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ABSTRACT associated with each dataset. Since the estimated compo-

In this work. we propose a scheme for ioint blind Sourcenents for each individual dataset are derived from a set of
. ! Propo rl . common components using concatenated data, the inherent
separation (BSS) of multiple datasets using canonical corre-

lation analysis (CCA). The proposed scheme jointl eXtraCtcorrelation among the components may reduce the statistical
y ' prop J y ower of the post analysis such as t-test on group activation
sources from each dataset in the order of between-set sou

correlations. We show that, when sources are uncorrelate ?/el. Tensorial ICA [4] decomposes the group data into a set

s . mponent nsisting of tial activation m tim
within each dataset and correlated across different datase?gco ponents consising of a spatial activation map, a time
o ) course, and a subject loading vector. Although tensorial ICA

only on corresponding indices, (i) CCA on two datasets

IS based on a three-way data model, the subject-dependent

achieves BSS when the sources from the two datasets ha\\/griations are represented only by the loading vector of each

d'St".]Ct between-set correlaﬂon coeﬁ|0|ent§, and (ii) CCA on omponent, which limits the subject difference to a scaling
multiple datasets (M-CCA) achieves BSS with a more relaxe

T . -~ factor.
condition on the between-set source correlation coefficients _ ) _
compared to CCA on two datasets. We present simulation N this work, we propose to apply canonical correlation
results to demonstrate the properties of CCA and M-ccagnalysis (CCA) on multiple datasets in attempt to separate
on joint BSS. We apply M-CCA to group functional mag- Sources within each dataset as well as to provide the correla-
netic resonance imaging (fMRI) data acquired from severdiion profiles of the separated sources across different datasets.
subjects performing a visuomotor task and obtain interestin§? CCA, because the demixing matrices are formed individ-

brain activations as well as their correlation profiles across@lly for each dataset, the independence of source estimates
different subjects in the group. for each dataset is better preserved. Meanwhile, the correla-

tion profiles of the estimated sources across different datasets

Index Terms— Canonical correlation analysis, blind can pe appreciated through the estimated canonical correla-
source separation, magnetic resonance imaging, group analysn, values.

i . . . .
SIS CCA is a statistical method to summarize the correlation

structure between two multivariate data by linear transforma-
1. INTRODUCTION tions [5]. In more recent efforts, CCA has been applied to

solving the blind source separation (BSS) problem on a multi-
Analysis of data from multiple subjects is an important prob-dimensional dataset, seeg, [6],[7]. In such methods, CCA
lem in biomedical applications such as the study of brains used to maximize the autocorrelation structure of the re-
activations through functional magnetic resonance imagingovered sources. The CCA approach can be posed as a gen-
(fMRI) data. Group analyses mainly focus on comparingeralized eigenvalue decomposition based on cross-correlation
experimental results from two contrast conditions [1],[2], matrices at different delay points [7]. As an eigenvalue based
or making inference on group behavior with datasets fronimethod, CCA has the limitation of achieving BSS only when
multiple subjects/sessions [3],[4]. Blind source separatiofihe eigenvalues,e., the autocorrelation coefficients of the la-
methods such as ICA have proved to be a useful tool ifent sources, arall distinct Methods such as utilizing the
such analyses as they decompose the data into individugptimal weighted sum of the cross-correlation matrices at dif-
components for exporatory data representation. Group irferent delay points have been investigated [7], [8], so as to im-
dependent component analysis (ICA) [3] performs ICA onprove the solution of demixing matrix that recovers the latent
multiple datasets to obtain independent component estimatesurces.

*THIS RESEARCH IS SUPPORTED IN PART BY THE NIH GRANT To study the utility of CCA in achieving BSS on multi-
RO1 EB 000840. ple datasets, we first show that CCA on two datasets can be




posed as a special case of the generalized eigenvalue decaman orthonormal matrix with the assumed data model. The
position and it achieves source separation when the correlahitening step can always be achieved given that the true
tion coefficients of the sources across the two datasets are atlixing matrices are nonsingular.
distinct. Secondly, we propose to apply M-CCA [9] to more  Matrix B, is the whitening matrix fok,, and the whitened
than two datasets and show that M-CCA improves the chand#ata are given by:
to achieve source separation for multiple datasets compared i = Bixg, (4)
with CCA on two datasets. We give the condition under which
BSS can be achieved by M-CCA.

