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Chapter 7

LINEAR SWITCHING CIRCUITS

The heart of equipment for encoding and error correction or
detection with linear codes consists of linear finite-state switching
circuits. Some circuits useful for implementing linear codes are
described in Sections 7.2, 7.3, and 7.4, Further properties of
these circuits are presented in Section 7. 5. The theory of the
general linear finite-state switching circuit is introduced in Section
7.6, and it is shown that every such circuit is equivalent to a cir-
cuit of the type described in Section 7. 2.

7.1. Definitions

In linear switching circuits, information is assumed to he some
representation of elements of GF(q) . Three types of devices are
used, The first is an adder, which has two inputs and one output,
the output being the sum of the two inputs, The second is a storage
device, which has one input and one output, It can be a delay device,
for which the output always is the same as the input was one unit of
time earlier. It can also be considered to be a single stage of
shift register. In a shift register, there is a shift signal, not shown
in the diagrams, which would usually be supplied by timing circuits.
When this signal appears, the output of each stage takes the value
that the input took immediately before the shift signal appeared.

The third type of device is a constant multiplier, which has one
tnput and one output, the output being simply the input multiplied
by the constant, which may be any field element. The rule for in-
terconnection of these devices ig that any number of inputs may be
connected to any output, but that two outputs are never connected
together. The representation of these devices in circuit diagrams
is shown in Figure 7.1,

a. Adder b. Storage device c. Constant multi-
which stores a , plier for multi-
that is, the output plying by a
is a

Figure 7. 1. The building blocks for linear switching circuits
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A linear finite-state switching circuit is any circuit consisting of
a finite number of adders, memory devices, and constant multi-
pliers connected in any permissible way. Any linear finite-state
switching circuit can be constructed out of vacuum tubes, transis-
tors, magnetic cores, or other computer logical circuitry using
the techniques of digital computer design. In the binary case, the
adder is an ""exclusive-or' logical block, and the memory device is
either a delay device or a single stage of ordinary binary shift
register. The constant multiplier for the constant 1 is simply a
connection, and for the constant 0, simply no conunection.

Input and output is assumed to be serial; that is, it consists of
field elements entering an input line one at a time, one for each
unit of time. When an input or output is a polynomial, as if often
the case, only the coefficients appear on the input or output line,
and they are transmitted high-order coefficients first. The reason
is that in division the high-order coefficients of the dividend must
be processed first. Thus the polynomial

§(X) = £, 4 £, X + ... +f x"*

n
would be entered on an input line or appear on an output line as a
succession of n field elements, with fn coming first, then fn»]
one unit of time later, f,_p» after another unit of time, and so
forth.

7. 2. Multiplication and Division of Polynomials

Circuits are given in this section for multiplication or division
of any polynomial by a fixed polynomial.
The circuit shown in Figure 7.2 multiplies any input polynomial

k-1 k
a(X}—aU+aIX+“.+ak_IX +ak}{
by the fixed polynomial
2 r-1 T
h(}x)—h0+th+A..+hr_1X +th

The storage devices are assumed to contain 0's initially, and the
coefficients of a(X) are assumed to enter high order first and to
be followed by r 0's.

Thput i i+l itz

Figure 7.2. A circuit for multiplying polynomials
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The product ig
a(X)h{X) = aghg + (aghy + a; hy)X

+(aghs +ayhy + ah)X? + ...

+(ax_;hr +ag_ by, ¥ akhr_z}xk“'?‘

Xk+r—l ktr

tlag by +aph ) + a3 h X
When the first coefficient a) in a{X) appears at the input, the
first coefficient a,h  of a(X)h(X) appears at the output. At that

point all the storage devices contain 0's . After one unit of
time, a) 1 @ppears at the input, a; is in the first storage de-
vices, and the rest of the storage devices contain 0's . The out-

put can be seen from Figure 7.2 to be a; 1}1T tah 4, which
is the correct second coefficient in the product a(X)h(X)
Similarly after two units of time a; , is at the input, and the

shift register stages contain a1 o ] R )

