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Abstract. In this contribution, we propose a feature selective filter-
ing scheme for independent component analysis (ICA) to improve
the estimation of the sources of interest (SOI), i.e., sources that
have certain desired features in their sample space. As an exam-
ple, we show that ICA with a smooth filtering scheme can improve
the estimation of the smooth image sources from a mixture of im-
ages, as well as the estimation of a smooth visual activation map
in a hybrid functional magnetic resonance imaging (fMRI) data
set. Hence, the technique can potentially be used in the analysis of
fMRI data to improve the ICA estimation of functional activation
regions that are expected to be smooth.

INTRODUCTION

Independent component analysis is an exploratory data analysis approach
that can interpret the data as a combination of statistically independent
sources. It has been successfully applied in a variety of fields in signal pro-
cessing such as the analysis of fMRI data.

McKeown et al. [14] applied ICA to fMRI data analysis based on the
assumption of spatial independence among regions of brain activations and
artifacts. This model is the so-called spatial ICA (SICA) model [5] and it
is consistent with the two principles of the functional organization of brain:
localization and connectionism [15]. Based on this model, the practical ICA
algorithm gives brain maps whose spatial distributions achieve maximal inde-
pendence and the spatial distribution here is interpreted as the distribution
of map voxel values. However, the spatial feature of the brain map as an
image is discarded in this treatment. According to the localization princi-
ple of brain activation, the nearby activated voxels have similar intensity.



Specifically, the convolutive effect of the vascular point spread function on
the hemodynamic sources implies that smoothness can be a valid assumption
for the independent activations of our interest [2]. It is desirable to incor-
porate constraints such as these into the estimation of SOIs in fMRI data
analysis.

Different ways of incorporating priors into ICA estimation have been stud-
ied. Bayesian estimation is a systematic framework for estimation of signals
with a priori information, e.g., probability distributions, correlation, etc. ICA
under this framework has been studied by, e.g., [7, 8, 13, 16]. However the
demanding computational load for Bayesian estimation is a major concern
given the large volume of fMRI data. Based on the sparsity assumption of the
mixing matrix, Hyvarinen [10] proposed ways of incorporating the sparsity
constraint in the form of conjugate priors into the ICA estimation. For the
case of fMRI data analysis, this kind of prior is only proper for the temporal
ICA (TICA) model [5]. For SICA model on fMRI data analysis, Calhoun
et al. [3] proposed a method of imposing regularization on the time courses
based on the experimental paradigm.

In general, it is not straightforward to include priors about the spatial
features of functional activation map such as the smoothness of the acti-
vated region into SICA for fMRI data. Most ICA algorithms update the
demixing vectors in an iterative manner to satisfy the optimality criterion
and the source data is not explicitly processed. One possible way to incor-
porate the spatial feature constraint is to perform a selective filtering in the
source space and project the filtering effect back to the space of the demixing
vectors. Therefore, the influence of the priors takes place in the estimation
through this filtering-projection process. For ICA algorithms employing iter-
ative methods to optimize certain independence measure, the filtering could
introduce a proper variance on the convergence of the ICA algorithm leading
to a local extremum that gives better estimation of the SOI.

In the next section, the general ICA model is introduced, followed by the
description of feature selective filtering scheme within the ICA framework.
We then express the filtering scheme in matrix form and explain the effect of
the filtering process on ICA estimation. After that, we introduce a controlling
mechanism to improve the overall performance of the scheme. The third
section contains simulations of this filtering scheme with two ICA algorithms
on synthetic image source separation and hybrid fMRI data analysis. The
estimation result is compared with that from the original ICA algorithm.
Finally, we present a discussion of this feature selective filtering scheme.

ICA WITH FEATURE SELECTIVE FILTERING
ICA model

In the ICA model, it is assumed that a set of statistically independent sources
si,t = 1,2, ...,m, are mixed linearly by a mixing matrix A, resulting in a set



of interrelated observations z;,7 = 1,2,...,m. The estimation task can be
stated as finding a demixing matrix W, such that the independent sources
can be recovered from those observations by this demixing transformation.

Various algorithms have been developed based on different principles of
independence and different optimization methods. Infomax [1] and FastICA
[12] are two of the most widely used algorithms to perform ICA.

