
Quantum Amplitude Amplification and Estimation

Gilles Brassard , Peter Høyer , Michele Mosca , and Alain Tapp

Abstract. Consider a Boolean function χ : X → {0, 1} that partitions set X
between its good and bad elements, where x is good if χ(x) = 1 and bad other-

wise. Consider also a quantum algorithm A such that A|0〉 =
∑
x∈X αx|x〉 is a

quantum superposition of the elements of X, and let a denote the probability

that a good element is produced if A|0〉 is measured. If we repeat the process

of running A, measuring the output, and using χ to check the validity of the
result, we shall expect to repeat 1/a times on the average before a solution is

found. Amplitude amplification is a process that allows to find a good x after
an expected number of applications of A and its inverse which is proportional
to 1/

√
a, assuming algorithm A makes no measurements. This is a generaliza-

tion of Grover’s searching algorithm in which A was restricted to producing an
equal superposition of all members of X and we had a promise that a single x

existed such that χ(x) = 1. Our algorithm works whether or not the value of
a is known ahead of time. In case the value of a is known, we can find a good
x after a number of applications of A and its inverse which is proportional

to 1/
√
a even in the worst case. We show that this quadratic speedup can

also be obtained for a large family of search problems for which good classical
heuristics exist. Finally, as our main result, we combine ideas from Grover’s
and Shor’s quantum algorithms to perform amplitude estimation, a process

that allows to estimate the value of a. We apply amplitude estimation to the
problem of approximate counting, in which we wish to estimate the number
of x ∈ X such that χ(x) = 1. We obtain optimal quantum algorithms in a

variety of settings.

1. Introduction

Quantum computing is a field at the junction of theoretical modern physics
and theoretical computer science. Practical experiments involving a few quantum
bits have been successfully performed, and much progress has been achieved in

2000 Mathematics Subject Classification. Primary 81P68.
Key words and phrases. Quantum computation. Searching. Counting. Lower bound.
Supported in part by Canada’s Nserc, Québec’s Fcar and the Canada Research Chair

Programme.
Part of this work was done while at Département IRO, Université de Montréal. Basic Research

in Computer Science is supported by the Danish National Research Foundation.
Most of this work was done while at Centre for Quantum Computation, Clarendon Labora-

tory, University of Oxford. Supported in part by Canada’s Nserc and UK’s Cesg.

Supported in part by Canada’s Nserc and Québec’s Fcar.

c©2002 American Mathematical Society

2 G. BRASSARD, P. HØYER, M. MOSCA, AND A. TAPP

quantum information theory, quantum error correction and fault tolerant quantum
computation. Although we are still far from having desktop quantum computers
in our offices, the quantum computational paradigm could soon be more than mere
theoretical exercise.

The discovery by Peter Shor [15] of a polynomial-time quantum algorithm for
factoring and computing discrete logarithms was a major milestone in the history
of quantum computing. Another significant result is Lov Grover’s quantum search
algorithm [8, 9]. Grover’s algorithm does not solve NP–complete problems in
polynomial time, but the wide range of its applications more than compensates for
this.

In this paper, we generalize Grover’s algorithm in a variety of directions. Con-
sider a problem that is characterized by a Boolean function χ(x, y) in the sense that
y is a good solution to instance x if and only if χ(x, y) = 1. (There could be more
than one good solution to a given instance.) If we have a probabilistic algorithm P
that outputs a guess P(x) on input x, we can call P and χ repeatedly until a solu-
tion to instance x is found. If χ(x,P(x)) = 1 with probability px > 0, we expect to
repeat this process 1/px times on the average. Consider now the case when we have
a quantum algorithm A instead of the probabilistic algorithm. Assume A makes
no measurements: instead of a classical answer, it produces quantum superposition
|Ψx〉 when run on input x. Let ax denote the probability that |Ψx〉, if measured,
would be a good solution. If we repeat the process of running A on x, measuring
the output, and using χ to check the validity of the result, we shall expect to repeat
1/ax times on the average before a solution is found. This is no better than the
classical probabilistic paradigm.

In Section 2, we describe a more efficient approach to this problem, which
we call amplitude amplification. Intuitively, the probabilistic paradigm increases
the probability of success roughly by a constant on each iteration; by contrast,
amplitude amplification increases the amplitude of success roughly by a constant
on each iteration. Because amplitudes correspond to square roots of probabilities, it
suffices to repeat the amplitude amplification process approximately 1/

√
ax times

to achieve success with overwhelming probability. For simplicity, we assume in
the rest of this paper that there is a single instance for which we seek a good
solution, which allows us to dispense with input x, but the generalization to the
paradigm outlined above is straightforward. Grover’s original database searching
quantum algorithm is a special case of this process, in which χ is given by a function
f : {0, 1, . . . , N − 1} → {0, 1} for which we are promised that there exists a unique
x0 such that f(x0) = 1. If we use the Fourier transform as quantum algorithm A—
or more simply the Walsh–Hadamard transform in case N is a power of 2—an equal
superposition of all possible x’s is produced, whose success probability would be 1/N
if measured. Classical repetition would succeed after an expected number N of
evaluations of f . Amplitude amplification corresponds to Grover’s algorithm: it
succeeds after approximately

√
N evaluations of the function.

We generalize this result further to the case when the probability of success a
of algorithm A is not known ahead of time: it remains sufficient to evaluate A and
χ an expected number of times that is proportional to 1/

√
a. Moreover, in the case

a is known ahead of time, we give two different techniques that are guaranteed to
find a good solution after a number of iterations that is proportional to 1/

√
a in

the worst case.

QUANTUM AMPLITUDE AMPLIFICATION AND ESTIMATION 3

It can be proven that Grover’s algorithm goes quadratically faster than any
possible classical algorithm when function f is given as a black box. However, it
is usually the case in practice that information is known about f that allows us
to solve the problem much more efficiently than by exhaustive search. The use
of classical heuristics, in particular, will often yield a solution significantly more
efficiently than straight quantum amplitude amplification would. In Section 3, we
consider a broad class of classical heuristics and show how to apply amplitude
amplification to obtain quadratic speedup compared to any such heuristic.

Finally, Section 4 addresses the question of estimating the success probability
a of quantum algorithm A. We call this process amplitude estimation. As a special
case of our main result (Theorem 12), an estimate for a is obtained after any number
M of iterations which is within 2π

√
a(1− a)/M + π2/M2 of the correct value with

probability at least 8/π2, where one iteration consists of running algorithm A once
forwards and once backwards, and of computing function χ once. As an application
of this technique, we show how to approximately count the number of x such that
f(x) = 1 given a function f : {0, 1, . . . , N − 1} → {0, 1}. If the correct answer
is t > 0, it suffices to compute the function

√
N times to obtain an estimate roughly

within
√
t of the correct answer. A number of evaluations of f proportional to

1
ε

√
N/t yields a result that is likely to be within εt of the correct answer. (We can

do slightly better in case ε is not fixed.) If it is known ahead of time that the
correct answer is either t = 0 or t = t0 for some fixed t0, we can determine which is
the case with certainty using a number of evaluations of f proportional to

√
N/t0.

If we have no prior knowledge about t, the exact count can be obtained with high
probability after a number of evaluations of f that is proportional to

√
t(N − t)

when 0 < t < N and
√
N otherwise. Most of these results are optimal.

We assume in this paper that the reader is familiar with basic notions of quan-
tum computing.

2. Quantum amplitude amplification

Suppose we have a classical randomized algorithm that succeeds with some
probability p. If we repeat the algorithm, say, j times, then our probability of
success increases to roughly jp (assuming jp� 1). Intuitively, we can think of this
strategy as each additional run of the given algorithm boosting the probability of
success by an additive amount of roughly p.

A quantum analogue of boosting the probability of success would be to boost
the amplitude of being in a certain subspace of a Hilbert space. The general con-
cept of amplifying the amplitude of a subspace was discovered by Brassard and
Høyer [4] as a generalization of the boosting technique applied by Grover in his
original quantum searching paper [8]. Following [4] and [3], we refer to their idea
as amplitude amplification and detail the ingredients below.