The output is a; oh, +ay (h, ; +ah,. 5, , which is the correct
third coefficient of a(X)h(X) . The operation continues in a
similar manner, After r + k - 1 shifts, the shift register con-
tains 0, 0, 0, ..., 0, a; , a; , andthe output is agh; + a;hg,
which is the next-to-last coefficient in a{X)h(X) . After r +k
shifts, the shift register contains 0, 0, 0, ... , a5, and the

output is aghy , the last coefficient of a(X)h(X) , and the product
is complete.
Another circuit for multiplication is shown in Figure 7. 3.

Input

Figure 7. 3. Another circuit for multiplying polynomials

The product coefficients are developed in the shift register. As
the first symbol enters the input, the output is ajh. , and the
storage devices contain all O's. After one shift the storage de-
vices contain aph,, aph, soany ahy 7, and the input is ape ] -
The output is therefore ajphy 7 4+ ap._1h. , which is the correct
second coefficient. - After the next shift the storage devices
:O:;a]:;l 2y 1h%n,d E{ho_ + ak_. 1h1 s ak_hI +ap. 1hz s akhr—-Z

-1he_g s € input is aj_» . The output is therefore
aphy_2 +ay 1h. ; + ap_ph, , which is the correct third coefficient.
The operation continues in a similar manner.
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This circuit can be understood in another manner. The set of r
storage devices form a register that stores a polynomial. Initially
it is 0. The presence of a) at the input adds a;h(X) into the
register. Shifting multiplies by ¥ and delivers the first coeffi-
cient, whose calculation is complete, to the output. The appear-
ance of a;_ | at the input adds ay lh(X) into the register, and
shifting again multiplies by X and delivers the second coefficient
to the output, and so forth.

Circuits of the type shown in Figure 7.3 can have more than
one input. For example, the circuit shown in Figure 7. 4 has two

trput alX}

*
Outpur

Tput o (X}

Figure 7.4. A two-input multiplier

inputs, a;(X) and a,(X) , and the output is

b(¥)

i

ay (X)h(X) + ap (X)k(X)
where
n(X) =he +hy X ... +h X
o« K(X) =k + kX4 ... +err

The circuit is shown as if h(X) and k{X) have the same degree,
but in case the degrees are not equal, r can be taken as the
larger degree, and the high-order coefficients of one polynomial
can be 0.

Example: The circuits shown in Figure 7.5 multiply the input
polynomial by h(X) = 1 + X* + X* + X® + X° over the field of
two elements. It is instructive fo write out the contents of the
storage devices at each step in the process and to compare with
the ordinary hand calculation of the product.
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IRk fat CaWewr= Su
Inpat . . . .

la}

Curaul
= i
Input

&)

Figure 7.5. Circuits for multiplying by 1+ X* + X* 4 X5 4 xb =h!X)
g P

A circuit for dividing d(X) = dg + ;X + ... + d, X" by g{X) =
Zot@mX ... ngI is shown in Figure 7.6. The storage devices

fnzat

Figure 7.6. A circuit for dividing polynomials

must be set to 0 initially. The output is 0 for the first r shifts
until the first input symbol reaches the end of the shift register,
Then the first nonzero output appears, and it is dngr'l , the
first coefficient of the quotient. For each quotient coefficient Fa
the polynomial qjh(X} must be subtracted from the dividend. The
feedback connections accomplish this subtraction. After a total

of n shifts, the entire quotient has appeared at the output, and
the remainder is in the shift register. The operation of the circuit
is best understood through a detailed example.

Example: The circuit shown in Figure 7.7 divides the input
polynomial by giX)i= 1% X3 4 X4 L X5 +X*  over the fidld of

< = - -«
Input ? % I Cutput

Figure 7.7. A circuit for dividing by 1 + X3 + X* + X% 4+ x®
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two elements. The step-by-step division of X! + X" 4+ x!¢
+XT+ X+ X+ X +1 by 1+X*+X*+X® +X® is compared
with the step-by-step operation of this circuit in Table 7. 1.
Note that in ordinary long division the high-order terms are at
the left, while in the shift register the high-order terms are at
the right.