For the subsequent discussion, we introduce the notation of ICA model
that takes into account the data samples in certain domain, e.g., time se-
quence, signal strength from spatial locations, etc. We define S as an m x n
source data matrix where each row of S is a vector of data samples from one
source; and X as the observed data matrix where each row is a vector of one
observed data set. Therefore, the ICA model for data analysis becomes

X = AS (1)

and the estimation task is restated as finding the demixing matrix W such
that .
S=WX (2)

recovers those independent sources in each row of S. Taking example in
image data analysis, the source data is a set of image pixels and the feature
selective filtering is applied spatially on those image pixels.

For application of SICA on fMRI data, because the number of indepen-
dent sources of practical interest is typically much smaller than the number
of time samples from the observations, dimension reduction is performed as
a preprocessing step before the data is provided for ICA estimation. Typi-
cally, principal component analysis (PCA) is used as the preprocessing step
because it projects the data into a decorrelated set of components with sig-
nificant variance. Because of the intrinsic ambiguity of the ICA model [12],
we assume unit variance on all the independent sources and assume that the
mixing vectors have unit norm. As a result, the observations should have unit
variance as well. To comply with this condition, we normalize each principal
component while performing PCA. Therefore, the resulting data components
are whitened, i.e., uncorrelated and of unit variance.

ICA with feature selective filtering

When a priori knowledge of the SOI is expressed as certain feature in its
sample space, we can design a filter in that space with the same characteris-
tics, i.e., a feature selective filter and apply it to the intermediate estimates
during the iterative ICA estimation process. To project the filtering effect
from the sample space to the demixing vector space, one way is to solve the
p . Iy 2 L
least squares problem: w} = argminy, ||8; — w;X||”, where the solution is

wi =& X (xxXT)~1. (3)

To study the effect of feature selective filtering on ICA estimation, note
that X is preprocessed by PCA and is prewhitened, so we have XX7 =



(XXT)~1 = L(;xm)- The filtering process on 8; can be represented in matrix
form as 8] = §,H, where H is the convolution matrix of the feature selective
filter. Using the whitening condition and the ICA model given in (1), we can
write

w, = §HSTAT, (4)

Now, we express the intermediate source estimates §; in the form of a weighted
combination of the true sources as

éi = aiS (5)

where a; = [a;1, @42, ..., Q] 18 a vector with the weights of each source com-
ponent in the ith estimated source. Substituting (5) into (4), the demixing
vector w} becomes

w, = a;SHST AT, (6)

At this point, we compare two cases to explain the effect of filtering on
the estimated demixing vectors:

1. When no filtering is applied, i.e., H is an identity matrix, the term
SHS7 is also identity by the assumption that all the true sources are inde-
pendent and of unit variance. The ICA algorithm forces the weight vector
converge to an m-dimensional unit vector with only one nonzero element.
Correspondingly, the demixing vector converges to one column of the mix-
ing matrix A, which means the condition of estimation of one true source is
achieved (Theorem 1 [11]).

2. When filter is applied to each intermediate estimate §;, we define

B = SHS” = §'ST (7)

as the correlation matrix between the filtered sources S’ and the true sources
S. Substituting (7) in (6), we have

Because each source is filtered individually, no correlation will be intro-
duced across different sources by this filtering process. In other words, if
SST is identity, B will be a diagonal matrix with the correlation coefficients
of the original sources and their filtered counterparts on the main diagonal,
i.e., will be given by

sisiT 0 . 0
1o T
B_ 0 S5S9 0 )
0 0 s sy T

From (8) we can see that, vector c; is weighted by this correlation ma-
trix. For an SOI, because its feature complies with the characteristics of the
filter, the correlation coefficient will be high. Therefore, the element in o;
representing that source component is relatively amplified. Meanwhile, the
demixing vector will produce an estimation closer to that SOI.



Implementation of the filtering scheme

Equation (8) suggests that the filtering effect is the same for all the demixing
vectors. As a result, it will degrade the estimation of the sources not of
interest when improving the estimation of SOIs. To avoid this negative effect,
the filtering should be carried out in a controlled manner: (i) the filtering
should be applied after a certain level of convergence of the original ICA
algorithm so that the estimated source images start to show the right trend
in their spatial pattern; (ii) before filtering is applied, the a priori feature of
each intermediate estimate needs to be evaluated in order to identify those
converging to SOIs. The identified ones are then subject to the filtering
process. Motivated by (9), we define the measure of the desired feature as

Bi =88] (10)

