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ABSTRACT

In this work, we propose a structured approach to com-
pare common and distinct features of two multidimensional
datasets using a combination of canonical correlation anal-
ysis (CCA) and independent component analysis (ICA). We
develop formulations of information theoretic criteria to de-
termine the dimension of the subspaces for common and
distinct features of the two datasets. We apply the pro-
posed method to a simulated dataset to demonstrate that it
improves the estimation of both common and distinct fea-
tures when compared to performing ICA on the concatena-
tion of two datasets. We also apply the method to compare
brain activation in functional magnetic resonance imaging
(fMRI) data acquired during a simulated driving experiment
and observe distinctions between the driving and watching
conditions revealed in relevant brain function studies.

1. INTRODUCTION

The comparison of two sets of multidimensional data, e.g.,
fMRI data acquired for two different tasks, or, data col-
lected from control and diseased groups, is a frequently en-
countered problem in data analysis. As a typical approach,
multivariate methods such as independent component anal-
ysis (ICA) can be applied within each dataset to represent
the data as a set of independent features. The estimated
features from the two datasets can then be matched by us-
ing a suitable metric such as correlation. However, cross-
correlations among all the estimated components between
the two sets introduces ambiguity in feature matching. As
another approach, group ICA [1] can be performed to obtain
associated component estimates from the two datasets, but
this approach considers only common components between
the two datasets. As a third approach, ICA can be applied
directly to the concatenation of two datasets, and the pro-
files of the mixing vectors can be used as an indicator of the
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difference between the two datasets with respect to the cor-
responding estimated independent components. However,
since the independence assumption inherent in ICA is not
always plausible for the two datasets that might share com-
mon attributes, a global ICA decomposition on the concate-
nated dataset could attenuate the distinct features from each
dataset. To improve the estimation of common and distinct
features, we propose a decomposition of each dataset into
two subspaces containing, respectively, the common and
distinct features. Therefore, ICA can be applied within each
subspace to avoid the interference of the two types of fea-
tures in estimation.

For the subspace decomposition, we propose using canon-
ical correlation analysis (CCA) to transform each dataset
into a group of orthogonal components where the compo-
nents between the two datasets correlate only on the as-
sociated indices,i.e. the two sets of components are bi-
orthogonal. These correlation values are used to identify
the subspace of common and distinct features. Specifically,
the dimension of the subspace for distinct features is de-
termined by information theoretic criteria (ITC) based on
the model that those distinct components between the two
datasets have zero correlation. ICA is individually applied
within each subspace to estimate, respectively, the common
and distinct features.

In fMRI data analysis, one is typically interested in com-
paring brain activations between different conditions, e.g.,
task and resting state, healthy versus diseased subjects per-
forming the same task. Though, the localization and spa-
tially distributed nature of networks make the independence
assumption plausible, the similarity of areas of activation
and their nature is likely to affect the results of analysis due
to some dependence in the activations in the two conditions.
Hence, such a partitioning is expected to improve the results
of a subsequent ICA analysis as we demonstrate by using a
simulated data set. We also apply the method to analysis of
fMRI data obtained during a simulated driving experiment
to study differences in components during the driving and
watching epochs of the experiment.

In the next section, we outline the application of CCA



to two multidimensional datasets. We derive the ITC for-
mulations to select the common dimensionality of the two
datasets in Section 3. In Section 4, we show experimen-
tal results of the proposed method on simulated and true
fMRI data. In the last section, we conclude our work with
a discussion of several interesting aspects of the proposed
method.

2. CANONICAL CORRELATION ANALYSIS OF
TWO MULTIDIMENSIONAL DATASETS

Given two multidimensional datasetsx1 and x2, PCA is
performed independently to each dataset as the first step.
PCA is a typically used preprocessing step in multivariate
data analysis to decompose the data into a set of uncorre-
lated principal components ordered by the variance of each
component. For data with low contrast to noise ratio and
large dimensionality such as the fMRI time sequences with
over 100 time points, dimension reduction is usually per-
formed based on, e.g., variance of the principal components,
to remove the insignificant principal components due to the
noise effect. The dimension reduced data are then whitened
by normalizing each principal component to unit variance
given by

yi = Λ−
1
2

i Bixi, i = 1, 2,

whereΛi andBi are, respectively, the diagonal eigenvalue
and eigenvector matrix of the covariance matrixE{xixT

i }
for theith dataset.