In the next section, we propose a generativ_e source mix- E{yiyi T} =Lk =1,2. )
ture model and show that CCA on two multidimensional
datasets achieves BSS upon all distinct source correlation co-
efficients. We study conditions for M-CCA to achieve source  Eds.(1), (2), and (5) together imply:
separation in Section 3. In Section 4, we compare experimen-

such that

tal results of CCA and M-CCA on simulated and true fMRI BiArA B, =Lk=1,2 (6)
data, and we conclude our work with a discussion in the last
section. When CCA is applied tg/; andy-, the two canonical
transformation matrice®; andE,, are calculated by solving
2. CCA ON TWO DATASETS the following eigenvalue decomposition problem:
2.1. Generative model EiE{y1y:" }E{y2y:" }E." =D, (7
We assume that: whereD is a diagonal matrix with the estimated canonical

(i) Datasetxy, k = 1,2, is a linear mixture op sources, correlation valued, ds, ..., d, as the diagonal entries, and
sk, Mixed by a nonsingular matrif , i.e.,

E:; = D '?E, E{y1y."}. ®)
X = Aksk; (1)
Defining the global transformation matrix for datasgtas
(i) Sources are uncorrelated within each dataset and have Gi = ExBiAs, k=1,2, ©)
zero mean and unit variandeg.,
E{sisu”} =L k=1,2, o) and substituting (3), (6), and (9) into (7), we have:
wherel stands for the identity matrix; GiR..G," =D. (10)

(i) Sources from two datasets have nonzero correlation_. , )
only on theircorrespondingndices, and have correlation co- >INc€Gu is an orthonormal matrix, we have
efficients,r; 2(1) < r12(2),..., < 71,2(p), wherer; 5(i) = . .

E{s1(i)s2(i)}, i.e, Ri12G1” =G D, 11)
B{sis:™} = Ria 3  Whichimplies that théth column ofG, ", i.e,, g (i) satisfies
’ the following equation,
WherERLQ = diag([rlg(l),...,rl)g(p)]). ' )

The condition for CCA to recover the sources in datasets Ri2g1(i) = diga (4). 12)

x1 andx, is that strict inequality holds for the correlation

coefficients defined in assumption (iii). WhenR; , has all distinct diagonal entries, the only nontriv-

ial solution ofg; (4) is that all but theith element is nonzero,
and henceg; (i) extracts theth source inx; up to a scaling
factor.
We show that, when data follow the model assumptions and Note that since the model and the method are symmetric
the separability condition given in Section 2.1 is satisfiedfor x; andx,, the same procedure can be used to demonstrate
CCA onx; andx, produces two sets of sourcesands, as  the source separation fap.
the estimated canonical variates and the between-set source It is evident from the above discussion that when the
correlation coefficients; »(i),7 = 1,2, ...,p are estimated as between-set source correlation coefficients are not all dis-
the canonical correlationse., CCA achieves BSS for the two tinct, eigenvalue-based CCA method fails to separate sources
datasets. whose correlation coefficients are equal. However, this prob-
For convenience, we whiten each dataset by principdem can be significantly mitigated by incorporating more
component analysis (PCA) and normalize the variance so thaatasets into the model, which is studied in the following
the demixing matrix to be estimated for each whitened datassection.

2.2. CCA for BSS of two datasets



3. M-CCA ON MULTIPLE DATASETS source mixtures with the elliptical analogy in higher dimen-
sion.

Secondly, under the separation condition, for each dataset

We extend the generative model given in Section 2.1 by inXx, there exists a dataseisuch thaty, ; (i) > ri:(j). There-

cluding M datasets with each datase, k = 1,2, ..., M fol- M

: ) N . . ore, ;) achieves its global maximumnly if the ith
lowing assumptions (i), (i) stated in Section 2.1. We extend k%”v“” 9 y !

assumption (iii) in Section 2.1 such th&{s;,s;,”} = R,; =  source is recovered for each dataset.g
diag([ri (1), .1 (P)]), Yk # I3k, 1 € {1,2,...,M}, and
the correlation coefficients, ; are in decreasing order.