In practice, this measure is taken on all the intermediate estimates and a
selection is made to pick out a subset of them for feature selective filtering.
For an ICA algorithm adopting iterative method, a pseudo code of imple-
menting feature selective filtering is shown below.
Algorithm 2.1
while {
Check for termination condition;
YVUC'H) =ICA update(W(k));
S =W)X
fori=1tom

hreshold ) {
(XXT)~

if (8187
w, = §/
tend if
tend for

}end while
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SIMULATIONS

We choose 2D smoothing filter as the feature selective filter in our simulations,
i.e, smooth sources define our SOI. The filtering is applied after the original
ICA algorithm reaches a moderate convergence. Specifically, we apply the
filtering if the change of demixing vectors between two adjacent iterations is
less than an error tolerance €1 > €y where ¢g is the final convergence error
tolerance of the entire ICA algorithm. PCA and whitening are performed as
the preprocessing steps of ICA. All the results are based on 20 independent
runs of the algorithm with random initial condition for each run. The algo-
rithm is written in Matlab programming language and executed on Dell PC
with Intel Pentium-4 CPU and 512M RAM.



Figure 1: Synthetic image set

TABLE 1: STATISTICS OF THE SYNTHETIC SOURCE IMAGES
Source S1 S2 S3 S4
Kurtosis 224 —-0.69 —-1.20 0.41
Smoothness | 0.94  0.95 099 0.94

Synthetic Image Source Separation

In the synthetic image source separation test, we generate four 90 x 90 pixel
gray level images as the independent sources. The mixing matrix contains
three gamma function waveforms of different periods resembling the temporal
dynamics and one random waveform resembling dynamics of a noise source.

Based on the smoothness measure of the true sources, we choose a moving
average filter with a 3 x 3 kernel. Such a kernel size is proper for introducing
a reasonably small variation when filtering the image data.

The four image sources are displayed in Figure 1 and two relevant statis-
tics of each source are tabulated in Table 1. The measure of smoothness is
defined in (10). Two ICA algorithms, Infomax and FastICA, are used in the
simulation. For a performance comparison, both the original algorithm and
the one with feature selective filtering are tested. We use the correlation be-
tween true and estimated sources as the measure of estimation performance.
The estimation results are listed in Table 2, together with the ratio of the
two error tolerances used for convergence test.

For both algorithms, the incorporation of feature selective filtering im-
proved the estimation of image source 2 and 3, both of which have high
smoothness measure as shown in Table 1. Since the filtering scheme changes
the convergence direction of the ICA algorithm during iterations, it is rea-
sonable to observe that the total iteration steps and cpu time are increased
for both algorithms when filtering is incorporated.

fMRI Data Analysis

In this simulation, we perform ICA on a hybrid fMRI data set consisting
of three true fMRI artifacts and a spatially smoothed visual activation map
associated with a smoothed time course.

To generate the hybrid fMRI data, we first perform ICA on a true fMRI
data set from a visual activation experiment where the visual stimulus was



TABLE 2: ESTIMATION RESULT OF SYNTHETIC IMAGES

ICA w/o smooth filtering | ICA w/ smooth filtering
Infomax FastICA Infomax FastICA
61/60 - - 10 500
Sourcel 0.96+0.01 0.9640.01 0.96+0.01 0.9740.01
Source2 0.92+0.01 0.81£0.06 0.97£0.01 | 0.88£0.02
Source3 0.92+0.01 0.98+0.02 0.99£0.01 | 0.9940.01
Source4 0.974+0.01 0.8940.04 0.97+£0.01 | 0.9540.01
Iterations 50+2 3446 16743 46423
cpu time (sec.) 5.0+0.2 1.941.2 15.0£1.0 3.1£1.5

applied in an on-off pattern with a period of 60 seconds for 4 minutes [6].
After the visual activation map is estimated, we perform spatial smooth
filtering on the visual activation map and temporal smooth filtering on its
associated time course. We substitute the corresponding activation map and
the time course in the estimated data matrices with the smoothed ones. The
new brain maps are then mixed by the new time courses to form the hybrid
fMRI data set.

We apply Infomax and FastICA with and without feature selective filter-
ing to this hybrid fMRI data. Since we have the prior knowledge that there is
one smooth activation map included in the data set, we incorporate a moving
average filter with a 5 x 5 pixel kernel as the feature selective filter.

Because the visual activation is task related, we measure the correlation
between the estimated time course and the experimental paradigm for the
evaluation of the estimation result. Similar smoothness measure as in the
synthetic image simulation is used for the estimated activation map.

