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ABSTRACT

Multivariate analysis methods such as independent component
analysis (ICA) have been applied to the analysis of functional mag-
netic resonance imaging (fMRI) data to study the brain function.
The selection of the proper number of signals of interest is an im-
portant step in the analysis to reduce the risk of over/underfitting.
The inherent sample dependence in the spatial or temporal dimen-
sion of the fMRI data violates the assumption of independent and
identically distributed (i.i.d.) samples and limits the usefulness of
the practical formulations of information-theoretic order selection
criteria. We propose a novel method using an entropy rate matching
principle to mitigate the effects of such sample dependence in order
selection. We perform order selection experiments on the simulated
fMRI data and show that the incorporation of the proposed method
significantly improves the accuracy of the order selection by differ-
ent criteria. We also use the proposed method to estimate the number
of latent sources in fMRI data acquired from multiple subjects per-
forming a visuomotor paradigm. We show that the proposed method
improves the order selection by alleviating the over-estimation due
to the intrinsic smoothness and the effect of smooth preprocessing
on the fMRI data.

1. INTRODUCTION

Functional magnetic resonance imaging (fMRI) data have been an-
alyzed successfully by multivariate methods such as independent
component analysis (ICA) to explore the brain function, see,e.g.,
[1],[2],[3]. Although ICA can be applied on the full spatial or tem-
poral dimension of the fMRI data, to avoid overfitting due to high
noise level in the fMRI data and for computational efficiency, the
number of informative components to be estimated is often assumed
to be less than the spatial or temporal dimension of the fMRI data. A
lower dimensional subspace containing the sources of interest thus
needs to be identified before further analysis and this step has impor-
tant implications in the final results of the ICA analysis as discussed
in [3],[4],[5]. For example, overestimation of the number of com-
ponents to be estimated leads to splitting of the components making
the interpretation difficult and limiting the utility of ICA analysis
[4]. On the other hand, underestimation of the dimension may lead
to loss of relevant information.

In a typical ICA analysis of fMRI data, the following generative
model is assumed

X =

M∑
k=1

aks
T
k + E (1)
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whereX is thep ×N fMRI data set containingN voxels atp time
points,sk is anN × 1 vector consisting of the spatial map of thekth
brain source,ak is ap× 1 vector representing the time course of the
kth brain source,E is ap-variate Gaussian noise withN , M is the
number of brain sources contained in the data,i.e., the order of the
fMRI data.

Among different approaches for order selection, information-
theoretic criteria are found to be particularly attractive for many sig-
nal processing applications. One of the major advantages of the ap-
proach is the automation of the order selection process so that no
empirical threshold value needs to be specified. A commonly used
order selection criterion, Akaike’s Information Criterion (AIC) is
developed based on the minimization of the Kullback-Leibler di-
vergence between the true model and the fitted model [6]. AIC
is extended by Cavanaugh as the KIC criterion [7], based on the
Kullback-Leibler symmetric divergence of the true and fitted mod-
els. The Minimum Description Length (MDL) criterion, also known
as the Bayesian Information Criterion (BIC), is developed by Rissa-
nen [8] and Schwartz [9] respectively based on the minimum code
length and the Bayesian model. The formulas of AIC, KIC, and
MDL criteria have the following common structure:

−L(x|Θk) + G(Θk)

whereL(x|Θk) is the maximum log-likelihood of the observed data,
x, based on the model parameter setΘk of thekth candidate model,
G(Θk) is the model penalty term that is directly proportional to the
total number of free parameters inΘk. For MDL, the penalty term
is also scaled bylog N whereN is the sample size.

Wax and Kailath [10] derive the maximum log-likelihood and
the model penalty for the AIC and MDL criteria in a context of de-
tecting the number of signals in noise where both the signals and the
noise are modeled by Gaussian random processes. The maximum
log-likelihood in their formulation is given by

L(x|Θk) = N log

(∏p
i=k+1 l

1/(p−k)
i

1
p−k

∑p
i=k+1 li

)(p−k)

(2)

wherep is the original dimension of the data,k is the candidate order,
N is the number of data samples, andli’s are the eigenvalues of the
sample covariance matrix of the observation vectorx. The number
of free parameters inΘk is given by

G(Θk) = k(2p− k) + 1.