The first six shifts have no counterpart in long division.
After six.shifts the contents of the shift register match the
polynomial marked A in Table 7.la. The leading coefficient
is the first quotient symbol, and is also the output after the

Table 7.1 Comparison of Long Division and the Division Circuit
{a} Long Division

KT+xb +X5 10 +0 +XE +X+1

Ko ax X 4040+ 1G5 1 0 +x? + %040 +0)HXMr0 +0 +X X400 +X+1

KU X +X°+0 40 +X)

0 +0E

B X2 xT 1 x°+X’ +0 +0 + X

F
’ //(“+X”'+X“+0 +0 + XOH0

X0 o4 xP et +x%+0 40 £X°

X2 10D +0

i

L]
0 +0 +X%+0 + xPax® o +x*

0 40 +0 +0 +0 +0 +0

0 +X840 +XP+XT X 4N

0 +0 +0 +0 +0 +0 +0

X8 4+0 +X8 45 +x 4XP10

B LT X 4R 40 +0 %X

X140 +0 +X'+X XX

KT 4xX8 +x% +X*+0 +0 +X

¥ A XS 40 +XPaXP 40 41

WO+ X XY EXP40 40 41

&

e R )
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seventh shift. The feedback matches the polynomial marked B,
and the input corresponds to G, the quantity which is brought
down, After the seventh shift the contents of the shift register
match the polynomial marked D. The feedback matches E;

the term brought down, F, is the same as the input; and after
the eighth shift the shift register contents match G . The
process continues until after fourteen shifts, one for each co-
efficient in the dividend, the shift register contains the remain-
der, and all the quotient coefficients have appeared at the out-
put.

Table 7.1 Comparison of Long Division and the Division Circuit

(b} Step-by-Step Operation of the Division Circuit

i Shift Register Output Symbaol Feedback on Input Symbol
Contents after after jth jth Shift on jth Shift
J Shifts Shift
0 000000 0 = =
1 100000 0 go0o0o000O 1
2 010000 0 00000OD0 1]
3 101000 0 000000 1
4 110100 0 000000 1
5 011010 0 000000 0
6 001101 1 000000 0
7 000001 2 100111 1
& 100111 1 100111 0
9 110100 0 100111 0
10 B e Ll iy Bl e 0 goooo0O0 1
11 p D s % s 1 00000 1
12 =5 O 8 e 1 S ¢ e S 0
3, 011011 1 100111 1

14 0ol1010 o] 100111 1
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A single shift-register circuit that multiplies by h(X) -and then
divides by g{X) can be made by combining the multiplication cir-
cuit of Figure 7.3 and the division circuit of Figure 7.6, as shown
in Figure 7.8. In this circuit it is assumed that the degree h(X)

is no greater than the degree of g(X) {See the example that
follows. )
. 2 Chutput
() () ) B, ) O ()

Input

Figure 7.8. A circuit for multiplying by h(X) and dividing by g(X)

Example: A shift-register circuit for multiplying an input poly-
momialby 1+ X +X° and then dividingby 1+ X® +X*+x° +X°
is shown in Figure 7.9. The shift register contains the part of
the dividend which is being processed. The input connections
add into the shift register the product of 1+ X + X% and the
input symbol, instead of simply adding the input symbol as in

the division circuit, Figure 7. 6.

If the constant factor has higher degree than the divisor, then
stages should be added at the low-order end of the shift register,
and as many extra shifts with 0 input as added stages are re-
quired to complete the division, An example is shown in
Figure 7. 10, in which the input polynomial is multiplied by
1+X° +X° + X" and divided 14+X®+X*+X" +X° . In this
case, four shifts with 0 input are required after the coefficient of
the zero-degree term in the input, to complete the calculation of
the quotient and the remainder.

