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Chapter 2. Introduction to Algebra

2 Introduction to Algebra

Structure is desirable in error-correcting codes for two reasons: It
facilitates finding properties of a code, and even more important, it
makes instrumentation of the codes practical. Algebraic structure has
been the basis of the most important known codes.

This chapter consists of two parts. The first defines the most signifi-
cant algebraic structures and gives a few examples of each. The rest of
the chapter reviews some of the theory of vector spaces and matrices.
Chapter 6 is also purely mathematical, dealing with the theory of rings
and finite fields. These two chapters are in no sense complete mathe-
matical presentations but rather barely minimum mathematical pre-
requisites for the discussion of codes.

Algebraic systems are systems that satisfy certain rules or laws, and
for the most part, these are the same laws as apply to our ordinary
number system. Thus a group is a system with one operation and its
inverse, such as addition and its inverse, subtraction, or multiplication
and its inverse, division. A ring has two operations, addition and
multiplication, and the inverse operation, subtraction, for the first. A
field has the two operations, both with inverses.

2.1 Groups

A group G is a set of objects, or elements, for which an operation is

defined and for which Axioms G.1 to G.4 hold. Let a,b,c,... be

elements of the group. The operation is a single-valued function of two
19
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20 INTRODUCTION TO ALGEBRA

variables, and might well be denoted f(a, b) = ¢ but is customarily
denoted ¢ + b = ¢ or ab = ¢ and called addition or multiplication, even
though it may not be the addition or multiplication of the arithmetic of
ordinary numbers.

Axiom G.1. (Closure). The operation can be applied to any two
group elements to give a third group element as a result.

Axiom G.2. (Associative Law). For any three elements a, b, and ¢
of the group, (a + b) + ¢ = a + (b + ¢) if the operation is written as
addition, or a(bc) = (ab)c if the operation is written as multiplication.

The associative law means that the order of performing operations
is immaterial, and so parentheses are unnecessary.

AxioM G.3. There is an identity element.

If the operation is called addition, the identity element is called zero
and written 0 and is defined by the equation 0 + a=a + 0 = a for
every element of « of the group. If the operation is called multiplication,
the identity is one, written 1, and is defined by the equation la = al = a.

AxioM G.4. Every element of the group has an inverse element.

If the operation is addition, the inverse element corresponding to a
1s denoted —« and is defined by the equationa + (—a) = (—a) + a = 0.
If the operation is multiplication, the inverse of a is denoted a ™' and is
defined by the equationaa™' =a 'a= 1.

In addition to the above laws, a group may satisfy the commutative
law: thatis,a + b = b + a, or if the operation is multiplication, ab = ba.
Such a group is called Abelian or commutative.

In developing a general theory of groups, the multiplicative notation
is used in this book.

THEOREM 2.1. The identity element in a group is unique, and the
inverse of each group element is unique.

Proof. The identity element is unique, for if there were two identity
elements, I and I, (I)(1") = 1 = I’. Similarly, inverses are unique, for
if a group element ¢ were to have two inverses g~ ' and g; !, theng ™' =

lg7"'=g,'997" ' =g;"' 1 =g;', so that they must be equal.  Q.E.D.

Note that the inverse of a product is the product of inverses in
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reverse order, for (ab)b™'a V) =abb Na '=ala'=aa"'=1,
and therefore 5™ 'a™! = (ab) ™.

Examples. The set of all real numbers is a group under the opera-
tion of ordinary addition. The set of all positive and negative
integers and zero is also a group under addition. The set of all
real numbers excluding zero is a group under the operation of
ordinary multiplication. All these groups are Abelian. The set of
all nonsingular n x n matrices is a non-Abelian group, under the
operation matrix multiplication.

Many important groups are sets of transformations of some
space, with the operation called multiplication, defined as follows:
The transformation ab is the result of performing the transforma-
tion b followed by the transformation a. For example, the set of
rotations of n-dimensional Euclidean space is a group. Note that
the rotations of two-dimensional space form an Abelian group,
while the rotations of three dimensional space are not commutative.

As a first example of a finite group, consider a transformation of a
plane which maps a square onto itself. A transformation is completely
determined if its effect on the four vertices is specified.