Wax and Kailath’s formulation thus is directly applicable to the mul-
tivariate order selection problem and it is used in estimating the num-
ber of latent sources in blind source separation [11] as well as in ICA
for fMRI data [3], [4].



One important assumption used in the derivation of Wax and
Kailath’s order selection formula is that the samples of the obser-
vation vectorx are i.i.d. Specifically, for the fMRI data modeled
by Eq. (1), the samples from each voxel are assumed to be i.i.d. In
fact, however, there is inherent spatial smoothness due to the point
spread function of the scanner. Furthermore, smoothing is a com-
monly used preprocessing step to suppress the noise in the fMRI
data. Both of these factors contribute to the dependence among the
fMRI data samples, thus, weaken the i.i.d sample assumption. When
the samples are dependent, the actual number of i.i.d. samples is less
thanN . Therefore, the likelihood term shown by Eq. (2) improperly
dominates the order selection criteria because the penalty term does
not increase as much by the inflation ofN . As a result, the Wax and
Kalaith’s formulation is liable to over-estimate the order.

To address the sample dependence introduced by spatial smooth-
ness, we model the fMRI data at each time point by a finite or-
der moving average sequence in the spatial domain. Based on this
model, we propose a subsampling scheme on the fMRI volume data
to estimate the effective number of i.i.d samples,Ne. The estimated
Ne is therefore used instead of the original sample sizeN in the like-
lihood computation given by Eq. (2) for the order selection criteria.
Specifically, we use an information-theoretic concept, entropy rate,
to measure the sample dependence. By comparing the entropy rate
of the subsampled fMRI data with that of an i.i.d. sequence, we infer
the effective number of i.i.d. samples in the original fMRI data.

In the next section, we develop the entropy rate matching prin-
ciple and outline the implementation of the principle to estimateNe.
In section 3, we show experimental results by the proposed method
on order selection of the simulated and true fMRI data. We conclude
the work with a discussion in the last section.

2. ENTROPY RATE MATCHING

2.1. Stationary Gaussian process and its properties

Let x[n], n = 1, 2, ..., N be a stationary Gaussian random sequence,
andr[m] be the autocorrelation function ofx[n], the Fourier trans-
form of the autocorrelation function,s(ω) =

∑∞
m=−∞ r[m]e−jωm,

is the power spectral density function of the random sequencex[n].
Without loss of generality, we assume thatx[n] has zero mean and
unit variance,i.e., E{x[n]} = 0 andE{x2[n]} = 1. This is as-
sumed in sequel unless otherwise mentioned. As a measure of the
amount of information carried by each sample of the random se-
quence, the entropy rate ofx[n] is given by [12]

hx = ln
√

2πe +
1

4π

∫ π

−π

ln s(ω)dω. (3)

In our development, the following observation plays the key
role:

The entropy rate of a stationary Gaussian random sequence with
unit variance is upper bounded byln

√
2πe and the upper bound is

achieved if and only if the sequence is a white Gaussian sequence,
i.e., all the samples of the sequence are i.i.d.

The above argument can be verified by using the log inequality
ln(x) ≤ x− 1, (x > 0), such that∫ π

−π

ln s(ω)dω ≤
∫ π

−π

s(ω)dω −
∫ π

−π

1dω = 0 (4)

The last equality in (4) is due to the fact thatx[n] has unit variance,
i.e., σx

2 = r[0] = 1
2π

∫ π

−π
s(ω)dω = 1. We have equality in (4) if

and only ifs(ω) ≡ 1, i.e., whenx[n] is a white Gaussian sequence.

The second observation that leads us to the sampling scheme
proposed in the next section can be stated as:

Assume that a stationary Gaussian random sequencex[n] has
an autocorrelation function of finite length,i.e., r[m] = 0 for |m| ≥
λ, the subsampled sequencexs[n] = x[λn] is a white Gaussian
random sequence.