OO (=0 0 o p
Input

Curput

Figure 7.9. A circuit for simultaneously multiplying by 1+ X +X°
and dividing by 1+ X? + X* 4 x> <+ x°

Chutput

Figure 7.10. A circuit for simultaneously multiplying by
1+ X5 + X7 + X1 and dividing by 1+ X* + X* + X5 + X°




linear switching circuits 115

7.3. Computations in Polynomial Algebras and Galois Fields

The circuits described in the preceding sections can be adapted
for use in computations in the algebra of polynomials modulo g(X),
a given polynomial. \

The shift register of r storage devices in Figure 7.6 stores =
field elements that can be consideredito be the coefficients of a
polynomial

r-1
b(X) '—_ba i b1X g +br_1X
which has degree r - 1 or less. If the register is shifted right
once, the contents become

Ir-

1 r
1 = 2 = =1 m
b{X}—bOX+le t...+b. oX br~l[gr g(X) - X)
The last term is the result of the feedback connections. This can
be rearranged to give

bIX) = Xb(X) - b ;8" g(X) (7.1)

Thus b'(X) is in the same residue class modulo g(X) as Xb{X) ,
and since b'(X) has degree less than r , it must be the unigue
polynomial in the residue class Xb(X)} that has degree less than r .

This can be restated as follows. If 8 designates the residue
class containing X , then {b(X)} =b(S} and {Xb(X)} = Sb(S)
Shifting right once thus corresponds to multiplying by $§ , and the
contents of the shift register always are the coefficients of the
unique polynomial in S of degree less than =

The ideas will be illustrated using the polynomial g(X) =X*+%X+ 1
and the field of two elements. This polynomial is primitive, and
therefore {X} =a , which is a Toot of X*+ X 4 1 , is a primitive
element of GF(2% . The corresponding shift register is shown
in Figure 7, 11. Ifa 1 is placed in the low-order storage device

Figure 7. 11. A circuit for counting in a Galois field code

and 0 's in the others, successive shifts will give representations
of successive powers of a , a root of X* +X + 1 , in exactly the
same form as they appear in Table 6. 1. Note that a 1 shifted out
of the high-order position corresponds to o' and is in effect re-

placed by its equal a4+ 1 by the feedback connections.
A variation of this circuit is shown in Figure 7.12. A left shift

corresponds to division of o and a one shifted out of the low-order
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end, a' , is replaced by its equivalent 1 + a® . Thus this de-
vice can count down, or give Galois field elements in reverse
order. A multiplier can be mechanized by pufting one factor in

a device A like that shown in Figure 7.11, the other in a device
B like that shown in Figure 7.12. Then both devices are shifted

e

Figure 7. 12, A circuit for counting backward in a Galois field code

until the code for 1 appears in device B . The product then ap-
pears in A, Division can be done in an analogous manner.

Multiplication can also be accomplished in a manner analogous
to the method ordinarily used in a digital computer,” with a shift
register of the type shown in Figure 7.11 used as an accumulator.
This method applies in general to the algebra of polynomials modu-
lo a polynomial g(X) and in particular to Galois fields. As an
example, consider multiplying (1 1 10) and (110 1} as ele-
ments of GF(2% as represented in Table 6. 1. The contents of
the "accumulator'' are now shown after each operation. Note that
vector addition is used.

Multiplier Accurmulator Contents
(K 0000
Add 1(1110) 1 35170
Shift (1 S St
Add 0(1 1 1 0) 0111
Shift DN I O
'Add 1{1 1 1 0) 0001
Shift 1100
‘Add I(1 11 0) 0010 Answer

The value of a polynomial r(X) when the field element a is
substituted for X can be found also using the device shown in

*See, for example, Reference 98.
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Figure 7.6, by taking g(X) as the minimum function of a . The
Galois field representation of

n-1
r{d) = Yo iad o o % ry_j1@

can be calculated by eliminating terms of degree higher than kina
by using the relation gfa) = 0. This is exactly what will result if the
vector (rg,T; ,..., Ty ]) is shifted into the device shown in Figure 7. 6.