Let H denote the Hilbert space representing the state space of a quantum
system. Every Boolean function χ : Z → {0, 1} induces a partition of H into
a direct sum of two subspaces, a good subspace and a bad subspace. The good
subspace is the subspace spanned by the set of basis states |x〉 ∈ H for which
χ(x) = 1, and the bad subspace is its orthogonal complement in H. We say that the
elements of the good subspace are good, and that the elements of the bad subspace
are bad.

4 G. BRASSARD, P. HØYER, M. MOSCA, AND A. TAPP

Every pure state |Υ〉 in H has a unique decomposition as |Υ〉 = |Υ1〉 + |Υ0〉,
where |Υ1〉 denotes the projection onto the good subspace, and |Υ0〉 denotes the
projection onto the bad subspace. Let aΥ = 〈Υ1|Υ1〉 denote the probability that
measuring |Υ〉 produces a good state, and similarly, let bΥ = 〈Υ0|Υ0〉. Since |Υ1〉
and |Υ0〉 are orthogonal, we have aΥ + bΥ = 1.

Let A be any quantum algorithm that acts on H and uses no measurements.
Let |Ψ〉 = A|0〉 denote the state obtained by applying A to the initial zero state.
The amplification process is realized by repeatedly applying the following unitary
operator [4] on the state |Ψ〉,

(1) Q = Q(A, χ) = −AS0A−1 Sχ.

Here, the operator Sχ conditionally changes the sign of the amplitudes of the good
states,

|x〉 7−→

{
−|x〉 if χ(x) = 1
|x〉 if χ(x) = 0,

while the operator S0 changes the sign of the amplitude if and only if the state is
the zero state |0〉. The operator Q is well-defined since we assume that A uses no
measurements and, therefore, A has an inverse.

The usefulness of operator Q stems from its simple action on the subspace HΨ

spanned by the vectors |Ψ1〉 and |Ψ0〉.

Lemma 1. We have that

Q|Ψ1〉 = (1− 2a)|Ψ1〉 − 2a|Ψ0〉
Q|Ψ0〉 = 2(1− a)|Ψ1〉+ (1− 2a)|Ψ0〉,

where a = 〈Ψ1|Ψ1〉.

It follows that the subspace HΨ is stable under the action of Q, a property
that was first observed by Brassard and Høyer [4] and rediscovered by Grover [10].

Suppose 0 < a < 1. Then HΨ is a subspace of dimension 2, and otherwise HΨ

has dimension 1. The action of Q on HΨ is also realized by the operator

(2) UΨUΨ0 ,

which is composed of 2 reflections. The first operator, UΨ0 = I − 2
1−a |Ψ0〉〈Ψ0|,

implements a reflection through the ray spanned by the vector |Ψ0〉, while the
second operator UΨ = I−2|Ψ〉〈Ψ| implements a reflection through the ray spanned
by the vector |Ψ〉.

Consider the orthogonal complement H⊥Ψ of HΨ in H. Since the operator
AS0A−1 acts as the identity on H⊥Ψ, operator Q acts as −Sχ on H⊥Ψ. Thus, Q2

acts as the identity on H⊥Ψ, and every eigenvector of Q in H⊥Ψ has eigenvalue +1
or −1. It follows that to understand the action of Q on an arbitrary initial vector
|Υ〉 in H, it suffices to consider the action of Q on the projection of |Υ〉 onto HΨ.

Since operator Q is unitary, the subspace HΨ has an orthonormal basis con-
sisting of two eigenvectors of Q,

(3) |Ψ±〉 =
1√
2

(
1√
a
|Ψ1〉 ±

ı√
1− a

|Ψ0〉
)
,

QUANTUM AMPLITUDE AMPLIFICATION AND ESTIMATION 5

provided 0 < a < 1, where ı =
√
−1 denotes the principal square root of −1. The

corresponding eigenvalues are

(4) λ± = e±ı2θa ,

where the angle θa is defined so that

(5) sin2(θa) = a = 〈Ψ1|Ψ1〉
and 0 ≤ θa ≤ π/2.

We use operator Q to boost the success probability a of the quantum algo-
rithm A. First, express |Ψ〉 = A|0〉 in the eigenvector basis,

(6) A|0〉 = |Ψ〉 =
−ı√

2

(
eıθa |Ψ+〉 − e−ıθa |Ψ−〉

)
.

It is now immediate that after j applications of operator Q, the state is

Qj |Ψ〉 =
−ı√

2

(
e(2j+1)ıθa |Ψ+〉 − e−(2j+1)ıθa |Ψ−〉

)
(7)

=
1√
a

sin((2j + 1)θa) |Ψ1〉+
1√

1− a
cos((2j + 1)θa) |Ψ0〉.(8)

It follows that if 0 < a < 1 and if we compute Qm|Ψ〉 for some integer m ≥ 0, then
a final measurement will produce a good state with probability equal to sin2((2m+
1)θa).

If the initial success probability a is either 0 or 1, then the subspaceHΨ spanned
by |Ψ1〉 and |Ψ0〉 has dimension 1 only, but the conclusion remains the same: If we
measure the system after m rounds of amplitude amplification, then the outcome
is good with probability sin2((2m + 1)θa), where the angle θa is defined so that
Equation 5 is satisfied and so that 0 ≤ θa ≤ π/2.

Therefore, assuming a > 0, to obtain a high probability of success, we want to
choose integer m such that sin2((2m+1)θa) is close to 1. Unfortunately, our ability
to choose m wisely depends on our knowledge about θa, which itself depends on a.
The two extreme cases are when we know the exact value of a, and when we have
no prior knowledge about a whatsoever.

Suppose the value of a is known. If a > 0, then by letting m = bπ/4θac, we
have that sin2((2m+1)θa) ≥ 1−a, as shown in [3]. The next theorem is immediate.

Theorem 2 (Quadratic speedup). Let A be any quantum algorithm that uses
no measurements, and let χ : Z→ {0, 1} be any Boolean function. Let a the initial
success probability of A. Suppose a > 0, and set m = bπ/4θac, where θa is defined
so that sin2(θa) = a and 0 < θa ≤ π/2. Then, if we compute QmA |0〉 and measure
the system, the outcome is good with probability at least max(1− a, a).

Note that any implementation of algorithm QmA|0〉 requires that the value
of a is known so that the value of m can be computed. We refer to Theorem 2 as
a quadratic speedup, or the square-root running-time result. The reason for this is
that if an algorithm A has success probability a > 0, then after an expected number
of 1/a applications of A, we will find a good solution. Applying the above theorem
reduces this to an expected number of at most (2m + 1)/max(1 − a, a) ∈ Θ(1√

a
)

applications of A and A−1.
As an application of Theorem 2, consider the search problem [9] in which we

are given a Boolean function f : {0, 1, . . . , N − 1} → {0, 1} satisfying the promise
that there exists a unique x0 ∈ {0, 1, . . . , N − 1} on which f takes value 1, and we

6 G. BRASSARD, P. HØYER, M. MOSCA, AND A. TAPP

are asked to find x0. If f is given as a black box, then on a classical computer,
we need to evaluate f on an expected number of roughly half the elements of the
domain in order to determine x0.

By contrast, Grover [9] discovered a quantum algorithm that only requires an
expected number of evaluations of f in the order of

√
N . In terms of amplitude

amplification, Grover’s algorithm reads as follows: Let χ = f , and let A = W be
the Walsh-Hadamard transform on n qubits that maps the initial zero state |0〉 to

1√
N

∑N−1
x=0 |x〉, an equally-weighted superposition of all N = 2n elements in the do-

main of f . Then the operator Q = −AS0A−1Sχ is equal to the iterate −WS0WSf
applied by Grover in his searching paper [9]. The initial success probability a of A
is exactly 1/N , and if we measure after m = bπ/4θac iterations of Q, the probability
of measuring x0 is lower bounded by 1− 1/N [3].

Now, suppose that the value of a is not known. In Section 4, we discuss
techniques for finding an estimate of a, whereafter one then can apply a weakened
version of Theorem 2 in which the exact value of a is replaced by an estimate of it.
Another idea is to try to find a good solution without prior computation of an
estimate of a. Within that approach, by adapting the ideas in Section 6 in [3] we
can still obtain a quadratic speedup.