A-———B

D——C

For example, one possible mapping is a 90° counterclockwise
rotation of the square, which maps 4 onto D, B onto A4, C onto B,
and D onto C. It can be described in the notation sometimes used
for permutations:

(ABCD
DABC)

There are eight such transformations in all:

| _ (ABCD\ _(ABCD\ , _ (ABCD\ __ ABCD)
—(ABCD’ @=\pasc) °~\cpaB) “~\Bcp4)

/

J- (ABCD\ ,_ (ABCD\ . (4BCD _ (ABCD
“\Bapc) ¢~ \abcB) '~ \bcsa) 9= \cBab)
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The multiplication table is

1 a b c d e fg
I 1 a b ¢c de f g
a ab cl e f g d
b b ¢c 1l a f d e
¢c ¢cl ab gde f

d dg f el ¢ b a

e e d g 1 ¢ b

f fedgbal c
g g f e d c b al

Q

The fact that each element has an inverse can be easily seen from
the multiplication table. Although the associative law could be
verified from the multiplication table, this would be a very tedious
job, but it should be clear from the definition of the group that
the associative law does hold.

There is a group with only one element. That element must be
the identity element by Axiom G.3, and it is easy to verify that the
other axioms hold. There is also a group with two elements. One
must be the identity element, 0. Let us call the other element a.
Then a must have an inverse, and sincea +0=a # 0, —a # 0, so
—a = a. Thus the addition table must be 0 +0=0,04+a=a+0
=a, a+ a=0, and a set of two elements with addition defined in
this way satisfies all the axioms G.1 to G.4. In fact, the only group
with two elements is also Abelian.

2.2 Rings

A ring R is a set of elements for which two operations are defined. One
is called addition and denoted ¢ + b, and the other is called multipli-
cation and denoted ab, even though these operations may not be
ordinary addition or multiplication of numbers. In order for R to be a
ring, the following axioms must be satisfied:

AXIOM R.1. The set R is an Abelian group under addition.

AXIOM R.2. (Closure). For any two elements a and b of R, the
product ab is defined and is an element of R.
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Ax10M R.3. (Associative Law). For any three elements a, b, and
¢ of R, a(bc) = (ab)c.

AxioM R.4. (Distributive Law). For any three c¢lements a, b, and ¢
of R, a(b + ¢) = ab + ac and (b + c)a = ba + ca.

A ring is called commutative if its multiplication operation is com-
mutative; that is, if for any two elements a and b, ab = ba.

THEOREM 2.2. In any ring, for any elements a and b, a0 = 0a = 0
and a(—b) = (—a)b = —(ab).

Proof. In any ring, by Axiom R.4, for any a, a(0 + 0) = a0 + a0. But
since 0 + 0 =0, a0 = a0 + a0. Next a0 must have an additive inverse,
and addingthis to bothsidesgives 0 = a0 + ( — a0) = a0 + a0 + ( — a0)
= a0 + 0 = 40, so in any ring a0 = 0. Similarly Oa = 0. Then 0 = a0 =
alb+ (=b)=ab+ a( —b), so a( —b) = — (ab). Similarly (—a)b =
— (ab). Q.E.D.

Examples. The set of all real numbers is a ring under the opera-
tions of ordinary addition and multiplication. The set of all positive
and negative integers and zero is also a ring under ordinary addi-
tion and multiplication. Both these rings are commutative. The set
of all n x n matrices with either integer or real-number elements is
a ring under the operations matrix addition and matrix multiplica-
tion, and this ring is noncommutative. The set of all polynomials
in one indeterminant, or variable, with integer coefficients is a
commutative ring.

A set consisting of a zero element only is a ring, with the rules
0+ 0=0, (0)(0) =0. There are two different rings with two ele-
ments. One element must be the additive identity 0. The other
element a must satisfy a + a = 0. Since (0)(0) = 0a = a0 =0 by
Theorem 2.2, the only question is, what is the value of aa? It turns
out that either aa = a or aa = 0 satisfies both the distributive and
associative laws, and thus either choice gives a ring, and clearly
these two choices give rings of different structure.

2.3 Fields

A field is a commutative ring with a unit element (multiplicative identity)
in which every nonzero element has a multiplicative inverse.

A noncommutative ring in which every nonzero element has an in-
verse is usually called a division ring or a skew field.
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Note that the nonzero elements of a field satisfy all the axioms for a
group and thus form a group under the operation multiplication.

Examples. The set of all real numbers form, a field, as do also the
set of all rational numbers and the set of all complex numbers.
The minimum number of elements a field can have is two, for it
must have both an additive identity 0 and a multiplicative identity
1. They have to satisfy the addition and multiplication tables given
in Table 2.1, for there is only one possible addition table for a

Table 2.1. Addition and Multiplication Tables for the Field with Two
Elements

t 0 1 . 01

0 01 , 0
I 1 0 1

group of two elements. Also, it was shown that for rings in general,
Oa = 0 for any q, and, since 1 is a unit element, (1)(1) = 1. It can
be verified easily that the set 0 and 1 with the operations defined
earlier satisfy all the axioms for a field.

