
Letting o = x1 4 iz and 3 = 3 + iz4, we see that SU(2) can be identified with

{(371,372,3737374) | @l 4oyl tal= 1}

which is the standard 3-sphere S®. Thus, SU(2) can be identified with the standard
3-sphere S? of radius 1 in R*.

4.3. SU(2) as the universal cover of SO(3). We now construct a natural epi-
morphism
Q:SU((2) — SO(3)
as follows: .
X3 X1 — 19
Identify X = (x1, 22, 73) in R® with M = . (Please note
T, + 129 —I3
that {M} is the set of traceless 2 x 2 skew hermitian matrices.) Then for every

Q € SU(2), we have the map'
X=MQMQT=M =X

We leave it to the reader to verify that this map preserves the standard norm on R3,
Le.,

[ X| = 1X7]
Hence, it follows that A is an orthogonal transformation of R* which we denote by

A =Q(Q). One can show that det(A) = 1. Hence we have defined a map
Q:SU((2) — SO(3)

I Please note that, if X is instead identified with ¢/, then A is the adjoint map Adg : su(2) —
su(2). Hence, A = Q(Q) = Adg. Please also note that M = X - &, where @ = (01, 02,03) denotes
the vector of pauli matrices. Thus, A(X - 7) = QX - QT = X'- 7. Please refer to section 4.5.
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which can be shown to be an epimorphism. This morphism is a 2-fold covering
5% L RP

where
QQ) =2-Q)

In terms of the Euler angles we have

where
etP/2 0 cos (%) 1sin (%) /2 0
Qap = ‘ QG = Qw - )
0 e /2 7 sin (%) cos (%) 0 e W2
and where ‘ ‘
el(w+30)/2 CcOSs <%) Zel(w7W)/2 s]n <%)
Q =
2671(w7W)/2 s]n <%) 6*1(¢+<P)/2 cOSs <%)
a f
Definition 4. The parameters o, 3, v, 6 in ) = € SU(2) are called the
voo0
Cayley-Klein parameters of A € SO(3).
In terms of the Cayley-Klein parameters,
%<a2_,y2+62_ﬂ2) %(’}/Q—OAQ—I—(SQ—ﬂQ) yé—aﬂ
A=QQ) = | ~4@2 72— F—8) L 4q2+ B+ —i(af+10)
36 — ary i (ary + 36) ad + By

4.4. The Euler parameters. Let

o = eg + 1e;3
ﬂ:€2+i€1

in the matrix () above. Then,
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Definition 5. The parameters eq, €1, €9, €3 are called the Euler parameters of A.

Please note that
et telteli=1

The Euler parameters are given below as functions of the Euler angles:

€p = COS (w—;“f) cos (%) , €9 = sin (w—;f) sin (%)
€] = cos (%) sin (%) , €3 = sin (w%) cos (%)
In terms of the Euler parameters,
el +e? — el — e 2 (e1e9 + ege3) 2 (e1e3 — egea)
A=Q(Q) = 2 (e1e9 — epes) €2 — et + e — el 2 (ege3 + epey)
2 (e1e3 + eges) 2 (ege3 — egeq) el —e?—es+el

4.5. The Pauli spin matrices. The above formulas can be greatly simplified by
using the Pauli spin matrices

0 1 0 — 1 0
01 = ) 02 = ) 03 =
1 0 1 0 0o -1
and the identity matrix
1 0
1=
0 1

The Pauli spin matrices g1, 09, 03 satisfy the identities

00k + Or0; = 26]k1

3
[O_ju Uk] =2 521 €ike0¢

3
00 = Zgzl €ike0y + 6gk1

—
b .

(@) (b-T)=a b +i(axb) 7



INFORMAL SEMINAR NOTES ON LIE GROUPS© 10

where €z, is the Levi-Civita tensor density defined by:

1 if jkf is an even permutation of 123
€re = —1 if jklis an odd permutation of 123

0 otherwise

An element @ of SU(2) can now be written more simply in terms of the Fuler
parameters as

Q = 601 + 7 (610'1 + 6909 + 6303) = 601 + Z? . ?

Our identification,

X3 xr1 — z'a:Q
X = (%1,&72,&73) — M =
xrq1 + Z.QTQ —X3

can be more simply expressed as

—
X = (x1,29,23) «— M = 2101 + 2909 + 2305 = X - 7

Moreover, the respective lifts Qy, Qg, Q, to SU(2) of the Euler rotations R, (¢),
R.(0), R,(¢) in SO(3) can be more simply written as:

Qw — emwh
Qtp — eiag(p/Q

Qp = 6919/2
Thus, a lift of the Fuler angle decomposition is:

ewlw/2 . ewgtp/Q . 61019/2

We will later see that the matrices 101, 109, i03 are the infinitesimal generators of
the Lie algebra su(2) of SU(2). Thus, i0y, i09, i03 can be respectively thought of as
infintesimal rotations about the x, x5, 3 axes. The above formulas are an instance
of the exponential map from su(2) to SU(2), which we will discussed later.
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5. COMPUTATION OF THE LIE ALGEBRA su(2) OF SU(2)
SU(2) = {Q e GL(2,C) | Q0" =1 and detQ = 1}

The Lie algebra su(2) consists of the tangent vectors Q(O) at I of all curves Q(t)
in SU(2) such that Q(0) = I.