Theorem 3 (Quadratic speedup without knowing a). There exists a quantum
algorithm QSearch with the following property. Let A be any quantum algorithm
that uses no measurements, and let χ : Z→ {0, 1} be any Boolean function. Let a
denote the initial success probability of A. Algorithm QSearch finds a good solution
using an expected number of applications of A and A−1 which are in Θ(1√

a
) if a > 0,

and otherwise runs forever.

The algorithm in the above theorem utilizes the given quantum algorithm A
as a subroutine and the operator Q. The complete algorithm is as follows:

Algorithm(QSearch(A, χ))
(1) Set l = 0 and let c be any constant such that 1 < c < 2.
(2) Increase l by 1 and set M = dcle.
(3) Apply A on the initial state |0〉, and measure the system. If the outcome
|z〉 is good, that is, if χ(z) = 1, then output z and stop.

(4) Initialize a register of appropriate size to the state A|0〉.
(5) Pick an integer j between 1 and M uniformly at random.
(6) Apply Qj to the register, where Q = Q(A, χ).
(7) Measure the register. If the outcome |z〉 is good, then output z and stop.

Otherwise, go to step 2.

The intuition behind this algorithm is as follows. In a 2-dimensional real vector
space, if we pick a unit vector (x, y) = (cos(·), sin(·)) uniformly at random then the
expected value of y2 is 1/2. Consider Equation 8. If we pick j at random between 1
and M for some integer M such that Mθa is larger than, say, 100π, then we have a
good approximation to a random unit vector, and we will succeed with probability
close to 1/2.

To turn this intuition into an algorithm, the only obstacle left is that we do not
know the value of θa, and hence do not know an appropriate value for M . However,
we can overcome this by using exponentially increasing values of M , an idea similar
to the one used in “exponential searching” (which is a term that does not refer to

QUANTUM AMPLITUDE AMPLIFICATION AND ESTIMATION 7

the running time of the method, but rather to an exponentially increasing growth
of the size of the search space).

The correctness of algorithm QSearch is immediate and thus to prove the
theorem, it suffices to show that the expected number of applications of A and A−1

is in the order of 1/
√
a. This can be proven by essentially the same techniques

applied in the proof of Theorem 3 in [3] and we therefore only give a very brief
sketch of the proof.

On the one hand, if the initial success probability a is at least 3/4, then step 3
ensures that we soon will measure a good solution. On the other hand, if 0 < a <
3/4 then, for any given value of M , the probability of measuring a good solution
in step 7 is lower bounded by

(9)
1
2

(
1− 1

2M
√
a

)
.

Let c0 > 0 be such that c = 2(1− c0) and let M0 = 1/(2c0
√
a). The expected

number of applications of A is upper bounded by T1 + T2, where T1 denotes the
maximum number of applications of A the algorithm uses while M < M0, and
where T2 denotes the expected number of applications of A the algorithm uses
while M ≥ M0. Clearly T1 ∈ O(M0) = O(1√

a
) and we now show that T2 ∈ O(1√

a
)

as well.
For all M ≥M0, the measurement in step 7 yields a good solution with proba-

bility at least 1
2 (1− c0), and hence it fails to yield a good solution with probability

at most p0 = 1
2 (1 + c0). Thus for all i ≥ 0, with probability at most pi0, we have

that M ≥ M0c
i at some point after step 2 while running the algorithm. Hence T2

is at most on the order of
∑
i≥0M0(cp0)i which is in O(M0) since cp0 < 1. The

total expected number of applications of A is thus in O(M0), which is O(1√
a
).

For the lower bound, if M were in o
(

1√
a

)
, then the probability that we measure

a good solution in step 7 would be vanishingly small. This completes our sketch of
the proof of Theorem 3.

2.1. Quantum de-randomization when the success
probability is known. We now consider the situation where the success proba-
bility a of the quantum algorithm A is known. If a = 0 or a = 1, then amplitude
amplification will not change the success probability, so in the rest of this section,
we assume that 0 < a < 1. Theorem 2 allows us to boost the probability of success
to at least max(1 − a, a). A natural question to ask is whether it is possible to
improve this to certainty, still given the value of a. It turns out that the answer is
positive. This is unlike classical computers, where no such general de-randomization
technique is known. We now describe 2 optimal methods for obtaining this, but
other approaches are possible.

The first method is by applying amplitude amplification, not on the original
algorithm A, but on a slightly modified version of it. By Equation 8, if we measure
the state QmA|0〉, then the outcome is good with probability sin2((2m + 1)θa).
In particular, if m̃ = π/4θa− 1/2 happens to be an integer, then we would succeed
with certainty after m̃ applications of Q. In general, m = dm̃e iterations is a fraction
of 1 iteration too many, but we can compensate for that by choosing θa = π/(4m+
2), an angle slightly smaller than θa. Any quantum algorithm that succeeds with
probability a such that sin2(θa) = a, will succeed with certainty after m iterations

8 G. BRASSARD, P. HØYER, M. MOSCA, AND A. TAPP

of amplitude amplification. Given A and its initial success probability a, it is easy
to construct a new quantum algorithm that succeeds with probability a ≤ a: Let
B denote the quantum algorithm that takes a single qubit in the initial state |0〉
and rotates it to the superposition

√
1− a/a |0〉 +

√
a/a |1〉. Apply both A and

B, and define a good solution as one in which A produces a good solution, and the
outcome of B is the state |1〉. Theorem 4 follows.

Theorem 4 (Quadratic speedup with known a). Let A be any quantum algo-
rithm that uses no measurements, and let χ : Z→ {0, 1} be any Boolean function.
There exists a quantum algorithm that given the initial success probability a > 0 of
A, finds a good solution with certainty using a number of applications of A and A−1

which is in Θ(1√
a
) in the worst case.

The second method to obtain success probability 1 requires a generalization of
operator Q. Given angles 0 ≤ φ, ϕ < 2π, redefine Q as follows,

(10) Q = Q(A, χ, φ, ϕ) = −AS0(φ)A−1 Sχ(ϕ).

Here, the operator Sχ(ϕ) is the natural generalization of the Sχ operator,

|x〉 7−→

{
eıϕ|x〉 if χ(x) = 1
|x〉 if χ(x) = 0.

Similarly, the operator S0(φ) multiplies the amplitude by a factor of eıφ if and only
if the state is the zero state |0〉. The action of operator Q(A, χ, φ, ϕ) is also realized
by applying an operator that is composed of two pseudo-reflections: the operator
AS0(φ)A−1 and the operator −Sχ(ϕ).

The next lemma shows that the subspace HΨ spanned by |Ψ1〉 and |Ψ0〉 is
stable under the action of Q, just as in the special case Q(A, χ, π, π) studied above.

Lemma 5. Let Q = Q(A, χ, φ, ϕ). Then

Q|Ψ1〉 = eıϕ((1− eıφ)a− 1)|Ψ1〉+ eıϕ(1− eıφ)a|Ψ0〉

Q|Ψ0〉 = (1− eıφ)(1− a)|Ψ1〉 − ((1− eıφ)a+ eıφ)|Ψ0〉,

where a = 〈Ψ1|Ψ1〉.

Let m̃ = π/4θa − 1/2, and suppose that m̃ is not an integer. In the second
method to obtain a good solution with certainty, we also apply dm̃e iterations of
amplitude amplification, but now we slow down the speed of the very last iteration
only, as opposed to of all iterations as in the first method. For the case m̃ < 1, this
second method has also been suggested by Chi and Kim [6]. We start by applying
the operator Q(A, χ, φ, ϕ) with φ = ϕ = π a number of bm̃c times to the initial
state |Ψ〉 = A|0〉. By Equation 8, this produces the superposition

1√
a

sin
(
(2bm̃c+ 1)θa

)
|Ψ1〉+

1√
1− a

cos
(
(2bm̃c+ 1)θa

)
|Ψ0〉.

Then, we apply operator Q one more time, but now using angles φ and ϕ, both
between 0 and 2π, satisfying

(11) eıϕ(1− eıφ)
√
a sin

(
(2bm̃c+ 1)θa

)
= ((1− eıφ)a+ eıφ)

1√
1− a

cos
(
(2bm̃c+ 1)θa

)
.

QUANTUM AMPLITUDE AMPLIFICATION AND ESTIMATION 9

By Lemma 5, this ensures that the resulting superposition has inner product zero
with |Ψ0〉, and thus a subsequent measurement will yield a good solution with
certainty.