It can be shown that for every number g that is a power of a
prime number there is a field with ¢ elements. The proof of this
fits in better with the material of Chapter 6 and is presented there.
However, it might be well to point out here that a field with p
elements can be formed by taking the integers modulo p, provided
pis a prime. The integers modulo q do not form field if q is not a
prime and the fields with q = p™ elements (m > 1) are not formed by
taking integers modulo q. For use in examples, addition and multi-
plication tables for fields with three and four elements are given in
Tables 2.2 and 2.3. The field of four elements described in Table 2.3
is not the integers modulo 4.

Table 2.2. Addition and Multiplication Table for the Field with Three
Elements

4+ 0 1 2 .01 2
o 0 1 2 0 0 0O
1 120 1 01 2
2 201 2 0 21
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Table 2.3. Addition and Multiplication Table for the Field with Four
Elements

+ 01 a b 01 a b
0 01 ab 00 0O0O O
1 1 0 b a 1 01 a b
a a b 0 1 a 0 a b 1
b b al O b 0 b 1 a

2.4 Subgroups and Factor Groups

A subset of elements of a group G is called a subgroup H if it satisfies
all the axioms for the group itself with the same operation. To determine
whether H is a subgroup, it is necessary to check only for closure (that
is, if a and b are in H, then ab must be in H) and for inverses (that is,
if a is in H, then a~! must be also). If a set is closed under the group
operation and the inverse is present, the identity must be present also,
and the associative law must hold in the subgroup if it does in the group.

Example. In the group of eight transformations of a square given
previously, the sets (1, a, b, ¢) and (1, d) are both subgroups.

In the group of all integers, the set of all integers that are even
multiples of a given integer m is a subgroup for every m.

Suppose that the elements of a group G are ¢,, g5, g3, ..., and the
elements of a subgroup H are h,, h,, h;y, ..., and consider the array
formed as follows: The first row is the subgroup, with the identity at the
left and each other element appearing once and only once. The first
element in the second row is any element not appearing in the first row,
and the rest of the elements are obtained by multiplying each subgroup
element by this first element on the left. Similarly a third, fourth, and
fifth row are formed, each with a previously unused group element in
the first column, until all the group elements appear somewhere in the
array.

hl = l, hz, ,13, h4, ceny hn
gihi=9, 91hys G91hs, gihy, ..., g1 h,
92"71 =92, ng’z, yzf’s, !]2"’4» pesg gz_hn

gmhlzgm’ gthi gmh3’ -gmh4’ RN gmhn
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The set of elements in a row of this array is called a left coser, and the
element appearing in the first column is called the coset leader. Right
cosets could be similarly formed. The array itself is known as the coset
decomposition of the group.

THEOREM 2.3. Two elements g and g’ of a group G are in the same
left coset of a subgroup H of G if and only if g~ g’ is an element of H.

Proof. 1If g and g’ belong to the coset whose leader is g;, then
g=g;h; for some j, g'=g;h, for some k, and g"g’:(g,-hj)~I
“gihy = h;'g g = h;'h,, which is in the subgroup. On the other
hand, if g = g, h, where g; is the coset leader, and if g~ 'g’ = /', then
g = gh’ = g;hl', which is in the same coset, since 4/’ is in the subgroup.

Q.E.D.

THEOREM 2.4 Every element of the group G is in one and only one
coset of a subgroup H.

Proof. Every element appears at least once, by the definition of the
construction of the array. It must be shown that each element appears
only once in the array. Suppose first that two elements in the same row,
g:h;and g, h,. are equal. Then multiplying each on the left by g; ' would
give h; = h;, a result that is a contradiction, since each subgroup
element was assumed to appear only once in the first row. Now suppose
that two equal elements appear in different rows, g;#; = g, h,, and
suppose that /i > k. Then multiplying on the right by hj'l gives g, =
ghih; ', Since hyh; ! is in the subgroup, this indicates that g; is in the
kth coset, a situation that contradicts the rule of construction that coset
leaders should be previously unused. Q.E.D.

The number of elements in a group is called the order of the group.
The number of cosets of G with respect to a subgroup H is called the
index of G over H. Clearly,

(Order of H) (index of G over H) = (order of G).

A subgroup H of a group G is called normal if, for any element 4 of
H and any element g of G, g~ 'hg is in H. In general, left cosets may not
be right cosets, and vice versa. However, every left coset of a normal
subgroup is also a right coset, and vice versa. In an Abelian group,
every left coset is trivially a right coset, and also all subgroups are
trivially normal. In this book the only use made of normal subgroups
will be for Abelian groups, and therefore the foregoing result will not
be proved in general.
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If a subgroup H of a group G is normal, it is possible to define an
operation on cosets to form a new group for which the cosets are the
elements. This group is called the factor group and denoted G/H. The
coset containing g is denoted {g}. The definition of multiplication for
cosets is

{9:} {92} = {91 9.}.