Since [ = Q(t)Q(t)T, it follows that

. [ T
0=0Q(1)Q) +QM)Q()
But at t =0, Q(0) = [ ; and we have

—-—T

0 =Q(0) +Q(0)
Thus, all elements of su(2) are skew hermitian matrices.
We consider the last condition, i.e.,
det () =1
We can without loss of generality replace each curve Q(t) with the curve
Q) = o

since both curves have the same tangent vector at ¢ = 0, 1.e., at [. For the curve

@(t), we have
1 = det @(t) — det £@O1 _ Tr(Q(0)t)

Hence, by taking the derivative, we have
0="1Tr (Q(O)) A COD)

Thus, at ¢t = 0, we have ‘
Tr (Q(0)) =0.
2

Thus, su(2) consists of all traceless skew hermitian matrices®.

2The traceless condition for the elements of su(2) could also have been proven directly with the
use of the matrix identity Odet A/9A = (AT)71 det A.
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6. COMPUTATION OF THE LIE ALGEBRA so(3) OF SO(3).
SO(3) = {A € GL(3,R) | AAT = I and det A=1}

Thus, the Lie algebra so(3) consists of thae tangent vectors A(O) at I of all curves
A(t) in SO(3) such that A(0) = 1.
Since
I = @A@Y,
it follows that
0=An)AD" + AL AL

But at t =0, A(0) = I. Thus,
0= A(0) + A(0)".

Thus each such tangent vector is skew symmetric. Hence, so(3) consists of all skew
symmetric matrices.

Remark 2. The condition det A = 1 need not be considered because it is implied
by the facts that I € SO(3), AAT = 1, and SO(3) is arcwise connected. For the
condition AAT = I implies that det A = +1. But I € SO(3) and the fact that SO(3)
is arcwise connected imply by continuity of det that all elements of SO(3) have the
same determinant as I. Even if the condition det(A) = 1 is considered, it will imply

that tr(A(0)) = 0. But all skew symimetric matrices are traceless anyway.

7. THE ADJOINT REPRESENTATIONS Ad AND ad OF A LLIE GROUP.

Let G be a Lie group, and g its Lie algebra. For every ) in G, we define an inner
automorphism

]QiG—>G

by
M — Io(M)=QMQ .

As a result, we have the following commutative diagram
TG 2 TG
Tl L,

I
G -
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where T'G' denotes the tangent bundle of G. We define
Ad : G — Aut(g)

by
Adg = (dIg)

e !

where e denotes the idenity of (7, where Aut(g) denotes the group of automorphisms
of the Lie algebra g, and where (dlg), denotes the restriction of dlg to the fibre
T 1(e).

Let End(g) denote the ring of endomorphisms of the Lie algebra g. Then the
adjoint representation

ad : g — End(g)

is defined as

adX (Y) = [X7 Y] )

for all X, Y € g.
It can be shown that the Lie algebra of the Lie group Aut(g) is End(g), and that

the following diagram
g X End(g)

exp | | exp
a 24 Aut(g)

is commutative, and that

ad = d (Ad),

8. THE ADJOINT REPRESENTATION Ad : SU(2) — Aut(su(2))
Irom the previous section, we know that, for each @ € SU(2),

Proposition 2. For all Q in SU(2) and for all B in su(2),

Adg (B) = I4B =QBQ ™!
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Proof:
By definition, d (Ig), takes the tangent vector to the curve

Bt
at t = 0 to the tangent vector to the curve

]Q@Bt

at t = 0. But the tangent vector to IgeP! at t = 0 is given by

d(Ig), B = lim (]QeBt - ]QeBO) — lim (Q (e = ) Ql) = Qlim (—eBt - eB.D) Q"

t—0 t—0 t t—0

where the last statement follows from the continuity of matrix multiplication.

Therefore,

d(lg); B =IgB
Q.E.D.

Remark 3. Moreover, since

-1
]QeBt _ QeBth — pQBQTt _ eIQBt7

we have the following diagram

su(2) 209 su(2)

exp | | exp
SU(2) 2 SU(2)

We now compute the adjoint representation Ad of SU(2) in terms of the basis
El = —igl, EQ = —iUQ, E3 = —igg
where 01, 09, 03 are the Pauli spin matrices defined on page 9 of these notes.

