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ABSTRACT

We present a projection-based framework for a feature-
selective independent component analysis (FS-ICA) scheme
and study its convergence property for two ICA algorithms,
FastICA and Infomax. As examples, we implement band-
pass filter as the feature-selective filter to improve the es-
timation of a bandpass signal from the mixtures and a pe-
riodic task-related time course embedded in the functional
Magnetic Resonance Imaging (fMRI) data. Hence, we dem-
onstrate that the proposed method can incorporate a priori
information into ICA to effectively improve estimation of
the underlying components of practical interest, such as pe-
riodic time courses and smooth brain activation areas in
fMRI data.

1. INTRODUCTION

ICA is a technique to estimate statistically independent com-
ponents from their linear mixtures. Most ICA algorithms
are derived by forming a linear demixing model, defining
a measure of statistical independence and performing nu-
merical optimization of the independence measure based on
the given observations. In this framework, each component
is treated as a random variable and the independence mea-
sure used by ICA algorithm is a statistical measure such as
the higher order statistics, negentropy and mutual informa-
tion. However, in most application scenarios, the contextual
information is encoded in the sample space of the compo-
nents, in other words, the order by which the samples are in-
dexed depends on the nature of the underlying components.
For example, a noise signal with a Laplace distribution is
by no means the same as a speech signal that has the same
distribution in amplitude although they are identical so far
as the statistical measures are concerned. A speech signal is
a bandpass signal with slowly changing envelop while the
noise signal does not assume any temporal pattern.
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Methods using the temporal structure to achieve blind
source separation of signals have been developed in, e.g.,
[1, 2]. However, these methods can not estimate compo-
nents with identical autocovariances [3]. It is desirable to
use the contextual information in the components together
with their statistical independence to perform ICA estima-
tion. The challenge here is to find a way to combine the
features in sample space with the ICA learning algorithm
that is based on a statistical measure. One possibility is
that, in the ICA estimation process, a feature-selective filter-
ing [4] is imposed on the sequence of component estimates
and the filtering effect is projected onto the demixing vec-
tors. The projection is achieved by obtaining linear estima-
tor of the demixing vector based on the filtered component
estimate and the ICA model. This projection transfers the
feature-enhanced variation in the sample space to the space
of the demixing vectors where the numerical optimization is
carried out. This feature-selective projection during the se-
quential ICA estimation process hence biases the estimates
to the components whose features match the characteristics
of the feature-selective filter. Detailed discussion on this ef-
fect is given in the following sections.

In the next section, we outline the method of feature-
selective projection within a general ICA framework. Sec-
tion 3 studies its convergence behavior for two widely used
ICA algorithms, FastICA [5] and Infomax [6]. In Section
4, we show simulation results of this projection based FS-
ICA in separation of independent waveforms with different
temporal patterns and temporal ICA of fMRI data [7]. We
conclude our work with a discussion about this scheme.

2. FEATURE-SELECTIVE PROJECTION IN ICA

The generative model of ICA can be stated as x[t] = As[t]
where s[t] is a vector containing the components with sam-
ple data indexed by t, A is a nonsingular mixing matrix and
x[t] is the resulting observations. The estimation is most
typically performed in batch mode on all the observed sam-
ples. Therefore, we can drop the index t and expand each



component as a row vector of data arranged in its natural
order, e.g., time sequence, image contrast from sequentially
located pixels etc. Accordingly, the generative model be-
comes: X = AS where X and S are matrices whose rows
contain the data from each observation and component re-
spectively. The task of ICA is then to find a demixing ma-
trix W such that the original components are recovered as
Ŝ = WX.

Within one iteration of ICA algorithm, the feature-selec-
tive projection can be carried out in the following procedure
[4]:
(i) Restoration: ŝ(k) = X

T
w(k) where k is the iteration

index of the ICA algorithm;
(ii) Filtering: ŝ

′(k) = Hŝ(k) where filtering is expressed as
premultiplication of the signal vector with the convolution
matrix H defined by the feature-selective filter;
(iii) Projection: w

′(k) = (XX
T )−1

Xŝ
′(k), i.e., the least

squares solution of minw‖ŝ′(k) −X
T
w‖

2
.

When the observations are prewhitened, i.e., XX
T =

nI where n is the dimension of the sample space and I is
the identity matrix, we can rewrite the expression of w

′(k)
in (iii) as

w
′(k) = (XX

T )−1
ASHS

T
A

T
w(k) = AΣss′A

T
w(k)

(1)
where we use the ICA generative model X = AS and de-
fine Σss′ ≡ 1

n
SHS

T = 1

n
SS

′T as the sample correlation
matrix of the original components and the filtered ones, i.e.,
the feature correlation matrix.