This is not a valid definition unless it happens that, no matter which
element is chosen as a representive of each of the two cosets to be
multiplied, the resulting coset is the same. In other words, it must be
shown that if g, and g} are in the same coset, and g, and g} are in the
same coset, then g, g, and g} g5 are also in the same coset. Assume that
gilgi =h,, g5'g>=h,, and then, since the subgroup is normal,
g5 'h;g> must be an element of H, say h;. Hence (g,9,) 'gi95 =
91979195 =95 'h g5 = g7 'g>hs = h, hy, which is an element of H.
Therefore g, g, and g}g5 are in the same coset, and the definition is
consistent.

Now let us check that G/H is actually a group. The operation is
clearly defined for all pairs of cosets, and therefore Axiom G.1 is
satisfied. To check the associative law, note that

{90923 {95) = 1{9:3 {9293} = {919:93} = {9:9.} {93}
= ({91} {92 {95}

The identity element is the subgroup itself, H = {1}, since {1}{g} = {l1g}
= {g} and {g}{1} = {g1} = {g}. Similarly the inverse coset of {g} is the
coset containing g~ ', {g~!}, since {gHg '} ={g99 '} ={1} and {g™ !}
{g} = {9~ 'g} = {1}. Also if the original group is Abelian, it is easily
verified that the factor group is also.

Examples. Suppose that the group G is the group of eight trans-
formations of the square, and H is the subgroup consisting of
1, a, b, c. Then the standard array of left cosets is, if d is chosen
as the coset leader,

1 a b c
d da=g db=f dc=e

There is only one coset consisting of all the elements of G except
those in H, and so this must also be a right coset, and H must be
normal. If the identity coset is called I and the other one D, then
the multiplication table is I =1, ID ={1}{d}=d = D, DI = D,
DD ={d}{d} = {dd} = {1} = I. This, of course, has the same struc-
ture as the only group of two elements.



28 INTRODUCTION TO ALGEBRA

As a more important example, let G be the group of all positive
and negative integers and zero under addition, and let H be the
subgroup that consists of all multiples of an integer n. All the
numbers from zero to n — 1 inclusive are in different cosets, since
for two elements a and b to be in the same coset, (—a) + b must
be in the subgroup and thus be a multiple of n. These can be taken
as coset leaders, and it is easily seen that there are no other cosets.
Since G is Abelian, addition of cosets can be defined, and the
cosets form a group. For example, let n = 3. Then the cosets are

0, 3, -3, 6, —6, 9, -9,

1, 4, -2, 7, -5, 10, -8,

2, 5 -1, 8 —4, 11, -7,

If these are called {0},{1}, and {2}, respectively, the addition table is

+ {0 {1y {2
o O {1 &
n 4 & o
20 23 o {1

This may be recognized as addition modulo 3.

2,5 Vector Spaces and Linear Algebras
A set V of elements is called a vector space over a field F if it satisfies the
following axioms:

AXIOM V.1. The set V is an Abelian group under addition.

AXIOM V.2. For any vector v in V and any field element c, a product
cv, which is a vector in V, is defined. (Field elements are called scalars,
elements of V are vectors.)

AXI0M V.3. (Distributive Law). If u and v are vectors in V and c is
a scalar, c(u + v) = cu + cov.

AXIOM V 4. (Distributive Law). If v is a vector and ¢ and d are
scalars, (¢ + d)v = cv + dv.

AXIOM V.S. (Associative Law). If v is a vector and ¢ and d are
scalars, (cd)v = c(dv), and 1v = v.
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A set A of elements is called a linear associative algebra over a field F
if it satisfies the following axioms:

AXIOM A.l. The set A is q vector space over F.

AXIOM A.2. For any two elements u and v of A, there is a product
uv defined that is in A.

AxIOM A.3. (Associative Law) For any three elements u, v, and w
of A, (uv)w = u(vw).

AxioM A.4. (Bilinear Law) If ¢ and d are scalars in F and w, v,
and w are vectors in A, then

u(cv + dw) = cuv + duw and (cv + dw)u = cvu + dwu.

An n-tuple over a field is an ordered set of » field elements and is
denoted (ay, a,, a;, ..., a,), where each g; is an element of the field.
Addition of n-tuples is defined as follows:

(al’aZ’ ""an) + (blva, "~$bn) =(al + bl,a2 +b25'~~,an +bn)
Mutltiplication of an n-tuple by a field element is defined as follows:
cay, a,,...,a,) =(cay, ca,, ..., ca,).

With these two definitions it can be verified easily that the set of all
n-tuples over a field form a vector space, and such vector spaces play a
central role in coding theory. They are the subject of the remainder of
this chapter.