The condition for M-CCA to recover the sources in the  The demixing matrices that maximize correlation among
datasetxy, k = 1,2,...,Misthat:vVl <i < j <p,3l #k  the sources can be obtained by the M-CCA methods proposed

3.1. Generative model

for eachk € {1,..., M}, such thaty, ; (i) > r1(5). in [9]. M-CCA is developed as an extension of CCA to max-
imize theoverall correlation among sources recovered from
3.2. M-CCA for BSS of multiple datasets multiple datasets. Five criteria are defined to evaluate the

i overall correlation among estimated sources. Three of them
ﬁlmma 3.t%]G|ven a ?roup Ogdlatasftﬁ]k’ k= LgZI:i"M 4 2re eigenvalue-based criteria, which maximize similarity of
otlowing the generative model and the separabliity condly, s columns of the matrix composed by the correlation co-
tion stated in Section 3.1, theh source in each dataset,(i) efficients of sources from datasets of all pairwise combina-
is recovered by a demixing vectef (i), wheney (i) is cho- o P .

tions. The other two criteria are based on, respectively, sum

sen such that the sum of the correlation coefficieptgi) = X -
T T, o . and sum of square, of the correlation coefficients on sources
corr(ey, (1)xx, €; (1)x;) for all k,1 € {1,2,... M} is maxi- . L
Y : T from datasets of all pairwise combinations.
mized,.e., si (i) = e, (1)x; where

M
{e1(2),e2(i),...,enm (i)} = arg max{ Z ri,(2) }
k=1 4. SIMULATIONS

Proof The proof is carried out in deflationary modieg.,  4.1. Experiment on simulated datasets

the first source recovered from each dataset achieves the

largest sum of between-set correlations, then these sourc®aree sets of Laplacian distributed random sources are gener-
are subtracted from each dataset, or being avoided by puttirged to assume the specified correlation profile show in Fig. 1.
constraints on the demixing vectors recovering subsequeSources in each dataset are mixed by a random square mixing
sources. matrix.

In the ith stage of the deﬂationary procgdure, we first Three experiments are performed: (i) CCAxnandsx.,
show_that, wher’rk,l(.i) > rpa(d), any linear mixture of the (ii) CCA on x, andxs, and (iii) M-CCA onx;, xs, andxs.
remaining sources iwy, andx; achieves a correlation value 14 jmplement M-CCA, one of the eigenvalue-based criterion
Iower.thanrk,l(z). , ) is used, which maximizes the largest eigenvalue of the matrix

Without loss of generality, we whiten each dataset by, the between-set correlations [9]. Twenty Monte Carlo

PCA and normalize the variance so that the demixing matrix;igs are performed with different realizations of the sources
to be estimated for each whitened dataset is an orthonormg},4 mixing matrices in each trial.

matrix. For linear mixtures, = agsi(i) + Brsk(y) and
S5 = aisi(i) + Gisi(j), i < 4, {k,1} € 1,2,..., M, their
correlation coefficient can be written as

The inter-symbol interference (I1SI) is calculated based on
the product of the demixing matrix and the true mixing ma-
trix, and shown in Table 1. Mean and standard deviation of
Ter = B{8k81} = arari (i) + BeBirki(4). (13) ISl are calculated based on results from twenty trials. ISI val-

) ) . ues range frond (perfect separation) to (uniform mixture).
Given that the datasets are whitened, all demixing vectors , ) , i
have unit normji.e, o2 + 32 = 1,i = k,I. Hence, Eq It is observed that in experiment (i), sources are not well
ey 7 7 I e 1 .

(13) is the inner product of two vectors having the same elseparated due to the existence of non-distinct correlation co-

liptical trace on semimajor axig/r+ ; (i) and semiminor axis  €fficients between sourcesxn andx,, while source separa-
\/m Therefore, we have tion is achieved in experiment (ii) since source correlation co-

efficients betwee, andxs are all distinct. In (iii), M-CCA
[mak N k} [\/mal mﬁlr < (i), onthree datasets successfully separates all the sources due to
the fact that, for each dataset, there exists pairwise combina-
where the equality holds only i,y = 1 andgy, 5; = 0. tion(s) such that the source correlation values are all distinct,
The same conclusion is obtained in case of more than twbe., the separation condition in Section 3.2 is satisfied.
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Table 1. Comparison of separation performance by ISI
CCA M-CCA
() x1 : x2 (i) x2 : x3 (iil) x;1 @ x2 1 x3 _n O
G; | 0.10£0.04 0.04+-0.04 50 100 0 5 10
G2 | 0.09£0.03 | 0.04£0.04 0.04+0.03 t k
G3 0.044+-0.05 0.04+0.04