The problem of choosing φ, ϕ ∈ R such that Equation 11 holds is equivalent to
requiring that

(12) cot
(
(2bm̃c+ 1)θa

)
= eıϕ sin(2θa)

(
− cos(2θa) + ı cot(φ/2)

)−1
.

By appropriate choices of φ and ϕ, the right hand side of Equation 12 can be made
equal to any nonzero complex number of norm at most tan(2θa). Thus, since the
left hand side of this equation is equal to some real number smaller than tan(2θa),
there exist φ, ϕ ∈ R such that Equation 12 is satisfied, and hence also such that
the expression in Equation 11 vanishes. In conclusion, applying Q(A, χ, φ, ϕ) with
such φ, ϕ ∈ R at the very last iteration allows us to measure a good solution with
certainty.

3. Heuristics

As explained in the previous section, using the amplitude amplification tech-
nique to search for a solution to a search problem, one obtains a quadratic speedup
compared to a brute force search. For many problems, however, good heuristics are
known for which the expected running time, when applied to a “real-life” problem,
is in o(

√
N), where N is the size of the search space. This fact would make am-

plitude amplification much less useful unless a quantum computer is somehow able
to take advantage of these classical heuristics. In this section we concentrate on a
large family of classical heuristics that can be applied to search problems. We show
how these heuristics can be incorporated into the general amplitude amplification
process.

By a heuristic, we mean a probabilistic algorithm, running in polynomial time,
that outputs what one is searching for with some non-negligible probability.

Suppose we have a family F of functions such that each f ∈ F is of the form
f : X → {0, 1}. For a given function f we seek an input x ∈ X such that f(x) = 1.
A heuristic is a function G : F × R → X, for an appropriate finite set R. The
heuristic G uses a random seed r ∈ R to generate a guess for an x such that
f(x) = 1. For every function f ∈ F , let tf = |{x ∈ X | f(x) = 1}|, the number of
good inputs x, and let hf = |{r ∈ R | f(G(f, r)) = 1}|, the number of good seeds.
We say that the heuristic is efficient for a given f if hf/|R| > tf/|X|, that is, if using
G and a random seed to generate inputs to f succeeds with a higher probability
than directly guessing inputs to f uniformly at random. The heuristic is good in
general if

EF

(
hf
|R|

)
> EF

(
tf
|X|

)
.

Here EF denotes the expectation over all f according to some fixed distribution.
Note that for some f , hf might be small but repeated uses of the heuristic, with
seeds uniformly chosen in R, will increase the probability of finding a solution.

Theorem 6. Let F ⊆ {f | f : X → {0, 1}} be a family of Boolean functions and
D be a probability distribution over F . If on a classical computer, using heuristic
G : F × R → X, one finds x0 ∈ X such that f(x0) = 1 for random f taken from
distribution D in expected time T then using a quantum computer, a solution can
be found in expected time in O(

√
T).

10 G. BRASSARD, P. HØYER, M. MOSCA, AND A. TAPP

Proof. A simple solution to this problem is to embed the classical heuristic
G into the function used in the algorithm QSearch. Let χ(r) = f(G(f, r)) and
x = G(f,QSearch(W, χ)), so that f(x) = 1. By Theorem 3, for each function
f ∈ F , we have an expected running time in Θ(

√
|R|/hf). Let Pf denote the

probability that f occurs. Then
∑
f∈F Pf = 1, and we have that the expected

running time is in the order of
∑
f∈F

√
|R|/hf Pf , which can be rewritten as

∑
f∈F

√
|R|
hf

Pf
√
Pf ≤

∑
f∈F

|R|
hf

Pf

1/2∑
f∈F

Pf

1/2

=

∑
f∈F

|R|
hf

Pf

1/2

by Cauchy–Schwarz’s inequality. ut

An alternative way to prove Theorem 6 is to incorporate the heuristic into the
operator A and do a minor modification to f . Let A be the quantum implementa-
tion of G. It is required that the operator A be unitary, but clearly in general the
classical heuristic does not need to be reversible. As usual in quantum algorithms
one will need first to modify the heuristic G : F ×R→ X to make it reversible,
which can be done efficiently using standard techniques [2]. We obtain a reversible
function G′f : R×0→ R×X. Let A be the natural unitary operation implementing
G′f and let us modify χ (the good set membership function) to consider only the
second part of the register, that is χ((r, x)) = 1 if and only if f(x) = 1. We then
have that a = hf/|R| and by Theorem 3, for each function f ∈ F , we have an
expected running time in Θ(

√
|R|/hf). The rest of the reasoning is similar. This

alternative technique shows, using a simple example, the usefulness of the general
scheme of amplitude amplification described in the preceding section, although it
is clear that from a computational point of view this is strictly equivalent to the
technique given in the earlier proof of the theorem.

4. Quantum amplitude estimation

Section 2 dealt in a very general way with combinatorial search problems,
namely, given a Boolean function f : X → {0, 1} find an x ∈ X such that
f(x) = 1. In this section, we deal with the related problem of estimating
t = |{x ∈ X | f(x) = 1}|, the number of inputs on which f takes the value 1.

We can describe this counting problem in terms of amplitude estimation. Us-
ing the notation of Section 2, given a unitary transformation A and a Boolean
function χ, let |Ψ〉 = A|0〉. Write |Ψ〉 = |Ψ1〉 + |Ψ0〉 as a superposition of the
good and bad components of |Ψ〉. Then amplitude estimation is the problem of
estimating a = 〈Ψ1|Ψ1〉, the probability that a measurement of |Ψ〉 yields a good
state.

The problem of estimating t = |{x ∈ X | f(x) = 1}| can be formulated in these
terms as follows. For simplicity, we take X = {0, 1, . . . , N − 1}. If N is a power
of 2, then we set χ = f and A = W. If N is not a power of 2, we set χ = f and
A = FN , the quantum Fourier transform which, for every integer M ≥ 1, is defined
by

(13) FM : |x〉 7−→ 1√
M

M−1∑
y=0

e2πıxy/M |y〉 (0 ≤ x < M).

QUANTUM AMPLITUDE AMPLIFICATION AND ESTIMATION 11

Then in both cases we have a = t/N , and thus an estimate for a directly translates
into an estimate for t.

To estimate a, we make good use of the properties of operator Q =
−AS0A−1 Sf . By Equation 8 in Section 2, we have that the amplitudes of |Ψ1〉
and |Ψ0〉 as functions of the number of applications of Q, are sinusoidal functions,
both of period π

θa
. Recall that 0 ≤ θa ≤ π/2 and a = sin2(θa), and thus an estimate

for θa also gives an estimate for a.
To estimate this period, it is a natural approach [5] to apply Fourier analysis

like Shor [15] does for a classical function in his factoring algorithm. This approach
can also be viewed as an eigenvalue estimation [12, 7] and is best analysed in the
basis of eigenvectors of the operator at hand [13]. By Equation 4, the eigenvalues
of Q on the subspace spanned by |Ψ1〉 and |Ψ0〉 are λ+ = eı2θa and λ− = e−ı2θa .
Thus we can estimate a simply by estimating one of these two eigenvalues. Errors
in our estimate θ̃a for θa translate into errors in our estimate ã = sin2(θ̃a) for a, as
described in the next lemma.

Lemma 7. Let a = sin2(θa) and ã = sin2(θ̃a) with 0 ≤ θa, θ̃a ≤ 2π then∣∣θ̃a − θa∣∣ ≤ ε ⇒ |ã− a| ≤ 2ε
√
a(1− a) + ε2 .

Proof. For ε ≥ 0, using standard trigonometric identities, we obtain

sin2(θa + ε)− sin2(θa) =
√
a(1− a) sin(2ε) + (1− 2a) sin2(ε) and

sin2(θa)− sin2(θa − ε) =
√
a(1− a) sin(2ε) + (2a− 1) sin2(ε).

The inequality follows directly. ut

We want to estimate one of the eigenvalues of Q. For this purpose, we utilize
the following operator Λ. For any positive integer M and any unitary operator U,
the operator ΛM (U) is defined by

(14) |j〉|y〉 7−→ |j〉(Uj |y〉) (0 ≤ j < M).