Multiplication of n-tuples can be defined as follows:

(al’a2’ "'!an)(bl’bZa "'9bn) = (albl)azbZ’ "-ranbn);

with this definition the n-tuples form a linear algebra. This type of
multiplication is occasionally useful. Another type of multiplication of
n-tuples leading to a linear algebra is described in Chapter 6 and plays
a more important role in coding theory.

The identity element of the vector space will be denoted 0; that is,

0=(,...,0).
It is clearly true for n-tuples and in fact easily shown for vector spaces
in general that for any vector v, Ov = 0, and for any scalar ¢, ¢0 = 0.
Also,(— v) = (= Dy forv+ (= Iv=1v+ (=Dv=[1 + (= D]v=
Ov = 0.
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A subset of a vector space is called a subspace if it satisfies the axioms
for a vector space. In order to check whether a subset of a vector space
is a subspace, it is necessary only to check for closure under addition
and multiplication by scalars. Note that, since —v = (—1)v, closure
under multiplication by scalars assures that the inverse of each element
is in the subspace. Then closure under addition is sufficient to ensure
that it is a subgroup, and the associative and distributive laws must
hold in the subspace if they hold in the original vector space.

A linear combination of k vectors v, ..., v, is a sum of the form

u=av, +azv2+"'+akvk.

The a; are scalars, that is, field elements.

THEOREM 2.5. The set of all linear combinations of a set of vectors
Vi, ..., Vg of a vector space V is a subspace of V.

Proof. Clearly every linear combination of vectors of V is also a
vector of V. If the set of all linear combinations of v, ..., v, is called S,
and w =b,v, + -+ b, v, and u=¢,v; + - + ¢, v, are any two ele-
ments of S, then w+u is also in S, for w+u= (b, + ¢))v, +** +
(by + ¢p)v, is in S. Also any scalar multiple of w, aw = ab,v, + --- +
ab, v, is in S. Since S is closed under addition and multiplication by

scalars, S is a subspace of V. Q.E.D.
A set of vectors vy, ..., v, is linearly dependent if and only if there
are scalars ¢,, ...., ¢, not all zero, such that

vy + ¥+ 4oV =0

A set of vectors is /inearly independent if it is not linearly dependent.
A set of vectors is said to span a vector space if every vector in the vector
space equals a linear combination of the vectors in the set.

THEOREM 2.6. If a set of k vectors v, ..., Vv, spans a vector space
that contains a set of m linearly independent vectors uy, ...., u,,
then k = m.

Proof. Since vy, ..., v, span the space, u, can be expressed as a linear
combination of the v;. Therefore, this equation can be solved for some
one of the v,, say v;, in terms of u, and the rest of the v;. Consequently,
the set consisting of u; and the rest of the v; spans the vector space,
since any linear combination of the v; becomes a linear combination of
u, and all the v; except v; when the expression for v; in terms of u, and
the other v, is used to eliminate v;. Then u, can be expressed as a linear
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combination of u, and all the v; except v;. Since the u; are linearly in-
dependent, some v; must have a nonzero coefficient, and therefore this
v; can be expressed in terms of u,, u,, and the remaining k& — 2 vectors
v;, and these k vectors span the space. The process can be continued
until all m of the u; vectors are used, and, since at each stage one v;
vector is replaced, the number of vectors v; must have been at least as
great as the number of vectors u;. Q.E.D.

THEOREM 2.7. If two sets of linearly independent vectors span the
same space, there are the same number of vectors in each set.

Proof. 1f there are m vectors in one set and & in the other, then by
Theorem 2.6, m = k and k = m, and thus m = k. Q.E.D.

In any space, the number of linearly independent vectors that span
the space is called the dimension of the space. A set of k linearly inde-
pendent vectors spanning a k-dimensional vector space is called a basis
of the space. It follows from Theorem 2.7 that every set of more than
k vectors in a k-dimensional vector space is linearly dependent. It
follows from Theorem 2.6 that no set of fewer than k vectors can span
a k-dimensional space.

THEOREM 2.8. If' V is a k-dimensional vector space, any set of k
linearly independent vectors in V is a basis for V.

Proof. Letv,,v,,...,v, beaset of linearly independent vectors in V.
If they do not span V, there must be some vector v in V that is not a
linear combination of v,, v,, ..., v,. Then the set v, v, v,, ..., v, of
k + 1 vectors in V is linearly independent. This contradicts Theorem
2.6, and therefore v, v,, ..., v, must span V. Q.E.D.

THEOREM 2.9. If a vector space V, is contained in a vector space 'V,
and they have the same dimension k, they are equal.

