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Abstract. In this project, a new Augmented Lagrangian method optimization algorithm is
developed. And this new method is used to perform the nonlinear constrained optimization task
brought up by the research of Independent Component Analysis(ICA). Experiment on the simulated
data was performed, and the independent components are successfully estimated by the optimal
decomposition vectors resulting from the new algorithm.
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1 Introduction

1.1 Independent Component Analysis

Independent Component Analysis(ICA) is a newly developed data driven signal estimation tech-
nique. It models the observed data as a linear mixture of a finite number of statistically independent
sources, and estimate those underlying sources based on two assumptions: linear mixing and sta-
tistical independence of the sources. Various algorithms have been developed by different groups,
among which two streams are proved to be most successful. One is the FastICA algorithm by
Hyvarinen[1], the other is the Infomax algorithm by Bell and Sejnowsky[2]. In this project, we will
focus on the optimization issue of FastICA. In FastICA, the independence of a source is measured
by certain nonlinear transform of the sample data from that source. By maximize/minimize the
nonlinear objective function with respect to the decomposition vector, w, the independent compo-
nent can be extracted from the mixture. ICA model can be summarized by the following equations
where ’S’ stands for sources, ’A’ is the mixting matrix and ’X’ represents resulting mixtures:

X = A · S (1.1)

S = [s1, s2, ...sM ]T ; (1.2)

X = [x1, x2, ...xM ]T ; (1.3)

A =









a11 a12 .. a1M

a21 a22 .. a2M

aM1 aMM .. aMM









(1.4)
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The objective function in FastICA is of the form:

E{G(wT X)} (1.5)

where G(.) is certain nonlinear transform. In this project, we choose the nonliearity to be:

G(u) = u4 (1.6)

This nonlinear form is chosen because: 1.It resembles the 4th order statistics which is a standard
measure of how far the distribution of a random variable is from that of a Gaussian(Normal) dis-
tribution, since Gaussian distribution represents the trend of mixture of large quantity of random
variables, the distribution away from Gaussian is the direction to get the independent compo-
nents[1]; 2.In the context of ICA, the objective function taking this nonlinear form is convex and
twice differentiable with respect to the unknowns. This is a nice property for the justification of
global minimizer when implementing the optimization.

In the ICA process, a decomposition vector, w, is to be found so the estimated sources can be
calculated by the decomposition model as blow:

si = wT
i X where i = 1, 2...M (1.7)

When w is taken to be the unknown variable in this problem, it is easy to see that the value of
the objective function goes to infinity as the value of w grows to be unbounded. Hence, a ’unit
variance’ constraint must be imposed to the optimization procedure:

‖w‖2 = 1 (1.8)

Therefore, the following nonlinear constrained optimization problem for ICA is formed:

w = arg min E{(wT X)4} s.t. ‖w||2 = 1 (1.9)

Where E{.} takes the expectation of the random variable inside and it’s value is calculated as the
mean value of the data samples.

1.2 Estimate several independent components

In practical scenario, several independent components need to be estimated, and the optimization
of corresponding decomposition vectors is usually carried out simultaneously. To avoid wi’s from
converging to the same extrema of the ICA objective function, orthogonal constraints are imposed
among those vectors. Putting together the ’unit variance’ constraint mentioned in section 1.1, we
can state all the constraints in the following matrix form:

WW T = I, (1.10)

where I denotes a M by M identity matrix.

We then take the summation of all the objective functions to be a new objective function, F (w1,w2...wM ),
as the measure of ’total independence’. So the overall optimization issue is formed as:

W = arg min ΣE{(W T X)4} s.t. WW T = I (1.11)
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2 Methodology

2.1 Augmented Lagrangian Method

There exits an important class of methods to solve the general constrained optimization problems
like the one stated in the previous section[3]. This class of methods seeks the solution by replacing
the original constrained problem with a sequence of unconstrained subproblems in which the ob-
jective function is formed by the original objective of the constrained optimization plus additional
’penalty’ terms. The ’penalty’ terms are made up of constraint functions multiplied by a positive
coefficient. By making this coefficient larger and larger along the optimization of the sequential
unconstrained subproblems, we force the minimizer of the objective function closer and closer to
the feasible region of the original constrained problem[3].