Example: Let a be a primitive element of GF(2% as shown in
Table 6. 1. The Galois field representation of

n-1

rla) =rg+rja + ... +1 a

n-1
can be calculated by shifting r _; ,..., r, into the circuit
shown in Figure 7.11.

To calculate r(aj) for j # 1 (or 0) is more complicated if the
result must be expressed in terms of a polynomial of lowest degree
in a . One method uses a shift register that automatically mul-

tiplies by a) . The example j =5 should make the principles
clear. Note that, from Table 6.1 ,

* =¢ =4 +4a°

a
Gas =o.62az+a3
0.20.5=CI.7:1 ta ¥ e
aar’:aszl +d

so that
5 2 N z z 3 3
a'(ay + aja + aza’ + aze’) = agla + a’) + a;(a +a’) +a{(l + a4+ a)
Loal +.a?)
=(az +as) + (ag + az)a + (apg + a; + ay) a?
+ {a, + a;) o

Thus the new value of a; is the old a; + a; , the new a, is the
old ag + a; , and 50 on. A shift register with feedback connection
shown in Figure 7.13 will give this result. Then if the received

ay a b a; o ay

e

Input

Figure 7. 13. A circuit for multiplying by X* in GF(2%)
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vector {ry, ry;, ... , ¥y ) is shifted into this device, after
fifteen shifts the result r(a® ) will remain in the register.

7.4. Linear Recurrence Relations and Shift-Register Generators

Consider the recurrence relation, or difference equation,

k
ha, .=0 (7. 2a)
J 1)
j=0
or
k-1
- V-
itk z P4 =gy
i=0
where hy # 0 and hy = 1, and each h; is an element of GF{(q) .
A solution of these equations is a sequence a; , a; , az 3 ... oOf
elements of GF(q) . Given the values of ap, a; , ..., 3kx-1 .
Equation 7.2b is a rule for determining aj . From knowledge
ay , a3 ,..., ax the value of apy; can be found, and so forth.

Since the equations are linear, any linear combination of solutions
is a solution, and the solutions form a vector space. The k solu-
tions for which one of the symbols a5, a; , ..., ak.] is 1 and
the rest are 0 span the space, and therefore the space of solu-
tions has dimension no greater than k

A linear sequential switching circuit that calculates the sum in-
dicated in Equation 7. 2b and hence calculates a; from the pre-
vious k values in the sequence is shown in Figure 7. 14. The
initial values ag, a3 , ... , 2.1 are placed in the storage de-
vices. Successive shifts calculate successive symbols, and the
output after i shifts is always a; . This device is called a
shift-register generator.

Figure 7.14. A shift-register generator

The solutions of a linear recurrence relation are characterized
in the following theorem: k
Theorem 7.1. Let h(}{}:i thJ , ho#0, h =1, and
j=0
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let n be the smallest positive integer for which 1 - X" is

divisible by h(X) . Let g(X) = (1 - X")/h{X) . Then the
solutions of the recurrence relation

k

0 = z hjai+j (7. 2a)
i=0

are periodic of period n , and the set made up of the first
period of each possible solution, considered as polynomials
module X% - 1 ,
n-1 n-2

(X) = apX + ay X aates) HTNEL X+ a
a( } ey ay + B + o
is the ideal generated by g{X) in the algebra of polynomials
modulo X™ - 1 . Note that with a(X) defined in this manner,
it ag, a; , ... are generated in order of increasing index, the
coefficients of a(X) are generated high-order first in accord-
ance with the convention stated in Section 7. 1.