Proof. A basis for V| is a set of k linearly independent vectors in V.
Therefore, every vector in V, is also in V. Q.E.D.

An inner product or dot product of two n-tuples is a scalar and is
defined as follows:

(aj,...,a,) (by,....b)=ab; + -+ a,b,.

It is easily verified thatu-v=v-uand thatw-(u+v)=w-u+w-v.
If the inner product of two vectors is zero, they are said to be
orthogonal.
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2.6 Matrices

The purpose of this section is to outline the parts of matrix theory that
apply to the codes studied in the next three chapters. For the most part,
proofs are given, but this can hardly serve as more than a review of the
necessary parts of matrix theory.

An n x m matrix is an ordered set of nm elements in a rectangular
array of n rows and m columns:

ay Gy T Ay
Ay Gy, 7 Aoy

: : i aant
anl an2 e anm

The elements of a matrix may in general be elements of any ring, but
in this book only matrices with elements in a field find application. The
n rows may be thought of as n m-tuples or vectors, and similarly, the
m columns may be thought of as vectors. The set of elements a;; for
which the column number and row number are equal is called the main
diagonal.

The row space of an n x m matrix M is the set of all linear combina-
tions of row vectors of M. They form a subspace of the vector space of
m-tuples. The dimension of the row space is called the row rank.
Similarly, the set of all linear combinations of column vectors of the
matrix forms the column space, whose dimension is called the column
rank. 1t can be shown that row rank equals column rank; this value is
referred to as the rank of the matrix.

There is a set of elementary row operations defined for matrices:

1. Interchange of any two rows.
2. Multiplication of any row by a nonzero field element.
3. Addition of any multiple of one row to another.

The inverse of each elementary row operation is clearly an elementary
row operation of the same kind.

THEOREM 2.10. If one matrix is obtained from another by a succes-
sion of elementary operations, both matrices have the same row space.

Proof. If the theorem is true for each elementary row operation, it
will clearly be true for a succession. It is obviously true of row operations
1 and 2. Suppose that the matrix M’ is obtained from the matrix M by
a type 3 elementary row operation. Then, since the altered row of M’ is a
linear combination of two rows of M, any linear combination of rows
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of M’ is also a linear combination of rows of M, so the row space of M’
is contained in the row space of M. But M can be obtained from M’ by
the inverse operation, which is again an operation of type 3, so the row
space of M must be contained in the row space of M'. Therefore they
are equal. Q.E.D.

Elementary row operations can be used to simplify a matrix and put
it in a standard form. The form, called echelon canonical form, is as
follows:

1. Every leading term of a nonzero row is 1.

2. Every column containing such a leading term has all its other
entries zero.

3. The leading term of any row is to the right of the leading term
in every preceding row. All zero rows are below all nonzero rows.

The procedure is essentially the same as that used in solving linear
equations by elimination of one variable at a time. 1t is best illustrated
by an example. Consider the following matrix with real numbers as
elements:

002202
226848
115625
113427

To simplify the matrix, the first step would be to locate the first column
with a nonzero element, interchange rows if necessary to place a non-
zero element in the first row, and multiply the row by the inverse of
that element to give a leading 1. Interchanging rows 1 and 2 and dividing
by 2 give

113424
002202
115625
113427

The next step is to subtract a multiple of the first row from each other
row to make the rest of the column corresponding to the leading element
in the first row 0:

113424
002202
002201
000003
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Then, disregarding the first row, again the first column with a nonzero
element is located, and rows are interchanged if necessary to place a
nonzero element in this column in the second row. The row is next
multiplied by the inverse of its leading element to give a leading 1. This
is accomplished in the above matrix by dividing the second row by 2.
Then the appropriate multiple of this row is subtracted from each other
row to make all the other entries 0 in the column of the leading element
of the second row. This yields

co o~

Co O~

co—~o

SO = =

coown
|

One more step in the process yields

110120
001100
000001
000000

This process will always result in a matrix in echelon canonical form.

The nonzero rows of a matrix in echelon canonical form are linearly
independent, and thus the number of nonzero rows is the dimension of
the row space. It can be shown that there is only one matrix in echelon
canonical form for any given row space.

If all the rows of an n x n matrix are linearly independent, the matrix
is said to be nonsingular. When such a matrix is put in echelon canonical
form, there must still be » linearly independent rows, and thus every row
must contain a 1. This can occur only if it has 1’s on the main diagonal
and O’s elsewhere. Such a matrix is called an identity matrix and de-
noted I. Thus any nonsingular matrix can be transformed into an
identity matrix by elementary row operations.

The transpose of an n x m matrix M is an m x n matrix, denoted
MT, whose rows are the columns of M, and thus whose columns are
the rows of M. The transpose of [a;;] is [a;;].