Without loss of generality, we assume that the whitened
principal components from each dataset,y1 andy2, arep×1
andq×1 vectors respectively withp ≤ q. Although there is
no correlation among the components within each dataset,
there could be correlations among the principal components
across the two datasets. The cross-correlation makes it dif-
ficult to perform a direct comparison of the principal com-
ponents from the two datasets. Therefore, further (linear)
transformations of the principal components in each dataset
are motivated to remove the between-set cross-correlations
while preserving the whiteness of the principal components
within each dataset.

To achieve this aim, we seek two orthonormal trans-
formations: E1 andE2, and apply the transformations to
y1 andy2 respectively, such that: (i) the transformed vari-
atesz1 = E1y1 and z2 = E2y2 are bi-orthogonal,i.e.,
E{z1z2

T } = D whereD is a diagonal matrix; and (ii)z1

andz2 are whitened such thatE{zizi
T } = I for i = 1, 2.

The two orthonormal transformations can be obtained using
CCA [2] as described below.

Let D andE1 be the eigenvalue and eigenvector ma-
trix of E{y1y2

T } · E{y2y1
T }, andE2 = D−1/2 · E1 ·

E{y1y2
T }. It is straightforward to verify that:

(i) E{z1z2
T } = E1 · E{y1y2

T } ·E2
T = D1/2,

(ii) E{z1z1
T } = E1 · E{y1y1

T } ·E1
T = I, and

(iii) E{z2z2
T } = E2 · E{y2y2

T } ·ET
2 = I.

Therefore, two new sets of variatesz1 andz2 are both
p× 1 whitened vectors and they correlate only on the same
indices with the correlations measured by the canonical cor-
relation coefficients that are the diagonal entries ofD1/2.
The obtained variates are defined as the canonical variates
(CVs).

3. SELECTION OF THE COMMON DIMENSION
OF TWO MULTIDIMENSIONAL DATASETS

Among different approaches for model order selection, in-
formation theoretic criteria (ITC) have proven to be particu-
larly attractive for many signal processing applications. One
of the major advantages of the approach is the automation
of the order selection process so that no empirical threshold
value needs to be specified.

A commonly used ITC for order selection, Akaike’s in-
formation criterion (AIC), is developed based on the min-
imization of the Kullback-Leibler divergence between the
true model and the fitted model [3]. The closely related min-
imum description length (MDL) criterion and the Bayesian
information criterion (BIC) are developed based on the min-
imum code length [4] and the Bayes solution to model order
selection [5] respectively.

AIC and MDL share the general form given below:

k̂ = arg mink{−L(Θk) + G(Θk)}

whereL(·) is the maximum likelihood of the observed data
based on the assumed model parameterized byΘk, andG(·)
is a penalty term related to the number of free parameters in
Θk, i.e., the intrinsic dimension of the parameter space for
the assumed model.

Under the assumption that the two sets of CVs,y1 and
y2, are jointly Gaussian random vectors, the maximum like-
lihood can be written as [6]

L(Θp+q) = −1
2
N

p+q∑
i=1

log(λi) (1)

whereλi is theith eigenvalue of the covariance matrixRy =
E{yyT },y = [yT

1 ,yT
2 ]T , in descending order andN is

the number of independent and identically distributed (i.i.d.)
data samples.

When CCA is applied toy1 andy2 as described in the
previous section, sinceE1 andE2 are orthonormal transfor-
mations, the effective transformation to the aggregated data
y is orthonormal, which can be written as

z ≡
[

z1

z2

]
=

[
E1 0
0 E2

] [
y1

y2

]
.

Thus, the covariance matrix ofz has the same eigenval-
ues as that ofy due to the orthonormal transformation—



except that, whenp ≤ q, E{yyT } hasq − p additional unit
eigenvalues, a result that can be easily shown.

The covariance matrix of the concatenated CVs has four
diagonal blocks:

E{zzT } =


I

d1 0
...
dk

dk+1
...

0 dp
d1 0

...
dk

dk+1
...

0 dp

I


wheredi is the canonical correlation coefficient of theith
pair of CVs anddi ∈ [0, 1],∀i. Given this block diagonal
structure of the covariance matrixE{zzT }, it can be shown
that its eigenvalues are uniquely determined by the canoni-
cal correlation coefficients as

{λ} = {1+d1, 1+d2, ..., 1+dp, 1−dp, ..., 1−d2, 1−d1}.

When the firstk CVs in each dataset are selected to be
the common CVs, the rest of the CVs are deemed be the
distinct CVs by ignoring their insignificant canonical corre-
lation coefficients, i.e.,di = 0, ∀i = k + 1, ..., p. In this
case, the eigenspectrum ofE{zzT } becomes:

{λ} = {1+d1, 1+d2, ..., 1+dk, 1, ..., 1, 1−dk, ..., 1−d2, 1−d1}

where there are2(p − k) “1”s due to the specified zero
canonical correlation coefficients for the set of distinct CVs.