Note that if |Φ〉 is an eigenvector of U with eigenvalue e2πıω, then ΛM (U) maps
|j〉|Φ〉 to e2πıωj |j〉|Φ〉.

Definition 8. For any integer M > 0 and real number 0 ≤ ω < 1, let

|SM (ω)〉 =
1√
M

M−1∑
y=0

e2πıωy |y〉.

We then have, for all 0 ≤ x ≤M − 1

FM |x〉 = |SM (x/M)〉.

The state |SM (ω)〉 encodes the angle 2πω (0 ≤ ω < 1) in the phases of an
equally weighted superposition of all basis states. Different angles have different
encodings, and the overlap between |SM (ω0)〉 and |SM (ω1)〉 is a measure for the
distance between the two angles ω0 and ω1.

Definition 9. For any two real numbers ω0, ω1 ∈ R, let d(ω0, ω1) =
minz∈Z{|z + ω1 − ω0|}.

Thus 2πd(ω0, ω1) is the length of the shortest arc on the unit circle going from
e2πıω0 to e2πıω1 .

12 G. BRASSARD, P. HØYER, M. MOSCA, AND A. TAPP

Lemma 10. For 0 ≤ ω0 < 1 and 0 ≤ ω1 < 1 let ∆ = d(ω0, ω1). If ∆ = 0 we
have |〈SM (ω0)|SM (ω1)〉|2 = 1. Otherwise

|〈SM (ω0)|SM (ω1)〉|2 =
sin2(M∆π)
M2 sin2(∆π)

.

Proof.

|〈SM (ω0)|SM (ω1)〉|2 =

∣∣∣∣∣
(

1√
M

M−1∑
y=0

e−2πıω0y〈y|

)(
1√
M

M−1∑
y=0

e2πıω1y|y〉

)∣∣∣∣∣
2

=
1
M2

∣∣∣∣∣
M−1∑
y=0

e2πı∆y

∣∣∣∣∣
2

=
sin2(M∆π)
M2 sin2(∆π)

.

ut

Consider the problem of estimating ω where 0 ≤ ω < 1, given the state |SM (ω)〉.
If ω = x/M for some integer 0 ≤ x < M , then F−1

M |SM (x/M)〉 = |x〉 by definition,
and thus we have a perfect phase estimator. If Mω is not an integer, then observing
F−1
M |SM (ω)〉 still provides a good estimation of ω, as shown in the following theorem.

Theorem 11. Let X be the discrete random variable corresponding to the clas-
sical result of measuring F−1

M |SM (ω)〉 in the computational basis. If Mω is an
integer then Prob(X = Mω) = 1. Otherwise, letting ∆ = d(ω, x/M),

Prob(X = x) =
sin2(M∆π)
M2 sin2(∆π)

≤ 1
(2M∆)2

.

For any k > 1 we also have

Prob (d(X/M,ω) ≤ k/M) ≥ 1− 1
2(k − 1)

and, in the case k = 1 and M > 2,

Prob (d(X/M,ω) ≤ 1/M) ≥ 8
π2

.

Proof. Clearly

Prob(X = x) =
∣∣〈x|F−1|SM (ω)〉

∣∣2
=
∣∣(F|x〉)†|SM (ω)〉

∣∣2
= |〈SM (x/M)|SM (ω)〉|2

thus using Lemma 10 we directly obtain the first part of the theorem. We use this
fact to prove the next part of the theorem.

Prob (d(X/M,ω) ≤ k/M) = 1− Prob(d(X/M,ω) > k/M)

≥ 1− 2
∞∑
j=k

1
4M2(j

M)2

≥ 1− 1
2(k − 1)

.

QUANTUM AMPLITUDE AMPLIFICATION AND ESTIMATION 13

For the last part, we use the fact that for M > 2, the given expression attains
its minimum at ∆ = 1/(2M) in the range 0 ≤ ∆ ≤ 1/M .

Prob (d(X/M,ω) ≤ 1/M) = Prob(X = bMωc) + Prob(X = dMωe)

=
sin2(M∆π)
M2 sin2(∆π)

+
sin2(M(1

M −∆)π)
M2 sin2((1

M −∆)π)

≥ 8
π2
.

ut

The following algorithm computes an estimate for a, via an estimate for θa.

Algorithm(Est Amp(A, χ,M))
(1) Initialize two registers of appropriate sizes to the state |0〉A|0〉.
(2) Apply FM to the first register.
(3) Apply ΛM (Q) where Q = −AS0A−1 Sχ.
(4) Apply F−1

M to the first register.
(5) Measure the first register and denote the outcome |y〉.
(6) Output ã = sin2(π y

M).

Steps 1 to 5 are illustrated on Figure 1. This algorithm can also be summarized,
following the approach in [11], as the unitary transformation(

(F−1
M ⊗ I) ΛM (Q) (FM ⊗ I)

)
applied on state |0〉A|0〉, followed by a measurement of the first register and classical
post-processing of the outcome. In practice, we could choose M to be a power of 2,
which would allow us to use a Walsh–Hadamard transform instead of a Fourier
transform in step 2.

Qj

FM F−1
M

|0〉

|0〉

|0〉

|0〉

A|0〉

|y〉

s

s

Figure 1. Quantum circuit for amplitude estimation.

14 G. BRASSARD, P. HØYER, M. MOSCA, AND A. TAPP

Theorem 12 (Amplitude Estimation). For any positive integer k, the algo-
rithm Est Amp(A, χ,M) outputs ã (0 ≤ ã ≤ 1) such that

|ã− a| ≤ 2πk

√
a(1− a)
M

+ k2 π
2

M2

with probability at least 8
π2 when k = 1 and with probability greater than 1− 1

2(k−1)

for k ≥ 2. It uses exactly M evaluations of f . If a = 0 then ã = 0 with certainty,
and if a = 1 and M is even, then ã = 1 with certainty.

Proof. After step 1, by Equation 6, we have state

|0〉A|0〉 =
−ı√

2
|0〉
(
eıθa |Ψ+〉 − e−ıθa |Ψ−〉

)
.

After step 2, ignoring global phase, we have

1√
2M

M−1∑
j=0

|j〉
(
eıθa |Ψ+〉 − e−ıθa |Ψ−〉

)
and after applying ΛM (Q) we have

1√
2M

M−1∑
j=0

|j〉
(
eıθae2ıjθa |Ψ+〉 − e−ıθae−2ıjθa |Ψ−〉

)
=

eıθa√
2M

M−1∑
j=0

e2ıjθa |j〉|Ψ+〉 −
e−ıθa√

2M

M−1∑
j=0

e−2ıjθa |j〉|Ψ−〉

=
eıθa√

2
|SM (θaπ)〉|Ψ+〉 −

e−ıθa√
2
|SM (1− θa

π)〉|Ψ−〉.

We then apply F−1
M to the first register and measure it in the computational basis.

The rest of the proof follows from Theorem 11. Tracing out the second register
in the eigenvector basis, we see that the first register is in an equally weighted mix-
ture of F−1

M |SM (θaπ)〉 and F−1
M |SM (1− θa

π)〉. Thus the measured value |y〉 is the re-
sult of measuring either the state F−1

M |SM (θaπ)〉 or the state F−1
M |SM (1− θa

π)〉. The
probability of measuring |y〉 given the state F−1

M |SM (1− θa
π)〉 is equal to the prob-

ability of measuring |M − y〉 given the state F−1
M |SM (θaπ)〉. Since sin2

(
π (M−y)

M

)
=

sin2
(
π y
M

)
, we can assume we measured |y〉 given the state F−1

M |SM (θaπ)〉 and
θ̃a = π y

M estimates θa as described in Theorem 11. Thus we obtain bounds on
d(θ̃a, θa) that translate, using Lemma 7, into the appropriate bounds on |ã−a|. ut

A straightforward application of this algorithm is to approximately count the
number of solutions t to f(x) = 1. To do this we simply set A = W if N is a
power of 2, or in general A = FN or any other transformation that maps |0〉 to

1√
N

∑N−1
j=0 |j〉. Setting χ = f , we then have a = 〈Ψ1|Ψ1〉 = t/N , which suggests

the following algorithm.

Algorithm(Count(f,M))

(1) Output t′ = N × Est Amp(FN , f,M).

By Theorem 12, we obtain the following.