Remark 4. Please note that the Pauli spin matrices do not form a basis of su(2).
In fact, they are not even elements of su(2).
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Let @ be an arbitray element of SU(2). Hence,

o g To + ix3 T + i1
Q = :

—ﬂ a —X9 + z'a:l o — ia?g

where
o +18)* =1 = 2§ + 2] + 23 + 23

We now compute

Adg (Ey), Adg (Ey), Adg (Es)

Zo + 2.373 To + 2.371 0 —1 Tg — ia:3 —T9 — 2.371
—T9 + z'a:l o — ia?3 1 0 o — z'a:l To + ia?g
r — Z.QTQ Tr3 — Z.a?() o — Z.ajg —X9 — 2.371
—X3 — ia?o xr1 + z'a:Q Xo — z'a:l o + ia?3
(a:l — 2,172) (aT() — 2,173) (a:l — 2,172) (—a:2 — 2,171)

+ (a?g — 2370) (a:Q — zatl) + (a?g — 2,170) (,170 + 2,173)

(-a??, — 2,170) (aT() — 2,173) (-a??, — 2,170) (—a:2 — 2,171)
+ (z1 +ixe) (29 — i21) + (21 +ix9) (20 + ix3)
Therefore,
_9 9 2370373 - 2371372
et T AR i (—af = o + 2 + a3)
AdQEl =

—2,170&73 + 2&71&72

+1 (—a:% - a:% + a:% + a:%) 21x0%9 + 2171203
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Thus,
Y 0 1
AdQEl = (2,170372 + 2371,173) + (2,170373 - 2371372)
0 7 -1 0
0 1
+ (—a:g — a:% + a:% + a:%)
1 0
But
0 —1 0 -1 -1 0
El = ) E2 = ) E3 =
—1 0 1 0 0 7

So we finally have:

AdQEl = (a?g + ,17% — ,17% — ,17%) E1 + (2&71&72 — 2&70&73) E2 + (2&70&72 + 2&71&73) E3

Please note that we have computed the first column of the matrix A = Q(Q) given
on page 9 of these notes. Thes the x;’s are the same as the Fuler parameters e;’s.
We leave the computation of AdgFy and AdgFEs as an exercise for the reader®.

9. THE ADJOINT REPRESENTATION ad : su(2) — End (su(2))

Again, we use the basis
Ej = —ZO'j

for our calculations.

3
adg, (By) = [Ej, By = — [05,00] = 20 €404,

=1
where we have used the identity found on page 9 of these notes. Therefore, we have

3
adEj (Ek) = _QZEjkéEE

{=1

3Tt should be possible to greatly simplify the calculation of Ad for SO(3) by using the Pauli spin
matrix identies found on page 9 of these notes.
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Hence, by the bilinearity of the Lie bracket,

adzjajEj (ZbkEk> = ZZajbk (_2Z€jk€E€>
k . 7

J

= Z (Z—Qajbkejkg) E,

£ 7.k

= Y -2(dx b)), B

£

Thus,

—

ad— (7) — 9W % b

_
where @ x b denotes the vector cross product.

But,
0 —as a9 bl
7 X 7 = as 0 —aq bQ
— a9 aq 0 b3
So finally,
0 —as a9
adp = as 0 -
—a9 aiq 0
The killing form
N
B(@, b) ="Tr (adz ad)
is
. 0 —das a9 0 —b3 bQ
B(?, b ) = Tr as 0 —a b3 0 —bl
—Qo9 aq 0 —bQ bl 0
—agby — azb; asby azby
= Tr a162 —albl — CL363 CL3bQ
albg CLng —albl — CLQbQ
—
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10. THE ADJOINT REPRESENTATION OF Ad : SO(3) — Aut(so(3))
As with SU(2), we have:

Proposition 3. For all A € SO(3) and for all B € s0(3), we have
AdyB=1,B=ABA™!

Moreover, the diagram
s0(3) Adsy s0(3)
exp | | exp
SO(3) 245 50(3)

is commutative.

We compute the adjoint representation in terms of the following basis of so(3)

00 O 0 01 0 -1 0
Li=100 =11, L= 000]|,Lz=|1 00
01 O -1 0 0 0 00

We leave it for the reader to verify the following identity,

[Lj7 Lk] = Z €5re Ly
¢

Let A be an arbitrary element of SO(3). Then A is of the form
A= e2ilils
Thus,
Ad,TL; = o2y il Lie >.;05L;

We now need to rewrite the above expression as a linear combination of the basis
elements {L,}.
Ugh!
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11. THE ADJOINT REPRESENTATION ad : so(3) — End (so(3))

Again, we use the basis {L,} for our calculation.

ady- g1, (Zj @jL]) = > Osprady, (L) = Y 0505 [Ly, L]

gk 5k
—
= Zzeg“ﬂk%ke[f@ = Z ( 0 x ?)g L,
¢ gk ¢
Hence,
—
adg (?) =0 x ?
So finally,
0 —60; b
ad; = 93 0 —81
-0y, 6 0

It also follows that the killing form is

B(0.¥)=-20-7
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