However, as the penalty coefficient grows to be too large, the objective function of the uncon-
strained optimization subproblem may become ill conditioned, thus, making the optimization of
the subproblem difficult. This issue is avoided, after the proof of convergence, by the so called
’Augmented Lagrangian method’ in which an explicit estimate of the Lagrange multipliers λ is
included in the objective. Hence, the objective function becomes[3]:

Φ(x, λ, µ) = f(x) − Σλici(x) +
1

2µ
Σci

2(x) (2.1)

2.2 Modified LANCELOT Algorithm

Based on the idea of Augmented Lagrangian method, an optimization software, LANCELOT has
been developed by Conn[4]. Unfortunately, this software is written in Fortran Language and has
its rigid data input/output format, which makes it difficult to import the large amount of data
samples from ICA problem into that software to perform optimization.

As the way out, a new Matlab code is developed based on the framework of LANCELOT. And for
higher optimization efficiency, Line-search Newton-CG Method is used as the algorithm to solve the
unconstrained subproblem. A framework of the modified LANCELOT algorithm is stated as below:

Algorithm 3.1(Modified LANCELOT Algo.)
Choose stopping tolerances: εi, εc;
Choose positive constants: η, ω, µ ≤ 1, τ < 1, γ < 1, αw, βw, αη, βη , α∗, β∗;
satisfying αη < min(1, αw), βη < min(1, βw);
Choose λ0 ∈ Rm;

Set µ0 = mu,α0 = min(µ0, γ), ω0 = ω(α0)
αw , η0 = η(α0)

αη

While ‖L(x, λ)‖ > εi and ‖c(x)‖ > εc

Find an approximate solution xk of the unconstrained subproblem(Augmented Lagrangian
Function) by Line-search Newton-CG method such that

‖∇Φ(x, λ;µ)‖ < ωk;

if ‖c(xk)‖ ≤ ηk

if ‖c(xk)‖ ≤ η∗ and ‖∇LA(xk, λk;µk)‖ ≤ ω∗

STOP with approximate solution xk;

end (if)
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(* update multipliers, tighter tolerances*)

λk+1 = λk − c(xk)/µk;

µk+1 = µk;

αk+1 = µk+1;

ηk+1 = ηkα
βη

k+1
;

ωk+1 = ωkα
βω

k+1
;

else
(* decrease penalty parameter, tighter tolerances*)

λk+1 = λk;

µk+1 = τµk;

αk+1 = µk+1γ;

ηk+1 = ηα
βη

k+1
;

ωk+1 = ωαβω

k+1
;

end(if)
end (while)

3 Simulation Results

3.1 Simulated fMRI data

An active application of ICA is in fMRI(functional Magnetic Resonance Imaging) analysis. In ac-
qusition of fMRI data, the brain region is scanned while the test subjective is performing certain
functional task, e.g. responsing to visual stimulus. The data is considered to be a mixture of brain
hymodanymic activations from different areas in the cerebral. The ICA analysis is then used to
identify those independent activation areas from the highly mixed fMRI data.

In the simulated ICA experiment, we created different image patterns to mimic the ’activation’
area in human brain as well as some ’noise like’ image to resemble noise with certain random dis-
tributions. Each image is considered as a random variable and the intensity at each pixel is taken
as a sample data from that random variable. Since the images are created in different ways and
resemble different patterns, the intensity distribution of each image are statistically independent.
For the second step, we create a random mixing matrix to mix the source images. For conve-
nience, the mixing matrix is square, so that the number of mixtures is the same as the number of
independent sources. In practical cases, since the observations are highly correlated, the number
of sources to be estimated is usually far less than the number of observations. For this reason,
certain dimension reduction technique, e.g. Principle Component Analysis, is employed to reduce
the number of observations so that ICA can be carried out in a subspace that bears most of the
information from the original data[5].

3.2 Simulated fMRI data

Figure 1 illustrates the entire ICA data processing flow: The original image sources(S) are displayed
in the leftmost column; the middle column shows the random mixtures(X); and the rightmost
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Figure 1: Original source image v.s. estimated images.

column are the estimations of the sources. The 2-D correlation between the estimated image and
the corresponding source image is calculated as the benchmark for the evaluation of the estimation
result. For a sample screen output of the optimization process, please refer to Appendix A.

4 Conclusion

In this project, a new nonlinear constrained optimization algorithm in the context of ICA was
developed. Comparing to the classical algorithms for optimization of ICA objective functions,
this new algorithm incorporates the orthogonal constraint of the decomposition vectors into the
general optimization framework and perform an ensemble optimization to get several independent
components by one optimization process. Being applied to the simulated fMRI image data, the
algorithm produces decent result. After code improvement and testing with extensive data sources,
it can be introduced as a new optimization approach in ICA research.