QUANTUM AMPLITUDE AMPLIFICATION AND ESTIMATION 15

Theorem 13 (Counting). For any positive integers M and k, and any Boolean
function f : {0, 1, . . . , N − 1} → {0, 1}, the algorithm Count(f,M) outputs an
estimate t′ to t = |f−1(1)| such that∣∣t′ − t∣∣ ≤ 2πk

√
t(N − t)
M

+ π2k2 N

M2

with probability at least 8/π2 when k = 1, and with probability greater than 1− 1
2(k−1)

for k ≥ 2. If t = 0 then t′ = 0 with certainty, and if t = N and M is even, then
t′ = N with certainty.

Note that Count(f,M) outputs a real number. In the following counting
algorithms we will wish to output an integer, and therefore we will round off the
output of Count to an integer. To assure that the rounding off can be done
efficiently1 we will round off to an integer t̃ satisfying

∣∣t̃−Count(f,M)
∣∣ ≤ 2

3 .
If we want to estimate t within a few standard deviations, we can apply algo-

rithm Count with M =
⌈√

N
⌉
.

Corollary 14. Given a Boolean function f : {0, 1, . . . , N −1} → {0, 1} with t
defined as above, rounding off the output of Count

(
f,
⌈√

N
⌉)

gives an estimate t̃
such that

(15)
∣∣t̃− t∣∣ < 2π

√
t(N − t)

N
+ 11

with probability at least 8/π2 and requires exactly
⌈√

N
⌉

evaluations of f .

We now look at the case of estimating t with some relative error, also referred to
as approximately counting t with accuracy ε. For this we require the following crucial
observation about the output t′ of algorithm Count(f, L). Namely t′ is likely to
be equal to zero if and only if L ∈ o(

√
N/t). Thus, we can find a rough estimate

of
√
N/t simply by running algorithm Count(f, L) with exponentially increasing

values of L until we obtain a non-zero output. Having this rough estimate L
of
√
N/t we can then apply Theorem 13 with M in the order of 1

εL to find an
estimate t̃ of t with the required accuracy. The precise algorithm is as follows.

Algorithm(Basic Approx Count(f, ε))
(1) Start with ` = 0.
(2) Increase ` by 1.
(3) Set t′ = Count(f, 2`).
(4) If t′ = 0 and 2` < 2

√
N then go to step 2.

(5) Set M =
⌈

20π2

ε 2`
⌉
.

(6) Set t′ = Count(f,M).
(7) Output an integer t̃ satisfying

∣∣t̃− t′∣∣ ≤ 2
3 .

Theorem 15. Given a Boolean function f with N and t defined as above, and
any 0 < ε ≤ 1, Basic Approx Count(f, ε) outputs an estimate t̃ such that∣∣t̃− t∣∣ ≤ εt

1For example, if t′ + 1
2

is super-exponentially close to an integer n we may not be able to

decide efficiently if t′ is closer to n or n− 1.

16 G. BRASSARD, P. HØYER, M. MOSCA, AND A. TAPP

with probability at least 2
3 , using an expected number of evaluations of f which is in

Θ
(

1
ε

√
N/t

)
. If t = 0, the algorithm outputs t̃ = t with certainty and f is evaluated

a number of times in Θ
(√
N
)
.

Proof. When t = 0, the analysis is straightforward. For t > 0, let θ denote
θt/N and m =

⌊
log2(1

5θ)
⌋
. From Theorem 11 we have that the probability that

step 3 outputs Count(f, 2`) = 0 for ` = 1, 2, . . . ,m is
m∏
`=1

sin2(2`θ)
22` sin2(θ)

≥
m∏
`=1

cos2(2`θ) =
sin2(2m+1θ)
22m sin2(2θ)

≥ cos2
(

2
5

)
.

The previous inequalities are obtained by using the fact that sin(Mθ) ≥
M sin(θ) cos(Mθ) for any M ≥ 0 and 0 ≤ Mθ < π

2 , which can be readily seen
by considering the Taylor expansion of tan(x) at x = Mθ.

Now assuming step 3 has outputted 0 at least m times (note that
2m ≤ 1

5θ ≤
1
5

√
N/t < 2

√
N), after step 5 we have M ≥ 20π2

ε 2m+1 ≥ 4π2

εθ and
by Theorem 13 (and the fact that θ ≤ π

2 sin(θ) = π
2

√
t/N) the probability that

Count(f,M) outputs an integer t′ satisfying |t′ − t| ≤ ε
4 t + ε2

64 t is at least 8/π2.
Let us suppose this is the case. If εt < 1, then |t̃ − t| < 1 and, since t̃ and t are
both integers, we must have t = t̃. If εt ≥ 1, then rounding off t′ to t̃ introduces
an error of at most 2

3 ≤
2ε
3 t, making the total error at most ε

4 t + ε2

64 t + 2ε
3 t < εt.

Therefore the overall probability of outputting an estimate with error at most εt is
at least cos2

(
2
5

)
× (8/π2) > 2

3 .
To upper bound the number of applications of f , note that by Theorem 13,

for any integer L ≥ 18π
√
N/t, the probability that Count(f, L) outputs 0 is less

than 1/4. Thus the expected value of M at step 6 is in Θ(1
ε

√
N/t). ut

We remark that in algorithm Basic Approx Count, we could alternatively
to steps 1 to 4 use algorithm QSearch of Section 2, provided we have QSearch
also output its final value of M . In this case, we would use (a multiple of) that
value as our rough estimate of

√
N/t, instead of using the final value of 2` found

in step 4 of Basic Approx Count.
Algorithm Basic Approx Count is optimal for any fixed ε, but not in general.

In Appendix A we give an optimal algorithm, while we now present two simple
optimal algorithms for counting the number of solutions exactly. That is, we now
consider the problem of determining the exact value of t = |f−1(−1)|. In the
special case that we are given a nonzero integer t0 and promised that either t = 0
or t = t0, then we can determine which is the case with certainty using a number
of evaluations of f in O(

√
N/t0). This is an easy corollary of Theorem 4 and we

state it without proof.

Theorem 16. Let f : {0, 1, . . . , N − 1} → {0, 1} be a given Boolean function
such that the cardinality of the preimage of 1 is either 0 or t0. Then there exists a
quantum algorithm that determines with certainty which is the case using a number
of evaluations of f which is in Θ

(√
N/t0

)
, and in the latter case, also outputs a

random element of f−1(1).

For the general case in which we do not have any prior knowledge about t, we
offer the following algorithm.

QUANTUM AMPLITUDE AMPLIFICATION AND ESTIMATION 17

Algorithm(Exact Count(f))

(1) Set t′1 = Count
(
f,
⌈
14π
√
N
⌉)

and t′2 = Count
(
f,
⌈
14π
√
N
⌉)

.
(2) Let Mi =

⌈
30
√

(t′i + 1)(N − t′i + 1)
⌉

for i = 1, 2.
(3) Set M = min{M1,M2}.
(4) Set t′ = Count(f,M).
(5) Output an integer t̃ satisfying

∣∣t̃− t′∣∣ ≤ 2
3 .

The main idea of this algorithm is the same as that of algorithm
Basic Approx Count. First we find a rough estimate t′r of t, and then we run
algorithm Count(f,M) with a value of M that depends on t′r. By Theorem 13, if
we set M to be in the order of

√
t′r(N − t′r), then the output t′ = Count(f,M) is

likely to be so that |t′ − t| < 1
3 , in which case t̃ = t.

Theorem 17. Given a Boolean function f with N and t defined as above,
algorithm Exact Count requires an expected number of evaluations of f which is
in Θ(

√
(t+ 1)(N − t+ 1)) and outputs an estimate t̃ which equals t with probability

at least 2
3 using space only linear in log(N).

Proof. Apply Theorem 13 with k = 7. For each i = 1, 2, with probability

greater than 11
12 , outcome t′i satisfies

∣∣t′i− t∣∣ <√ t(N−t)
N +1/4, in which case we also

have that
√
t(N − t) ≤

√
2

30 Mi. Thus, with probability greater than
(

11
12

)2, we have√
t(N − t)
M

≤
√

2
30
.

Suppose this is the case. Then by Theorem 13, with probability at least 8/π2,

|t′ − t| ≤ 2π
√

2
30

+
4π2

302
<

1
3

and consequently
|t̃− t| < 1.