Since A is assumed to be a nonsingular matrix in the
ICA model, we can premultiply A

−1 to both sides of (1) to
obtain:

A
−1

w
′(k) = Σss′A

T
w(k). (2)

Also by the whitening condition, we have

XX
T = ASS

T
A

T = nAΣsA
T = nI (3)

where Σs ≡ 1

n
SS

T is the sample correlation matrix of the
true components. Because of the independence assumption,
Σs is a diagonal matrix with the sample correlation rsi

=
1

n
si

T
si on its main diagonal.

From the last equality in (3), we have A
T = Σ−1

s A
−1.

Substituting A
T into (2), we obtain

A
−1

w
′(k) = Σss′A

−1
w(k) (4)

where Σss′ ≡ Σss′Σ−1
s . Assuming that the feature-selective

filtering on each individual component does not introduce
correlation across different components and the filtering gain
is 1, Σss′ is a diagonal matrix with the feature correlation
factors rsis

′

i
= 1

n
si

T
s
′

i, i = 1, 2, ..., m on its main diagonal.
From here and onwards, m represents the dimension of the
demixing vectors. Therefore, Σss′ is a diagonal matrix with

the normalized feature correlation factor of each compo-
nent rsis

′

i
/rsi

∈ [0, 1] on its main diagonal. Now we define
a new vector z(k) ≡ A

−1
w(k) and rewrite (4) as

z
′(k) = Σss′z(k). (5)

Hence, the feature-selective projection is equivalent to pre-
multiplying the transformed demixing vector z(k) with the
normalized feature correlation matrix Σss′ within each iter-
ation of the ICA algorithm.

3. CONVERGENCE BEHAVIOR OF PROJECTION
BASED FS-ICA

3.1. FastICA with feature-selective projection

An important principle of FastICA algorithm is that all the
demixing vectors wi are kept orthogonal and of unit norm
during the updates, i.e., the demixing matrix W satisfies
WW

T = I. This indicates that W
T = W

−1 = A.
In this case, the whitening condition in (3) implies Σs =
1

n
WXX

T
W

T = I and equation (5) becomes

z
′(k) = Σss′z(k).

Hence, the effect of feature-selective projection is weighting
each element zi in the transformed demixing vector z by the
feature correlation factor rsis

′

i
. Hereon, the iteration index

k is dropped for simple expression.
Under this setting, Hyvarinen [5] shows that the conver-

gence criterion for the estimation of one component is that
z converges to a unit vector with only one nonzero element.
Suppose we estimate the component sj whose transformed
demixing vector is z = [z1, z2, ..., zm]T . When sj assumes
the specified feature, we have rsis′

i
< rsjs′

j
≈ 1, ∀i 6= j,

and this correlation factor will accelerate the decrease of
zi, ∀i 6= j to zero. Therefore, the convergence of each zi is
enhanced by the ratio rsjs′

j
/rsis

′

i
.

3.2. Infomax with feature-selective projection

A substantial difference between the Infomax and the Fas-
tICA algorithms is that Infomax optimizes a measure of en-
semble independence among all the components. There-
fore, it estimates all the independent components simultane-
ously. This makes the analysis on the estimation of one par-
ticular component less straightforward. However, we can
study the extreme case such that the feature-selective pro-
jection is applied to the entire demixing matrix. In this case,
(5) becomes

Z
′(k) = Z(k)Σss′ (6)

where Z is the transformed demixing matrix with each vec-
tor z as its column.

For an Infomax-type updating rule with the tanh non-
linearity, Amari et al. [8] shows that the demixing matrix



asymptotically converges to W
o = A

−1. Hence, Z con-
verges to

Z
o = W

o
A

−T = A
−1

A
−T = Σs

where we use the relation A
−T = AΣs from (3). In other

words, each row of Z converges to a vector with only one
nonzero element, rsi

, corresponding to component si. Now,
we plug in the feature-selective projection as defined in (6)
and assume that component sj has the specified feature,
then we have rsis

′

i
/rsi

< rsjs′

j
/rsj

≈ 1, ∀i 6= j and

Z
′(k) = Z(k) diag[rs1s′

1
/rs1

, ..., rsms′

m
/rsm

].