Table 3 shows the correlation and the smoothness measure of the esti-
mated visual activation maps for both the FastICA and Infomax algorithms.
The result without feature selective filtering is also listed for comparison. For
FastICA, the incorporation of the filtering increases the estimation of the
smooth visual activation map, correspondingly, the associated time course
is better aligned to the experimental paradigm. For Infomax, because the
original algorithm already provides a good estimation of the activation map
and the time course, the improvement is not so evident. The performance
difference of the two algorithms for fMRI analysis is consistent with the ob-
servations in [4]. Figure 2 shows the estimated visual activation map and
time course of FastICA algorithm without and with filtering respectively.
Each activation map is converted to Z-scores and thresholded at |Z| > 2.5.
Because of Z-score conversion and thresholding, the spatial smoothness of the
activation map is no longer preserved. However, filtering leads to a smaller
Z-score range because of higher degree of spatial smoothness for this case.



TABLE 3: ESTIMATION RESULT OF HYBRID FMRI DATA

ICA w/o smooth filtering | ICA w/ smooth filtering
Infomax FastICA Infomax FastICA
€1/€o - - 100 5000
Correlation w/ paradigm | 0.81+0.01 0.68+0.01 0.82+0.01 | 0.79+£0.01
Smoothness 0.95+0.01 0.89+£0.06 0.92+0.02 | 0.94£0.01
Iterations 39+1 8+1 14144 8+3
cpu time (sec.) 2.5+0.3 1.2+0.1 5.4+£1.5 1.5+0.2

DISCUSSION

In this work, we define and study a feature selective filtering scheme within
a general ICA framework. We show that this kind of filtering can improve
the estimation of SOIs having the same feature as that of the filter used. In
the simulations, we use a 2D smoothing filter as the feature selective filter
and show that the estimation result of the spatially smooth image sources is
improved.

We show that the effect of feature selective filtering in the ICA estimation
process is to improve the expression of SOI in the estimation through the fil-
tering correlation matrix defined in (9). Conversely, this suggests that the
characteristics of the filter should be designed according to the feature of the
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Figure 2: Estimated visual activation map, Z-score range and time course of Fas-
tICA without filtering (a, b and ¢) and FastICA with filtering (d, e and f)




SOI. For the same feature, the selectivity of the filter can be adjusted to influ-
ence the estimation at different levels. As in the case of fMRI data analysis,
prior knowledge such as the properties of the vascular point spread function
on the hemodynamic sources and the resolution of the imaging technique can
be used to determine the effective kernel size of the smoothing filter. More-
over, the filtering is only applied to the estimations of SOIs by specifying a
threshold on the measure of desired features and selecting estimates surviv-
ing the threshold for filtering. Therefore, the estimation of other independent
components is not affected. Another approach to select the SOIs would be
to rank the estimates with respect to a selected measure and to base the
selection on this ranking.

Since the feature selective filtering is not related to the goal of achieving
independence, it should be introduced into the estimation process after a
preliminary convergence of the original ICA algorithm. The convergence
behavior when filtering is incorporated is algorithm dependent. For Infomax
that uses natural gradients, convergence time varies significantly depending
on when the filtering is introduced. In our observation, the later the filtering
is applied, the longer it takes for the learning algorithm to converge. For
FastICA that performs fixed point iterations within orthogonal subspaces,
the convergence rate is not observed to be sensitive to the point at which the
filtering is introduced. This might be explained by the high convergence rate
of the FastICA algorithm [9]. The convergence behavior of ICA algorithms
with feature selective filtering is under further investigation.

The feature selective filtering introduces additional computational load
into the algorithm. This includes (i) extra steps required for the learning al-
gorithms to converge because of the perturbation due to the filtering process,
and (ii) computations needed due to the feature-selective filtering operations.
For the latter, suppose that there are m independent components that are
being estimated where k of which are SOIs. For a single iteration, feature
selective filtering requires m filtering operations and the calculation of the
correlation factors defined in (10), as well as k matrix multiplications for the
projection. If the mixture data are prewhitened, the matrix inversion in (3)
can be neglected.

Although our motivation of feature selective filtering has been in improv-
ing the estimation of the spatially smooth sources, the proposed filtering
scheme is not restricted to this specific application scenario. Filters can be
designed on different sample spaces, e.g., a bandpass filter can be designed
for ICA of periodic signal sources or for reduction of out-of-band noise in
ICA estimation for given applications. For example, in TICA of fMRI data,
a bandpass filter can be designed based on the experimental paradigms to
extract task related time courses. Furthermore, a multi-filter scheme can be
implemented to extract SOIs with different features. In general, if the feature
of an SOI can be selected by filtering in its sample space, the proposed filter-
ing scheme will be able to improve the estimation of such SOI when properly
incorporated into an iterative ICA algorithm.
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