Two n x m matrices can be added, element by element:

[a;;] + [bi;] = [a;; + byj].

With this definition it is easily verified that matrices form an Abelian
group under addition.
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An n x k matrix [a,;] and a k x m matrix [b;;] can be multiplied to
give an n x m product matrix [c;;] by the rule

k
cy = 21 a,by;.
It can be verified by direct calculation that with this definition matrix
multiplication satisfies the associative law, and multiplication and
addition satisfy the distributive law.

The element c;; of the product is the inner product of the ith row
of [a;;] by the jth column of [b;;]. Also the ith row vector of the
product [c;;] is a linear combination of the row vectors of [b;;] with
the coefficient a;, on the /th row. Similarly the columns of the pro-
duct are linear combinations of the column vectors of [a,].

Multiplying an n x m matrix M on the left by an » x n matrix P that
has one 1 in each row and each column and all the rest of the elements 0
simply permutes the rows of the matrix M, and any permutation of
rows can be accomplished in this way. Thus the first elementary row
operation can be accomplished by multiplying on the left by a permuta-
tion matrix. The second elementary row operation, multiplying the jth
row of M by ¢, can be accomplished by multiplying M on the left by a
matrix that has 0’s off the main diagonal, ¢ on the main diagonal in the
Jth row, and I's on the rest of the main diagonal. Finally, the third
elementary operation, adding ¢ times the jth row to the kth row, can
be accomplished by multiplying on the left by a matrix that has 1’s on
the main diagonal, ¢ in the position that is in the jth column and kth
row, and 0’s elsewhere. These matrices are called elementary matrices.

THEOREM 2.11. Every nonsingular matrix has a left inverse that is a
product of elementary matrices.

Proof. 1f a nonsingular n x n matrix M is transformed into echelon
canonical form, it becomes an identity matrix. Since M can be put in
echelon canonical form by elementary row operations, there is some
set of elementary matrices E, ..., E, whose product with M is the
identity matrix:

EkEk—l M ElM = I.
Then E, --- E, is the left inverse of M. Q.E.D.

It can be shown that the left inverse of a matrix is also a right inverse.
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THEOREM 2.12. If M is an n x m matrix and S is a nonsingular
n X n matrix, then the product of S and M has the same row space
as M has.

Proof. The rows of SM are linear combinations of the rows of M,
and therefore the row space of SM is contained in the row space of M.
But S has a left inverse S™!, and the rows of S™!SM = M are linear
combinations of the rows of SM, and hence the row space of M is
contained in the row space of SM. Therefore, they must be equal.

Q.E.D.

THEOREM 2.13. The set of all n-tuples orthogonal to a subspace V,
of n-tuples forms a subspace V, of n-tuples.

Proof. Let V, be a subspace of the vector space of all n-tuples over a
field. Let V, be the set of all vectors orthogonal to every vector in V.
Let v be any vector in V; and u, and u, any vectors in V,. Then v -u, =
v-u,=0,and v-u, +v-u, =0=v-(u +u,) Thereforeu, + u,isin
Vy,. Alsov - (cuy) =c(v-uy) =0, so cuy is in V,. Thus V, must be a
subspace. Q.E.D.

The subspace V, in Theorem 2.13 is called the null space of V.

THEOREM 2.14. If a vector is orthogonal to every vector of a set
which spans V,, it is in the null space of V.
Proof. 1f v, ..., v, span V;, then every vector in V; can be expressed
in the formv=c¢;v; + -+ + ¢, v;. Then
viu=(e v+t agv)u=cov cut 4oVt u
and if u is orthogonal to each v;, it is orthogonal to v. Q.E.D.

The null space of the row space of a matrix is called the null space of
the matrix. A vector is in the null space of a matrix if it is orthogonal to
each row of the matrix. If the n-tuple v is considered to be a 1 x n
matrix, v is in the null space of anm x n matrix M if and onlyif yYM” = 0.

THEOREM 2.15. If the dimension of a subspace of n-tuples is k, the
dimension of the null space is n — k.

The proof of this theorem will be omitted, because it requires some
background otherwise unnecessary. One consequence of the theorem is

THEOREM 2.16. If' V, is a subspace of n-tuples and V| is the null
space of V,, then V, is the null space of V,.
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Proof. If V, has dimension k, then ¥, has dimension n — k, and the
null space of V; has dimension k. Since V, is contained in the null space
of V; and has the same dimension, they are equal. Q.E.D.

If M, and M, are two matrices that have n columns, and if M; M} is
a matrix of all 0’s, then the row space of M, is contained in the null
space of M, and vice versa. If the row rank of M, and the row rank of
M, add to n, then the row space of M, is the null space of M,, and
vice versa.