To observe this, letrs[m] be the autocorrelation function of the
subsampled sequencexs[n],

rs[m] = E{xs[n]xs[n + m]} = E{x[λn]x[λn + λm]} = r[λm]

becausex[n] is stationary. Hence, we havers[m] = r[λm] = δ[m]
whereδ[m] is the Kronecker delta function that assumes value ‘1’
at m = 0 and ‘0’ otherwise. Therefore, the subsampled sequence
xs[n] is a white Gaussian sequence.

2.2. Entropy rate matching principle and its implementation

2.2.1. Entropy rate matching principle and its applicability

The properties discussed in Section 2.1 indicate that (i) the entropy
rate upper bound can be used to identify an i.i.d. Gaussian sequence;
and (ii) an i.i.d. Gaussian sequence can be obtained by subsampling
a finite order moving average sequence. Therefore, we propose the
following entropy rate matching principle:

If the estimated entropy rate of a subsampled Gaussian sequence
reaches the entropy rate upper bound,ln

√
2πe, the subsampled se-

quence is an i.i.d. sequence.
It is worth noting that the proposed entropy rate measure is im-

proper for non-Gaussian processes. It is also observed that the origi-
nal fMRI volume data are not Gaussian in general (results not shown).
Assuming that the spatial sample dependence of the fMRI data is in-
variant with respect to time,Ne can be inferred from fMRI volume
data at any time point or a linear combination of such data set. Ac-
cording to the model of Eq. (1), principal component analysis (PCA)
produces such combinations of fMRI volume data that are (approxi-
mately) Gaussian – as a set of the least significant componentsi.e.,
the principal components with the least variances. Therefore, we use
PCA to obtain a set of least significant components of the fMRI data
and estimate the effective number of i.i.d. samples from the least
significant components by the entropy rate matching principle.

2.2.2. Estimation ofNe by the subsampling scheme

We first subsample the selected least significant principal compo-
nents by the smallest possible subsampling depthi = 2, i.e., drop all
but every two samples. As the samples being kept after subsampling
have less dependence, the entropy rate of the subsampled sequence
increases. We increase the depth of subsampling till the estimated
entropy rate of the subsampled sequence reaches the entropy rate
upper bound. At this point, we consider the resulting sequence as
a white Gaussian sequence and its length,Ne = N/i, as the effec-
tive number of i.i.d. samples contained in the original sequence. To
improve the estimation, we estimateNe from each selected least sig-
nificant principal component individually and take the average as the
estimatedNe of the data.

2.2.3. Calculation of entropy rate

To estimate the entropy rate of a Gaussian sequence of finite length,
summation is used to approximate the integral in Eq. (3),i.e.,

hx ≈ ln
√

2πe +
1

4π

∑
k

ln ŝ(ωk)∆ω



Fig. 1. Simulated fMRI sources and their time courses

where∆ω is given by∆ω = 2π/Σŝ(ωk) since the sequence has
unit variance. The estimated power spectral densityŝ(ωk) is the
discrete Fourier transform of the autocorrelation sequence, smoothed
by Parzen window. The autocorrelation sequence is estimated by

r̂[m] =
1

N − |m|

N−|m|−1∑
n=0

x[n + |m|]x[n].

3. EXPERIMENTAL RESULTS

3.1. Order estimation on simulated fMRI data

We use the eight simulated fMRI sources and their associated time
courses similar to the ones used in [13] to create the mixed spatial-
temporal data according to the generative model in Eq. (1). The
sources and the time courses are shown in Figure 1. White Gaus-
sian noise is added to the mixtures at three different contrast to
noise ratio (CNR) levels. The typical CNR of fMRI data is approxi-
mately 1 (0dB) for a robust paradigm. Order estimation experiments
are performed on the unsmoothed data as well as the data spatially
smoothed by a 3×3 pixel full-width-half-maximum (FWHM) Gaus-
sian kernel.