5 Future Work

For a certain independent measure(e.g. 4th oder statistics), the underlying components may re-
semble different scales or even different sign in their measured score. This difference can mislead
the optimization algorithm from converging to the right independent sources. Therefore, a scaling
vector could be added into the objective function according to the prior knowledge of the the un-
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derlying sources. However, proper method needs to be developed on how to decide the value of the
scaling vectors through the optimization process. This leads to part of the future work on this ICA
optimization algorithm.
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A Sample Screen Output Of The Optimization Algorithm

Line-search Newton-CG for subproblem:

-----------------------------------------------------

Step f(xk) ||d_Phy|| ||grad_L||

[50]: -3.1362e+000 1.3350e-001, 1.5576e+001

[100]: -3.1723e+000 7.3180e-002, 1.5559e+001

[150]: -3.1824e+000 3.6533e-002, 1.5552e+001

[200]: -3.1848e+000 1.7926e-002, 1.5548e+001

[250]: -3.1853e+000 8.7499e-003, 1.5548e+001

Summary of the outer loop:

-------------------------------------------------------------------------

Step: f(X) sum(lambda) mu ||C(X)|| ||grad L||

#1; -5.1290e+000 6.0000e-001 1.0000e-001 6.1395e-001 4.7709e+000

Line-search Newton-CG for subproblem:

-----------------------------------------------------

Step f(xk) ||d_Phy|| ||grad_L||

[50]: -2.0941e+000 3.2159e-002, 8.0600e+000

[100]: -2.0941e+000 4.5836e-003, 8.0598e+000

[150]: -2.0941e+000 2.6733e-003, 8.0598e+000
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[200]: -2.0941e+000 2.3542e-003, 8.0598e+000

[250]: -2.0941e+000 2.1690e-003, 8.0598e+000

Summary of the outer loop:

-------------------------------------------------------------------------

Step: f(X) sum(lambda) mu ||C(X)|| ||grad L||

#2; -2.1761e+000 6.0000e-001 1.0000e-002 3.9567e-002 1.5548e+001

Line-search Newton-CG for subproblem:

-----------------------------------------------------

Step f(xk) ||d_Phy|| ||grad_L||

[50]: -2.0189e+000 1.1063e-002, 3.1259e-001

[100]: -2.0189e+000 2.3307e-003, 3.1263e-001

[150]: -2.0189e+000 1.3675e-003, 3.1263e-001

[200]: -2.0189e+000 1.1397e-003, 3.1263e-001

[250]: -2.0189e+000 1.0117e-003, 3.1263e-001

Summary of the outer loop:

-------------------------------------------------------------------------

Step: f(X) sum(lambda) mu ||C(X)|| ||grad L||

#3; -2.0128e+000 4.2563e+000 1.0000e-002 1.5645e-003 2.0110e-003

Line-search Newton-CG for subproblem:

-----------------------------------------------------

Step f(xk) ||d_Phy|| ||grad_L||

[50]: -2.0188e+000 4.7821e-003, 3.0197e-001

[100]: -2.0188e+000 3.9491e-003, 3.0197e-001

[150]: -2.0188e+000 3.2135e-003, 3.0197e-001

[200]: -2.0188e+000 2.6171e-003, 3.0197e-001

[250]: -2.0188e+000 2.1393e-003, 3.0197e-001
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Summary of the outer loop:

-------------------------------------------------------------------------

Step: f(X) sum(lambda) mu ||C(X)|| ||grad L||

#4; -2.0182e+000 4.2563e+000 1.0000e-003 1.5100e-004 3.1263e-001

Kurtosis of S1: 16.25; Kurtosis of S_est1: 16.26;

Correlation of No.1 source estimated: 1.00(+/-0.00)

.....................

Kurtosis of S2: -1.21; Kurtosis of S_est2: -1.21;

Correlation of No.2 source estimated: 1.00(+/-0.00)

.....................

Kurtosis of S3: -0.37; Kurtosis of S_est3: -0.29;

Correlation of No.3 source estimated: 0.99(+/-0.00)

References

[1] A. Hyvarinen, E. Oja ’Independent Component Analysis: algorithms and applications’, Neural
Networks(2000) 411-430;

[2] A.J. Bell and T.J. Sejnowski ’An Information-maximization approach to blind separation and
blind deconvolution’,1995;

[3] Nocedal and Wright ’Numerical Optimization’, Chapter17, 1999;

[4] Conn, Gould and Toint ’LANCELOT A Fortran Package for Large-Scale nonlinear Optimiza-
tion(Release A)’,1992;

[5] V. D. Calhoun ’Independent Component Analysis for Functional Magnetic Resonance Imaging’
Doctoral thesis, 2002;

[6] Lamport ’A Document Preparation System LATEX User’s Guide And Reference Manual(Second
Edition)’;