Proof: First it will be shown that, if {a(X)} is in the ideal gen-
erated by g(X) , then the sequence of period n

A o B 5 o me B (e BOLg BT g e (7.8

is a solution of Equation 7. 2a. Consider the product,

{a(x)} (h(X)} = {c(X)}

where
n-1 n-2
a(X):anX o+ al}{ AE s +an_2X+ B 1
h(X) = ho + hyX + ... + hy XK
and
e(X) =cgteiX + ... * cn_l){n'l
Comparison with Equation 6,8 shows that if k=0 =n - 1
= ] S !
Sp=hnd g T gt g (el

whereas if 0= <k ,

= h
haan + h;a } + + Ean-l

%3 1 n-f

- e wh
|- hﬂ-{-laﬂ + h£+2a1 + + hkak-ﬂ-l (7.5)

By Theorem 6. 12, if {a(X)} is in the ideal ({g(X)}),
(X)) }H{h(X)} = 0, and therefore every ¢y =0 .



120 error-correcting codes

Now consider the sequence given in Equation 7. 3. In it, a=ag, .
for all i Z 0. This makes the recurrence relation, Equation 7. 2a,
exactly equivalent to one or the other of Equations 7.4 or 7.5; and
thus if {a(X)} is in the ideal generated by g(X), the sequence in Equa-
tion 7.3 is a solution of the recurrence relation, Equation 7, 2,

Since g(X) = (X" - 1)/h(X) has degree n - k , the ideal ({g(xO))
has dimension k , by Theorem 6.11. This is the same as the
dimension of the space of solutions, and therefore by Theorem
2.9 must include all solutions.

Some of the solutions may have period less than n , but there
must be some that do not. In particular, the solution cbhtained
from {g(X)} has period exactly n . This can be shown as fol-
lows. If it has period m 1less than n , then certainly n is a
multiple of m , and each block of n symbols consists of n/m
identical blocks of m symbols. For this to be the case, it must
be that

gX) = q(X)(1+ X™ + X 4 LX) 2 qeox® - 1™ - 1

Then

(x™ - K™ - 1) = hX)gXNXK™ - 1) = h(X)g(X)X" - 1)
and
(X™ - 1) = h(X)q{X)

which contradicts the assumption that n is the smallest integer
for which X" - 1 is divisible by h(X)
QED

Example: Over GF(2) determine the period of solutions of the
difference equation corresponding to h(X) =X*+ X? + X + 1 =
(X + 1)%(X* + X + 1) . The factor X* +X + 1 divides X 4 1 ,
and so does X 4+ 1 , but in order for X™ + 1 to be divisible by
X2 +X+1 and (X + 1) , n rmustbe taken to be 6. The
period rmust therefore be 6. Some solutions will have period
less than 6, but there must be at least one solution that has
period 6. The generator of the ideal from which the solutions
are formed is g{X) ={(X® - 1)/h(X) =X2 +X + 1 , and this cor-
responds to the solution 111000 ., The other solutions are
all vectors in the row space of

111000 \

= |G L D0 (7. 6)
001110 '

000111
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In particular, the sum of the first two rows, 100100 ,
actually has period 3, and the sum of the first three rows,
101010 , actually has period 2.

As a further example, the binary shift-register generator
corresponding to the polynomial h(X) = X% + X + x5 4 w3 + 1
is shown in Figure 7. 15. This polynomial is primitive, and
therefore divides X**% - 1 But does not divide X" <1 for any
smaller n . Thus the period of the shift-register output
sequence is 255, which is the maximum length possible for an
8-stage shift-register generator, (See Section 8.3 for further
details. )

Output

Figure 7. 15, A shift-rvegister generator for maximum-length
sequences

For the purpose of studying cyclic codes, Theorem 7.1 gives
the essential facts in the most convenient form. Other ways of
stadying linear recurrvence relations will be described only briefly.
Consider the recurrence relation corresponding to h(X) , as
described in Theorem 7. 1. Let a be any root of h(X) , perhaps
in an extension field. Then the sequence