Figure 2 shows the order selection results by AIC, KIC, and
MDL without incorporatingNe. Figure 3 shows the results with
the estimatedNe values incorporated into the order selection for-
mulas of the three criteria. In each figure, ‘M ’ indicates the true
number of sources mixed in the data and ‘K ’ is the estimated num-
ber of sources. All the results are based on an average of ten Monte
Carlo simulations using different source and noise realizations. The
standard deviation is stacked on the mean value in each bar plot.

For the unsmoothed data, both the regular and the proposed or-
der selection methods give correct estimation since the data samples
are i.i.d. For the smoothed data, all the criteria significantly over-
estimate the number of sources without incorporatingNe (Figures
2b, 2d, and 2f). WhenNe is incorporated, however, the order esti-
mation is correct in most of the cases (Figures 3b, 3d, and 3f).

(a) CNR = 2(3dB) FWHM = 0 (b) CNR = 2(3dB), FWHM = 3×3

(c) CNR = 1(0dB) FWHM = 0 (d) CNR = 1(0dB) FWHM = 3×3

(e) CNR = 0.5(-3dB) FWHM = 0 (f) CNR = 0.5(-3dB) FWHM = 3×3

Fig. 2. Order selection without i.i.d. sample estimation

3.2. Order estimation on true fMRI data from visuomotor test

We perform order selection on the unsmoothed and smoothed fMRI
data from twelve subjects taking a visuomotor test. See [14] for the
detailed experimental settings. Data were processed using the MAT-
LAB Toolbox for Statistical Parametric Mapping (SPM)1. Images
were realigned using INRIalign - a motion correction algorithm un-
biased by the local signal changes [15], [16]. Data were spatially
normalized into the standard Montreal Neurological Institute space
[17], spatially smoothed with a 8×8×8mm FWHM Gaussian kernel.
The data (originally acquired at 3.75×3.75×4 mm) were slightly re-
sampled to 3×3×5 mm, resulting in 53×63×28 voxels.

Figure 4a shows the order selection results without incorporating
Ne while Figure 4b shows the results using the estimatedNe values.
The standard deviation across different subjects is stacked on the
mean value in each bar plot.

WhenNe is not used in the formulas, most order selection cri-
teria give high order estimate,i.e., suggest a very large number of
sources to be estimated by ICA. For the smoothed data, the esti-
mated orders are higher than that of the unsmoothed data (Figure
4a).

WhenNe is incorporated into the order selection criteria, the es-
timated orders tend to be more reasonable. Also the estimated order
of the smoothed data are slightly lower than that of the unsmoothed

1http://www.fil.ion.ucl.ac.uk/spm2



(a) CNR = 2(3dB) FWHM = 0 (b) CNR = 2(3dB), FWHM = 3×3

(c) CNR = 1(0dB) FWHM = 0 (d) CNR = 1(0dB) FWHM = 3×3

(e) CNR = 0.5(-3dB) FWHM = 0 (f) CNR = 0.5(-3dB) FWHM = 3×3

Fig. 3. Order selection with i.i.d. sample estimation

data, which is intuitively satisfying because the smoothing operation
may reduce the information contained in the data, hence, a smaller
number of signals of interest are preserved (Figure 4b).

4. DISCUSSION

Two major issues for research in order selection are the study of the
effects of finite sample size and the compensation of the effect of de-
pendencies in the sample space. In our current work, we address the
latter issue and propose a practical scheme to improve order selec-
tion when the samples are not i.i.d. Hence, the proposed scheme we
show can facilitate the subsequent analysis procedures such as ICA.

When the test of normality is performed on the least signif-
icant principal components, it indicates normality in most cases.
However, for the unsmoothed fMRI data, most of the components,
though close to passing, fail the test. Upon further inspection, the
normalized kurtosis values for these components are found to be
close to zero and hence these components, though slightly violat-
ing the Gaussian assumption of the entropy rate matching principle
are nonetheless near Gaussian. The utility of our approach is further
confirmed since the proposed scheme achieves reasonable improve-
ment on order selection as shown in the simulation results and the
experimental results for the fMRI data are reasonable and consistent
with what is expected.

(a) Without i.i.d. sample estimation (b) With i.i.d. sample estimation

Fig. 4. Estimated number of sources in fMRI data from a visuomotor
test
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