Hence, with probability at least
(

11
12

)2 × 8/π2 > 2
3 , we have t̃ = t.

The number of applications of f is 2
⌈
14π
√
N
⌉

+ M . Consider the expected
value of Mi for i = 1, 2. Since√

(t′i + 1)(N − t′i + 1) ≤
√

(t+ 1)(N − t+ 1) +
√
N |t′i − t|

for any 0 ≤ t′i, t ≤ N , we just need to upper bound the expected value of
√
N |t′i − t|.

By Theorem 13, for any k ≥ 2,

|t′i − t| ≤ k

√
t(N − t)

N
+ k2

with probability at least 1− 1
k . Hence Mi is less than

(16) 30(1 + k)
(√

(t+ 1)(N − t+ 1) +
√
N
)

+ 1

with probability at least 1− 1
k .

In particular, the minimum of M1 and M2 is greater than the expression given
in Equation 16 with probability at most 1

k2 . Since any positive random variable Z
satisfying Prob(Z > k) ≤ 1

k2 has expectation upper bounded by a constant, the
expected value of M is in O

(√
(t+ 1)(N − t+ 1)

)
. ut

18 G. BRASSARD, P. HØYER, M. MOSCA, AND A. TAPP

It follows from Theorem 4.10 of [1] that any quantum algorithm capable of de-
ciding with high probability whether or not a function f : {0, 1, . . . , N − 1} → {0, 1}
is such that |f−1(1)| ≤ t, given some 0 < t < N , must query f a number of times
which is at least in Ω

(√
(t+ 1)(N − t+ 1)

)
times. Therefore, our exact counting

algorithm is optimal up to a constant factor.
Note also that successive applications of Grover’s algorithm in which we strike

out the solutions as they are found will also provide an algorithm to perform exact
counting. In order to obtain a constant probability of success, if the algorithm fails
to return a new element, one must do more than a constant number of trials. In
particular, repeating until we get log(N) failures will provide an overall constant
probability of success. Unfortunately, the number of applications of f is then in
O
(√
tN + log(N)

√
N/t

)
and the cost in terms of additional quantum memory is

prohibitive, that is in Θ(t).

5. Concluding remarks

Let f : {0, 1, . . . , N − 1} → {0, 1} be a function provided as a black box, in
the sense that the only knowledge available about f is given by evaluating it on
arbitrary points in its domain. We are interested in the number of times that
f must be evaluated to achieve certain goals, and this number is our measure of
efficiency. Grover’s algorithm can find the x0 such that f(x0) = 1 quadratically
faster in the expected sense than the best possible classical algorithm provided the
solution is known to be unique [8, 9]. We have generalized Grover’s algorithm in
several directions.

� The quadratic speedup remains when the solution is not unique, even if
the number of solutions is not known ahead of time.
� If the number of solutions is known (and nonzero), we can find one

quadratically faster in the worst case than would be possible classically
even in the expected case.
� If the number t of solutions is known to be either 0 or t0, we can tell

which is the case with certainty, and exhibit a solution if t > 0, in a time
in O(

√
N/t0) in the worst case. By contrast, the best classical algorithm

would need N − t0 + 1 queries in the worst case. This is much better than
a quadratic speedup when t0 is large.
� The quadratic speedup remains in a variety of settings that are not con-

strained to the black-box model: even if additional information about f
can be used to design efficient classical heuristics, we can still find solu-
tions quadratically faster on a quantum computer, provided the heuristic
falls under the broad scope of our technique.
� We give efficient quantum algorithms to estimate the number of solutions

in a variety of error models. In all cases, our quantum algorithms are
proven optimal, up to a multiplicative constant, among all possible quan-
tum algorithms. In most cases, our quantum algorithms are known to be
quadratically faster than the best possible classical algorithm. In the case
of counting the number of solutions up to relative error ε, our optimal
quantum algorithm is quadratically faster than the best known classical
algorithm for fixed ε, but in fact it is better than that when ε is not a
constant. Since we do not believe that a super-quadratic quantum im-
provement for a non-promise black-box problem is possible, we conjecture

QUANTUM AMPLITUDE AMPLIFICATION AND ESTIMATION 19

that there exists a classical algorithm that uses a number of queries in

O(min{M2, N}), where M =
√

N
bεtc+1 +

√
t(N−t)
bεtc+1 is proportional to the

number of queries required by our optimal quantum algorithm. This con-
jecture is further supported by the fact that we can easily find a good
estimate for M2, without prior knowledge of t, using a number of classical
queries in O(1

ε + N
t+1).

� We can amplify efficiently the success probability not only of classical
search algorithms, but also of quantum algorithms. More precisely, if a
quantum algorithm can output an x that has probability a > 0 of being
such that f(x) = 1, then a solution can be found after evaluating f an
expected number of time in O(1/

√
a). If the value of a is known, a

solution can be found after evaluating f a number of time inO(1/
√
a) even

in the worst case. We call this process amplitude amplification. Again,
this is quadratically faster than would be possible if the quantum search
algorithm were available as a black box to a classical algorithm.
� Finally, we provide a general technique, known as amplitude estima-

tion, to estimate efficiently the success probability a of quantum search
algorithms. This is the natural quantum generalization of the above-
mentioned technique to estimate the number of classical solutions to the
equation f(x) = 1.

The following table summarizes the number of applications of the given func-
tion f in the quantum algorithms presented in this paper. The table also compares
the quantum complexities with the classical complexities of these problems, when
the latter are known. Any lower bounds indicated (implicit in the use of the “Θ”
notation) correspond to those in the black-box model of computation. In the case
of the efficiency of quantum counting with accuracy ε, we refer to the algorithm
given below in the Appendix.

Problem Quantum Complexity Classical Complexity

Decision Θ(
√
N/(t+ 1)) Θ(N/(t+ 1))

Searching Θ(
√
N/(t+ 1)) Θ(N/(t+ 1))

Counting with error
√
t Θ(

√
N)

Counting with accuracy ε Θ
(√

N
bεtc+1 +

√
t(N−t)
bεtc+1

)
O(1

ε2N/(t+ 1))

Exact counting Θ
(√

(t+ 1)(N − t+ 1)
)

Θ(N)

We leave as open the problem of finding a quantum algorithm that exploits
the structure of some searching or counting problem in a genuinely quantum way.
By this, we mean in a way that is not equivalent to applying amplitude amplifi-
cation or amplitude estimation to a classical heuristic. Note that Shor’s factoring
algorithm does this in the different context of integer factorization.

Acknowledgements

We are grateful to Joan Boyar, Harry Buhrman, Artur Ekert, Ashwin Nayak,
Jeff Shallitt, Barbara Terhal and Ronald de Wolf for helpful discussions.

20 G. BRASSARD, P. HØYER, M. MOSCA, AND A. TAPP

Appendix A. Tight Algorithm for Approximate
Counting

Here we combine the ideas of algorithms Basic Approx Count and Ex-
act Count to obtain an optimal algorithm for approximately counting. That this
algorithm is optimal follows readily from Corollary 1.2 and Theorem 1.13 of Nayak
and Wu [14].

Theorem 18. Given a Boolean function f with N and t defined as above, and
any ε such that 1

3N < ε ≤ 1, the following algorithm Approx Count(f, ε) outputs
an estimate t̃ such that ∣∣t̃− t∣∣ ≤ εt

with probability at least 2
3 , using an expected number of evaluations of f in the order

of

S =

√
N

bεtc+ 1
+

√
t(N − t)
bεtc+ 1

.

If t = 0 or t = N , the algorithm outputs t̃ = t with certainty.

We assume that εN > 1/3, since otherwise approximately counting with accu-
racy ε reduces to exact counting. Set

(17) S′ = min

{
1√
ε

√
N

t

(
1 +

√
N − t
εN

)
,
√

(t+ 1)(N − t+ 1)

}
and note that S′ ∈ Θ(S) where S is defined as in Theorem 18. The algorithm works
by finding approximate values for each of the different terms in Equation 17. The
general outline of the algorithm is as follows.

Algorithm(Approx Count(f, ε))

(1) Find integer L1 approximating
√
N/(t+ 1).

(2) Find integer L2 approximating
√

(N − t)/(εN).
(3) Set M1 = 1√

ε
L1(1 + L2).