Loy uz,ua,”. (7.7)

obviously satisfies the recurrence relation. Since the recurrence
relation is linear, any linear combination of sequences of ascend-
ing powers of roots is a solution:

r‘.Lj = Cy u1']' + C, l'l.zl T Ckali (7.8)
where gy , Gz 5 sue g aj. are the k roots of h(X) . (This as-
sumeg that all roots are distinct.) Since it is known that the space
of solutions has k dimensions and since there are k arbitrary
constants here, this must be a complete set of solutions. This is,
of course, analogous to the classical method for solution of linear
differential equations, and there is a close parallel with transform
methods, with the roots of h(X) playing the role of roots of the
characteristic function or poles of the output function of an ordi-
nary linear system,

Now suppose that h)(X) is an irreducible factor of degree Iy
of h(X) . Let a be a root of hy(X). Then over GF(gq) , a and
its powers can be written as vectors with k; components.
Clearly each component in Sequence 7.7 must satisfy the recur-
rence relation, This corresponds to the fact in the study of linear
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differential equations that if a complex-valued function satisfies
an equation with real coefficients, both the real and imaginary
parts of the complex solution are real solutions.

Example: Let a be a rootof X* + X% +1 over GF(2) . Then
the field elements in the extension field GF(2?) can be repre-
sented by column vectors with three components from GF(2) ,

{l,a,az,u3,a4,{15 ,(16)

(7.9)
1001110

SIS 4T [T
0011101

Each row of this matrix satisfies the recurrence relation

+.a,

G =3, a.
i i+2 i+3

corresponding to the polynomial 1 +X + X3

Now consider the polynomial (1 + X)(1 + X + X3 =
1 + X% +X3+X* and the corresponding recurrence relation
0=a, +ajup+tajq+agpq . If B isarootof 1+X +X3,
then 1, B, B2, B®, B4, P , Bé satisfies the recurrence re-
lation. BSince 1 is a root of (1 + X) , so does

1:1’1,11111,1

With use of the representation of GF(2% given by polynomaials
modulo X + X 4+ 1 , the successive powers of B give the top
three rows of the matrix M , and the last row is the row of
powers of 1. Thus each row is a solution, and the set of all
solutions is the row space of M:

1001011

0101110
M = (7. 10)
00101 11

A9l O A [

Alternatively, consider the algebra of polynomials module

1+ X% +3*+ X%, and let S5 denote the residue class that con-
tains X . Then since 1+ 8% +8>+8*=0 ,

2

TSy 182 o B2 5 8% . BT 58

satisfies the recurrence relation. Note that S is not a field
element. Then each element of the algebra can be represented

by a vector
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1 = {1} = (1000)
5 = {x} = {0100)
5° = {X°} = (0010)
s* = {x*)}) = (0001)
st = {1+4X*+X3%= (101 1)
§% = {1+X +X%}= (1110)

§% = {X+ X% +X%}= (0111)

and writing 1, S, 8%, 8%, 8*, 8° , 8° as column vectors
gives a matrix

1O 00110

0100011
(7.11)
0010111

0001101

Now every row of this matrix is a solution of the recurrence
relation, and every solution is in the row space of this matrix.

5till another approach is to employ the concept of a ""quotient
field" of polynomials. The rigorous treatment is given by
Zierler, ¥*® and only a statement of the main theorem and an ex-
ample will be given here. Zierler's theorem states that if any
polynorial f(X) degree k - 1 or less is divided formally by long
division by h*(X) =bhyXX 4+ h; X1 4 ... +hr, the coefficients
of the resulting nonterminating quotient satisfy the recurrence
relation

0 ::h[,ai +h1ai+1 2 e P +hkai+k

Example: Let h¥#(X) = 1 + X + X>. Then, by long division
L+ X +X) = 14+X +X? +xX* +XT+xX%+x% +xM 4.,

and the sequence of coefficients, 11 101001110100....
agrees with each row in Equation 7. 9.

The circuits described in this section and Section 7.2 are
analogous to linear filters and feedback systems. They are, in
fact, sampled-data systems, the only important difference from
conventional systems being that the quantities are elements of a
finite field here and are real numbers in conventicnal systems.
The transform methods used for sampled-data systems apply here,
and indeed the mathematics involved is that discussed in the pre-
ceding paragraphs. These ideas are pursued further in the following
section.