Let U n V be vector spaces and let U NV denote the set of vectors that
are contained in both U and V. It is easy to verify that U N V is a subspace.
Let U ® V denote the subspace consisting of all linear combinations au +
bv, whereu e U, veV, and a and b are scalars.

THEOREM 2.17. The sum of the dimensions of UV and U@V
equals the sum of the dimensions of U and V.

Proof. Let k, denote the dimension of U, k, the dimension of V, and
ko the dimension of U n V. Then there exists a basis of k, vectors for
U n V. 1t will be possible to find a basis for U consisting of these k,
vectors and k; — k, others not in U n V, and a basis for V consisting
of the basis of U n V and k, — k, others. Then together, the k, vec-
tors in the basis of U n V, the k; — k, additional vectors in the basis
of U and the k, — k, vectors in the basis of V form a basis of U @ V.
Therefore, the dimension of U @ Vis ko + (k; — ko) + (k, — ko).

Q.E.D

THEOREM 2.18. Let U, be the null space of U, and V, the null space
of Vy. Then U, N V, is the null space of U, @ V.

Proof. Since U, is contained in U; @ V;, every vector in the null space
of U; @ V, must be in U,, the null space of U,. Similarly, every vector
in the null space of U; @ V, must be in V,, the null space of ¥;. There-
fore, the null space of U; @ V, is contained in U, n V,. Every vector
in U; @ V; can be written in the form aqu, + bv,. If w is any element of
U, nV,,thenu; - w=yv, -w=0and hence (au, + bv,) - w = 0. There-
fore, U, n V, is contained in the null space of U, @ V;. It follows that
the null space of U; @ V; equals U, n V,. QE.D

There are many important concepts and theorems of matrix theory
that have not been mentioned. It should be emphasized that, while the
material presented here may be adequate for understanding what fol-
lows, it is certainly no substitute for books or courses on modern
algebra, which can provide a well-rounded understanding of the subject.
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Notes

There are many good textbooks on algebra and on matrices. Birkhoff and
Mac Lane (1941) covers all the material of this chapter and much more. It is
clearly written and is probably the most easily understood text on modern
algebra. It also contains an extensive bibliography. Van der Waerden (1949)
is also well written and highly regarded, and goes generally deeper into the
subject.

Problems

2.1.  Show that there is only one group of three elements. Show that there
are only two distinct groups with four elements, and that both are Abelian.

2.2. Show that if the operation is taken as addition in the groups of
Problem 2.1, multiplication can be defined to make them rings.

2.3. The set of all nonnegative integers is not a group with the operation
addition. Why ? It is also not a group with the operation multiplication. Why ?

2.4. The set of all n X n matrices is not a skew field. Why ? The set of all
nonsingular # X n matrices and the all-zero matrix is also not a skew field.
Why?

2.5. Show that the set of all integers with the operation subtraction does
not satisfy the associative law.

2.6. Solve these simultaneous equations for x and y, assuming the coeffi-
cients to be in the field of 4 elements as given in Table 2.3:

ax+y=2b,
x+ay=>b.
(Answer:x =y =1.)
2.7. Calculate the determinant of the following matrix. Put the matrix in

echelon canonical form and show that the rank is 3. Express the inverse as a
product of elementary matrices. Assume the field of three elements.

1 20
2 21
1 11

2.8. By row operations, find the echelon canonical form for the following
matrix. Also calculate the determinant. Assume the field with two elements.

I 101
1110
ot 10
01 0 1

2.9. Show that in the vector space of n-tuples over the field of two elements,
every subgroup (under addition) is a subspace. (Compare Problem 6.8.)
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2.10. Define the Hamming weight w(v) of an n-tuple v as its Hamming
distance from the zero n-tuple. Show that

d(u, v) = w(u — v).

2.11. Let H be a subspace of n-tuples, and define the Hamming weight of
a coset of H as the mimimum Hamming weight of elements of the coset.
Define the distance between two cosets as the weight of the difference of the
two cosets, which is also a coset. Show that this distance function is a metric.
(Compare Problem 1.2.)

2.12. If an n x n matrix has the form

L P ]
BEE

where I, is a k x k identity matrix, I,_. is an (n — k) X (n — k) identity
matrix, 0 is an (i — k) x k matrix of all 0's, and P is an arbitrary (k x n — k)
matrix, show that the inverse of M has the same form with P replaced by —P.

2.13.  Prove that the set of all # X n square matrices that have 1's on the
main diagonal and 0’s below the main diagonal forms a group under multi-
plication.

2.14. Show that the integers modulo 4 form a commutative ring but
not a field. Compare Table 2.2. and Problem 2.1,