Therefore, the maximum likelihood in Eq. 1 takes the
form:

L(Θk) = −1
2
N

k∑
i=1

(log(1 + di) + log(1− di)), (2)

andΘk = {d1, d2, ..., dk,E1(1∼k),E2(1∼k)}whereE1(1∼k)

andE2(1∼k) represent the firstk eigenvectors in each trans-
formation matrix.

Taking into account the orthonormality of the transfor-
mation matricesE1 andE2, the penalty term is calculated
as

G(Θk) = k + 2(pk − 1
2
k(k + 1)). (3)

In case the data samples are dependent in the sample
space, an i.i.d. subsampling scheme can be used to identify
the set of independent samples to avoid over-estimation of
the dimension [7].

4. SIMULATIONS

4.1. Experiment on simulated datasets

Eight sources are generated to simulate the independent fea-
tures. To control the similarity of the features between the
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Fig. 1. Correlation profiles of the two sets of simulated
sources

two datasets, the sources are altered for each dataset dif-
ferently by adding Gaussian noise at controlled levels. The
altered sources are, thus, used as the true sources to generate
the datasets and to evaluate the estimation results.

Four of the sources are slightly altered for each dataset
to simulate the common features, while the other four sources
are significantly altered for each dataset to simulate the dis-
tinct features. The sources for each dataset are mixed by
different random mixing matrices, resulting in two observed
multidimensional datasets. Two cases with different corre-
lations settings between the corresponding features are sim-
ulated with the profiles of the correlations shown in Figure
1.

Both AIC and MDL scores are calculated according to
Eqs. 2 and 3, with the i.i.d. sampling scheme to address the
sample dependence. The curves of AIC and MDL criteria
at different candidate orders are shown in Figure 2.
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Fig. 2. Calculated AIC and MDL curves for simulated
datasets (a) dataset with correlation profile I in Figure 1,
and (b) dataset with correlation profile II in Figure 1

From the order selection result, it can be seen that both
AIC and MDL criteria select four CVs as the common di-
mensionality of the two datasets, which agrees with the gen-
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Fig. 3. Mean and standard deviation of the correlation be-
tween true and estimated sources for (a) dataset with corre-
lation profile I in Figure 1 and (b) dataset with correlation
profile II in Figure 1

erative model.
We further perform ICA on the concatenated common

CVs to estimate four independent components and apply
individual ICA on each set of distinct CVs to estimate the
independent components distinct to each dataset. Twenty
Monte Carlo trials are performed with different realizations
of the altered sources. For comparison, ICA is applied on
the concatenation of two datasets without CCA and order
selection on the common dimensions. For both methods,
the correlation between the true and estimated sources are
evaluated with the mean and standard deviation values plot-
ted in Figure 3. It can be observed that performing ICA
in the properly partitioned common and distinct subspaces
using the proposed method significantly improves the esti-
mation of the common and distinct features in each dataset.

4.2. Experiment on fMRI data from a simulated driving
experiment

The fMRI data is acquired during a simulated driving exper-
iment. Three tasks, asterisk fixation, driving, and watching
are alternatively repeated during three epochs with 20 sec-

onds for fixation, 60 seconds for driving, and 40 seconds
for watching. The experiment starts with a 15 seconds of
fixation.

To study the difference of the brain activity during driv-
ing and watching, fMRI data of 40 time points is selected
from each of the driving and watching epochs for analy-
sis. Based on the order selection results for the common
dimension of the driving and watching datasets using ITC
formulations, common features are estimated from the con-
catenation of the first 18 highly correlated CVs of driving
and watch epochs. Accordingly, 22 distinct features are es-
timated from the corresponding distinct CVs within each
epoch. ICA on concatenation of the two datasets without
CCA and order selection is also performed for comparison.

It is observed that three types of brain activations are es-
timated by both methods: (i) the activation on the posterior
cingulate (related to the attentional tasks), (ii) the occipi-
tal lobe (primary visual area), and (iii) the cerebellar and
motor cortex (motion related). Among those activations, (i)
and (ii) are estimated as the common features while (iii) is
estimated as a distinct feature of the driving epoch by the
proposed method. The results agree with the recent study
on a similar fMRI experiment [8].