(4) If M1 >
√
N then find integer M2 approximating

√
(t+ 1)(N − t+ 1). If

M1 ≤
√
N then set M2 =∞.

(5) Set M = min{M1,M2}.
(6) Set t′ = Count(f, d10πMe).
(7) Output an integer t̃ satisfying

∣∣t̃− t′∣∣ ≤ 2
3 .

Proof. To find L1, we run steps 1 to 4 of algorithm Basic Approx Count
and then set L1 = d9π × 2le. A proof analogous to that of Theorem 15 gives that

• L1 >
√
N/(t+ 1) with probability at least 0.95, and

• the expected value of L1 is in Θ
(√

N/(t+ 1)
)
.

This requires a number of evaluations of f which is in Θ(L1) , and thus, the expected
number of evaluations of f so far is in O(S′).

In step 2, for some constant c to be determined below, we use 2
⌈
c√
ε

⌉
evaluations

of f to find integer L2 satisfying
• L2 >

√
(N − t)/(εN) with probability at least 0.95, and

• the expected value of L2 is in O
(√

(N − t+ 1)/(εN)
)
.

QUANTUM AMPLITUDE AMPLIFICATION AND ESTIMATION 21

Since N − t = |f−1(0)|, finding such L2 boils down to estimating, with accuracy
in Θ(

√
ε), the square root of the probability that f takes the value 0 on a random

point in its domain. Or equivalently, the probability that ¬f takes the value 1,
where ¬f = 1 − f . Suppose for some constant c, we run Count(¬f,

⌈
c√
ε

⌉
) twice

with outputs r̃1 and r̃2. By Theorem 13, each output r̃i (i = 1, 2) satisfies that∣∣∣∣∣
√

r̃i
εN
−
√
N − t
εN

∣∣∣∣∣ ≤
√

2πk
c

4

√
N − t
εN

+
πk

c

with probability at least 1 − 1
2(k−1) for every k ≥ 2. It follows that r̃ =

min
{√

r̃1/(εN),
√
r̃2/(εN)

}
has expected value in O

(√
(N − t+ 1)/(εN)

)
. Set-

ting k = 21, c = 8πk, and L2 = d2r̃e+1, ensures that L2 satisfies the two properties
mentioned above. The number of evaluations of f in step 2 is in Θ(1√

ε
) which is

in O(S′).
In step 3, we set M1 = 1√

ε
L1(1 + L2). Note that

• M1 >
1√
ε

√
N
t+1

(
1 +

√
N−t
εN

)
with probability at least 0.952, and

• the expected value of M1 is in the order of 1√
ε

√
N
t+1

(
1 +

√
N−t+1
εN

)
.

In step 4, analogously to algorithm Exact Count, a number of evaluations of
f in Θ(

√
N) suffices to find an integer M2 such that

• M2 >
√

(t+ 1)(N − t+ 1) with probability at least 0.95, and
• the expected value of M2 is in Θ

(√
(t+ 1)(N − t+ 1)

)
.

Fortunately, since
√

(t+ 1)(N − t+ 1) ≥
√
N , we shall only need M2 if M1 >

√
N .

We obtain that, after step 5,
• M is greater than

min

{
1√
ε

√
N

t+ 1

(
1 +

√
N − t
εN

)
,
√

(t+ 1)(N − t+ 1)

}
with probability at least 0.953 > 0.85, and
• the expected value of M is in O(S′).

To derive this latter statement, we use the fact that the expected value of the
minimum of two random variables is at most the minimum of their expectation.

Finally, by Theorem 13, applying algorithm Count(f, d10πMe) given such
an M , produces an estimate t′ of t such that |t′ − t| ≤ εt

3 (which implies that
|t̃− t| ≤ εt) with probability at least 8/π2. Hence our overall success probability is
at least 0.85×8/π2 > 2/3, and the expected number of evaluations of f is in O(S′).

ut

References

[1] Beals, Robert, Harry Buhrman, Richard Cleve, Michele Mosca and Ronald de Wolf,

“Quantum lower bounds by polynomials”, Proceedings of 39th Annual Symposium on Foun-
dations of Computer Science, November 1998, pp. 352 – 361.

[2] Bennett, Charles H., “Notes on the history of reversible computation”, IBM Journal of

Research and Development, 1988, Vol. 32, pp. 16 – 23.
[3] Boyer, Michel, Gilles Brassard, Peter Høyer and Alain Tapp, “Tight bounds on quan-

tum searching”, Fortschritte Der Physik, special issue on quantum computing and quantum
cryptography, 1998, Vol. 46, pp. 493 – 505.

22 G. BRASSARD, P. HØYER, M. MOSCA, AND A. TAPP

[4] Brassard, Gilles and Peter Høyer, “An exact quantum polynomial-time algorithm for Si-

mon’s problem”, Proceedings of Fifth Israeli Symposium on Theory of Computing and Sys-
tems, IEEE Computer Society Press, June 1997, pp. 12 – 23.

[5] Brassard, Gilles, Peter Høyer and Alain Tapp, “Quantum counting”, Proceedings of 25th

International Colloquium on Automata, Languages, and Programming, Lecture Notes in
Computer Science, Vol. 1443, Springer-Verlag, July 1998, pp. 820 – 831.

[6] Chi, Dong–Pyo and Jinsoo Kim, “Quantum database searching by a single query”, Lecture
at First NASA International Conference on Quantum Computing and Quantum Communi-

cations, Palm Springs, February 1998.
[7] Cleve, Richard, Artur Ekert, Chiara Macchiavello and Michele Mosca, “Quantum algo-

rithms revisited”, Proceedings of the Royal Society, London, Vol. A354, 1998, pp. 339 – 354.

[8] Grover, Lov K., “A fast quantum mechanical algorithm for database search”, Proceedings

of 28th Annual ACM Symposium on Theory of Computing, May 1996, pp. 212 – 219.
[9] Grover, Lov K., “Quantum mechanics helps in searching for a needle in a haystack”, Physical

Review Letters, Vol. 79, July 1997, pp. 325 – 328.
[10] Grover, Lov K., “Quantum computers can search rapidly by using almost any transforma-

tion”, Physical Review Letters, Vol. 80, May 1998, pp. 4329 – 4332.

[11] Høyer, Peter, “Conjugated operators in quantum algorithms”, Physical Review A, Vol. 59,

May 1999, pp. 3280 – 3289.
[12] Kitaev, A. Yu., “Quantum measurements and the Abelian stabilizer problem”, No-

vember 1995. Available at Los Alamos e-Print archive as <http://arXiv.org/abs/quant-
ph/9511026>.

[13] Mosca, Michele, “Quantum searching and counting by eigenvector analysis”, Proceedings of

Randomized Algorithms, Satellite Workshop of 23rd International Symposium on Mathemat-
ical Foundations of Computer Science, Brno, Czech Republic, August 1998, pp. 90 – 100.

[14] Nayak, Ashwin and Felix Wu, “The quantum query complexity of approximating the median

and related statistics”, Proceedings of 31st Annual ACM Symposium on Theory of Comput-

ing, May 1999, pp. 384 – 393.
[15] Shor, Peter W., “Polynomial-time algorithms for prime factorization and discrete loga-

rithms on a quantum computer”, SIAM Journal on Computing, Vol. 26, October 1997,
pp. 1484 – 1509.

(Gilles Brassard) Département IRO, Université de Montréal, C.P. 6128, succursale

centre-ville, Montréal (Québec), Canada H3C 3J7.

E-mail address, Gilles Brassard : brassard@iro.umontreal.ca.

(Peter Høyer) BRICS, Department of Computer Science, University of Aarhus,

Ny Munkegade, Bldg. 540, DK-8000 Aarhus C, Denmark.

E-mail address, Peter Høyer : hoyer@brics.dk.

(Michele Mosca) CACR, Department of C&O, Faculty of Mathematics, University

of Waterloo, Waterloo, Ontario, Canada N2L 3G1.

E-mail address, Michele Mosca : mmosca@cacr.math.uwaterloo.ca.

(Alain Tapp) Département IRO, Université de Montréal, C.P. 6128, succursale

centre-ville, Montréal (Québec), Canada H3C 3J7.

E-mail address, Alain Tapp: tappa@iro.umontreal.ca.