Similar to the observation in the FastICA case, the conver-
gence of the transformed demixing vector z for sj is im-
proved by the weighting matrix Σss′ . For other compo-
nents, this weighting matrix is not going to help with the
convergence, therefore, the feature selective projection has
to be applied selectively on certain demixing vectors and in
a controlled manner [4] to preserve the general performance
of the ICA algorithm.

4. SIMULATIONS

4.1. Temporal waveform separation experiment
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Fig. 1. Simulated independent waveforms (Left) and their
spectra (Right)

Figure 1 shows five waveforms (From top to bottom:
s1, s2, ..., s5) we create as the independent source signals
and their frequency spectra. Five hundred samples are gen-
erated for each signal with a common sampling frequency
fs. We select s1 as the signal of interest and design a band-
pass FIR filter with a passband from 0.3fs to 0.4fs as the

Table 1. Statistics of the components
s1 s2 s3 s4 s5

κ̃ 0.51 0.95 −1.20 1.97 −0.54
rss′ 0.99 0.49 0.16 0.48 0.26

Table 2. Result of waveform separation

ICA FS-ICA
Infomax FastICA Infomax FastICA

rs1 ŝ1
0.82±0.03 0.85±0.07 1.00±0.00 0.99±0.01

rs2 ŝ2
0.89±0.05 0.91±0.09 0.98±0.01 0.97±0.02

rs3 ŝ3
0.69±0.02 0.98±0.02 0.70±0.01 0.99±0.01

rs4 ŝ4
0.99±0.00 0.97±0.03 0.99±0.00 0.98±0.02

rs5 ŝ5
0.71±0.04 0.84±0.15 0.73±0.01 0.98±0.02

n1 - 12±8 - 6±3
n 54±5 71±28 100±1 74±46

feature-selective filter to match its bandlimited characteris-
tics. The kurtosis value κ̃ and the bandpass feature correla-
tion rss′ of each signal are listed in Table 1.

The estimation results are shown in Table 2 and the cor-
relation between the true and the estimated signals, rsi ŝi

,
is calculated for the evaluation of performance. The re-
sult shows that the ICA algorithms incorporated with the
feature-selective projection lead to better estimation of s1.
Since the feature-selective filtering introduces a perturba-
tion in the ICA iterations, the total step count n for conver-
gence of the FS-ICA algorithms increases. However, when
the convergence of each individual component can be ob-
served, e.g., in FastICA, we see from the step count n1 that
the incorporation of the feature-selective projection accel-
erates the estimation of s1. This observation verifies the
conclusion in the previous section.

4.2. Temporal ICA of fMRI data

The temporal ICA model for fMRI data analysis takes the
different time courses, e.g., task-related, physiology-related,
as the independent components and assumes that the time
courses are mixed spatially by the brain activation maps.
The fMRI data we used for this example is acquired from
a visual activation experiment where the visual stimulus is
applied periodically [9]. This indicates that the correspond-
ing visual task-related time course assumes similar tempo-
ral periodicity. Specifically, the frequency characteristics of
the feature-selective filter can be obtained by multiplying
the spectrum of the experimental paradigm with the Fourier
transform of the hemodynamic response function [10]. There-
fore, we impose this periodicity feature on the estimate of
the visual task-related time course and incorporate the cor-



Table 3. TICA result of fMRI data

ICA FS-ICA
Infomax FastICA Infomax FastICA

rtt̂ 0.63±0.01 0.73±0.03 0.74±0.04 0.74±0.03
n1 - 29±11 - 28±13
n 111±10 75±27 132±29 68±21

responding feature-selective projection in the ICA estima-
tion process.
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Fig. 2. Estimated visual task-related time courses and the
corresponding activation maps of Infomax (a, b) and Info-
max with feature-selective projection (c, d)

The correlation between the experimental paradigm and
the estimated visual task-related time course, rtt̂, is com-
puted and listed in Table 3. Figure 2 shows the estimated
time courses and the associated activation maps (Z-scored
with Z > 2.5). From the results presented we see that when
feature-selective projection is incorporated, the estimated
visual task-related time course assumes higher correlation
with the experimental paradigm and is less noisy compared
to that of the original ICA algorithm.

5. DISCUSSION

In this work, we introduce a projection based FS-ICA scheme
and study its convergence properties in the context of two
ICA algorithms. The method uses controlled feature-selective

filtering on the sequential component estimates and projec-
tion by the least squares estimator. The design of the feature
seletive filter is based on the desired features of the compo-
nent of interest. Although in our simulations the feature-
selective filtering is carried out in the time domain, it is
actually defined in a general sample space such as spatial
domain for image processing or frequency domain in spec-
trum analysis.
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