As examples, the estimated activations of (ii) and (iii)
are shown in Figure 4. For (ii), similar activation and time
course in the visual cortex are estimated by the two differ-
ent methods. For (iii), although both methods obtain activa-
tions at the motor cortex, the activation regions estimated by
ICA without CCA contains spurious activation regions that
are irrelevant to motor cortex (Figure 4.g). Since the acti-
vation at the motor cortex is estimated as a distinct feature
of the driving epoch using the proposed method, its time
course (Figure 4.f) assumes a similar trend as the first 40
time points of the time course estimated by ICA without
CCA (Figure 4.h). The last 40 time points of the time course
in Figure 4.h shows less variance, which indicates that the
motor cortex is less active during the watching epoch com-
pared to the driving epoch.

The observation suggests that the proposed CCA-ICA
method with the selection of common dimensionality by
ITC provides an explicit representation of the common and
distinct features of two datasets. The proposed approach
better addresses the comparison of two datasets that assume
both common and distinct features than performing ICA on
a simple concatenation of two datasets.

5. DISCUSSION

In this work, we propose a framework to combine PCA,
CCA and ICA for the analysis of two multidimensional data-
sets and develop the ITC formulations to select the common
dimensionality of the two datasets. The practical formu-
lations of ITC, for a multidimensional dataset, are devel-



oped in the context of detecting the number of signals in
noise [9], where both the signals and the noise are modeled
by multidimensional complex stationary Gaussian random
processes and the noise are assumed to have homogeneous
variance. We derive the ITC formations based on the jointly
multivariate Gaussian assumption of the CVs and calculate
the likelihood for a given model order by ignoring the in-
significant canonical correlations. The proposed method
optimizes the multivariate analysis tools such as PCA and
ICA in comparison of two datasets with common and dis-
tinct features.

The relationship between the canonical correlation coef-
ficients and the eigenspectrum of the aggregated CVs pro-
vides an insight into the function of PCA on the concatena-
tion of two datasets. That is, the common attributes among
the datasets are augmented by PCA, resulting in a set of
large eigenvalues and a set of small eigenvalues of the co-
variance matrix for the concatenated data; the distinct at-
tributes remain as individual principal components with eigen-
values close to unity due to the whiteness of principal com-
ponents.

The proposed model can be extended to the group anal-
ysis ofM datasets for comparison of common and distinct
features. In general, CCA can not be directly applied in
this case to achieve a joint diagonalization on the cross-
covariance matrices of all the pairwise combinations from
M datasets. Though, the method proposed in Section 2
can be extended to achieve an approximate diagonalization,
given a proper measure on the diagonality of the cross co-
variance matrices.

Lukic et al. propose a similar data model that incorpo-
rates common and specific components from different datasets
and apply the ICA algorithm utilizing the temporal autocor-
relations of fMRI time sequences to achieve source separa-
tion [10]. The dimensionality of common components is de-
termined from the estimated linear minimum mean square
error prediction matrix of the fMRI time sequences. How-
ever, threshold value is required to determine this dimen-
sionality when data do not strictly follow the specified common-
specific component model. Furthermore, all the sources are
required to have different autocorrelations at the selected
time lags in order to obtain the unique separation matrix in
the assumed model. This requirement is, however, not al-
ways satisfied in real fMRI data analysis.

A similar model is defined in the work by Akahoet al.
[11], but without a partition of common and distinct com-
ponents. In their method, the separation of the sources is
solved by an augmented objective function that maximizes
the mutual information (for dependence of corresponding
sources from two datasets) as well as minimizes Kullback-
Leibler divergence between joint and marginal source den-
sities (for independence of sources within each dataset). In
contrast, we take the advantage of CCA for subspace par-

tition and use ICA to compensate for the source separation
ambiguity by CCA due to identical canonical correlation co-
efficients.

It is worth noting that the data structure assumed in the
subspace ICA method [12] is similar but different from the
model proposed in this work. Subspace ICA assumes de-
pendence within each dataset and independence among the
datasets. The objective is to obtain sparse feature-space
representation of the given data such as natural image. In
our proposed framework, the features are assumed to be in-
dependent within each dataset and dependent between the
datasets due to common features.
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Fig. 4. Comparison of feature estimation in fMRI data from a simulated driving experiment: (a,b) Visual activation estimated
as the common feature of driving and watching epochs by the proposed method; (c,d) Visual activation estimated by ICA on
the concatenation of driving and watching epochs; (e,f) Motor activation estimated as the distinct feature of the driving epoch
by the proposed method; (g,h) Motor activation estimated by ICA on the concatenation of driving and watching epochs.