Fig. 2. Estimated mean activation maps (left), mean time courses (center),
and the source correlation between subjects (right), of the default mode (top)
and right visuomotor task-related (bottom) component by M-CCA on eleven

4.2. Experiment on group fMRI data from a visuomotor
task

The fMRI data is acquired from eleven subjects performingtr
a visuomotor task and preprocessed according to the typicgﬁ‘i
fMRI analysis procedures [10]. Each dataset is then whitene
by PCA and dimension reduced to 25 normalized principal
components.

M-CCA is applied to the eleven sets of principal com- [
ponents. Two types of brain activations are estimated as the
canonical variates from each dataset: (i) the activation on the
posterior cingulate (related to the default mode), and (ii) the[2]
occipital lobe (primary visual area), cerebellar and motor cor-
tex (motor task related) at the right and left hemisphere of
the brain. The estimated mean activation maps, mean timT3
courses, and estimated source correlation between subjecs]
are displayed in Fig. 2. By comparing the time courses of
component (i) and (ii), it is observed that the default mode
is typically showing signal decreases with respect to the taskl4]
Based on the source correlation plots, the inter-subject vari-
ance of the visuomotor activations is estimated to be greatefS]
than that of the default mode component.

(6]
5. DISCUSSION
In this work we study the utility of canonical correlation anal- g
ysis for joint blind source separation on multiple datasets. We
pose CCA on two datasets as a generalized eigenvalue decorns]
position problem and show that it achieves joint BSS when
the source correlation coefficients are all distinct. We study
the conditions for maximization of source correlation among o
multiple datasets by M-CCA to achieve joint BSS. As an ad'm]
vantage, CCA and M-CCA also provide correlation profiles
among the estimated sources from different datasets. Further-

] J. R. Kettenring,

fMRI datasets

more, because each dataset is processed individually, the ex-
cted sources are more amenable to the post statistical anal-
s for making group inferences.

6. REFERENCES

A. S. Lukic, M. N. Wernick, L. K. Hansen, J. Anderson, and S. Strother,
“A spatially robust ICA algorithm for multiple fMRI data sets,” Proc.
IEEE International Symposium on Biomedical Imaging (ISBI) 2002
Arlington, VA.

Y.-O. Li, Tulay Adali, and Vince D. Calhoun, “A multivariate model
for comparison of two datasets and its application to fMRI analysis,”
in Proc. IEEE Workshop on Machine Learning for Signal Processing
(MLSP) 2007 Thessaloniki, Greece.

V. D. Calhoun, T. Adali, J. J. Pekar, and G. D. Pearlson, “A method for
making group inferences from functional MRI data using independent
component analysis,'Human Brain Mappingvol. 14, pp. 140-151,
2001.

C. F. Beckmann and S. M. Smith, “Tensorial extensions of independent
component analysis for group fMRI data analysisleéurolmage vol.
25, 2005.

H. Hotelling, “Relations between two sets of variateBiometrika
vol. 28, pp. 321-77, 1936.

O. Friman, M. Borga, P. Lundberg, and H. Knutsson, “Exploratory
fMRI analysis by autocorrelation maximizatiorifleurolmagevol. 16,
pp. 454-64, 2002.

W. Liu, D. P. Mandic, and A. Cichocki, “Analysis and online realization
of the CCA approach for blind source separatid&EE Trans. Neural
Nets, vol. 18, pp. 1505-10, 2007.

M. Borga and H. KnutssonA canonical correlation approach to blind
source separationPh.D. thesis, Technical Report LiU-IMT-EX-0062,
Linkoping University, 2001.

“Canonical analysis of several sets of variables,”
Biometrika vol. 58, pp. 433-51, 1971.

Y.-O. Li, T. Adali, and V. D. Calhoun, “Estimating the number of in-
dependent components in fMRI dat&fuman Brain Mappingvol. 28,
pp. 1251-66, 2007.



