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Abstract

Privacy-preserving data mining (PPDM) is a recent emer-

gent research area that deals with the incorporation of pri-

vacy preserving concerns to data mining techniques. We

consider a real clinical setting where the data is horizontally

distributed among different institutions. Each one of the

medical institutions involved in this work provides a data-

base containing a subset of patients. There is recent work

that shows the potential of the PPDM approach in med-

ical applications. However, there is few work in develop-

ing/implementing PPDM for predictive personalized medi-

cine. In this paper we use real data from several institutions

across Europe to build models for survival prediction for

non-small-cell lung cancer patients while addressing the po-

tential privacy preserving issues that may arise when shar-

ing data across institutions located in different countries.

Our experiments in a real clinical setting show that the pri-

vacy preserving approach may result in improved models

while avoiding the burdens of traditional data sharing (legal

and/or anonymization expenses).

1 Introduction

Privacy-preserving data mining (PPDM) is a recent
emergent research area that deals with the incorpo-
ration of privacy preserving concerns to data mining
techniques. We are particularly interested in a scenario
when the data is horizontally distributed among dif-
ferent institutions. In the medical domain this means
that each medical institution (hospitals, clinics, etc.)
provides a database containing a complete (or almost
complete) subset of item sets (patients). An efficient
PPDM algorithm should be able to process the data
from all the sources and learn data mining/machine
learning models that take into account all the infor-
mation available without sharing explicitly private
information among the sources. The ultimate goal of a
PPDM model is to perform similarly or identically to
a model learned by having access to all the data at the
same time.
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There are have been a push for the incorporation of
electronic health records (EHR) in medical institutions
worldwide. There seems to be a consensus that the
availability of EHR will have several significant benefits
for health systems across the world, including: improve-
ment of quality of care by tracking performance on
clinical measures, better and more accurate insurance
reimbursement, computer assisted diagnosis (CAD)
tools, etc. Therefore, there is a constant increase on
the number of hospitals saving huge amounts of data
that can be used to build predictive models to assist
doctors in the medical decision process for treatment,
diagnosis, and prognosis among others. However,
sharing the data across institutions becomes a difficult
and tedious process that also involves considerable
legal and economic burden on the institutions sharing
the medical data.

In this paper we explore two privacy preserving
techniques applied to learn survival predictive models
for non-small-cell lung cancer patients treated with
(chemo) radiotherapy. We use real data collected from
patients treated on three European institutions in two
different countries (the Netherlands and Belgium) to
build our models. The framework we are describing in
this paper allows to design/learn improved predictive
models that perform better than the individual models
obtained by using local data from only one institution,
without addressing the local and international privacy
preserving concerns that arise when sharing patient-
related data. As far as we know, there is none previous
work related to learning survival models for lung cancer
radiation therapy addressing PP concerns.

The rest of the paper is organized as follows: in
the next section, we introduced the notation used in
the paper. In section 3 we present an overview of the
related work. In sections 4.1 and 4.3 we present the
overview of the two methods used for our predictive
models: Newton-Lagrangian Support Vector Machines
[5] and Cox Regression [3]. Later in sections 4.2 and
4.4, we present the technical details of the corresponding
privacy preserving (PP) algorithms used. We conclude



the paper describing our application with experimental
results performed in a real clinical setting and the
conclusions.

2 Notation

We describe our notations now. All vectors will be
column vectors unless transposed to a row vector by a
prime ′. For a vector x ∈ Rn the notation xj will signify
either the j-th component or j-th block of components.
The scalar (inner) product of two vectors x and y in
the n-dimensional real space Rn will be denoted by x′y.
The notation A ∈ Rm×n will signify a real m×n matrix.
For such a matrix, A′ will denote the transpose of A,
Ai will denote the i-th row or i-th block of rows of A.
A vector of ones in a real space of arbitrary dimension
will be denoted by e. Thus for e ∈ Rm and y ∈ Rm the
notation e′y will denote the sum of the components of y.
A vector of zeros in a real space of arbitrary dimension
will be denoted by 0. For A ∈ Rm×n and B ∈ Rk×n,
a kernel K(A,B′) maps Rm×n × Rn×k into Rm×k. In
particular, if x and y are column vectors in Rn then,
K(x′, y) is a real number, K(x′, B′) is a row vector in
Rk and K(A,B′) is an m× k matrix. The abbreviation
“s.t.” stands for “subject to”.

3 Related Work

As a consequence of the recent advances of network com-
puting, there has been recently great interest in privacy-
preserving data mining techniques. An extensive review
of PPDM techniques can be found in [14]. Most of the
available data mining techniques require and assume
that there is complete access to all data at all times.
This may not be true for example, in an uncentralized
distributed medical setting where for each data source
or institution, there are local procedures in place to en-
force privacy and security of the data. If this is the
case, there is a need to use efficient data mining and
machine learning techniques that can use data across
institutions while complying with the non-disclosure na-
ture of the available data. There are two main kinds of
data partitioning when dealing with distributed setting
where PPDM is needed: a) the data is partitioned verti-
cally, this means that all institutions have some subset
of features (predictors, variables) for all the available
patients. When this is the case, several techniques have
been proposed to address the issue including: adding
random perturbations to the data [2, 4]. The other pop-
ular PPDM setting occurs when the data is partitioned
horizontally among institutions, that means that differ-
ent entities hold the same input features for different
groups of individuals. This case have been addressed in
[16, 15] by privacy-preserving SVMs and induction tree
classifiers. There are several other recently proposed

privacy preserving classifying techniques including cryp-
tographically private SVMs [7], wavelet-based distortion
[10]. There is recent work that shows the potential of
the approach [6, 12] in medical settings. However , there
is few work in developing/implementing PPDM for pre-
dictive personalized medicine.

4 Privacy-Preserving Predictive Models
(PPPM)

In this section we introduce two PP predictive models,
namely PP Support Vector Machines and PP Cox
Regression. We first give an overview of the two
techniques in sections 4.1 and 4.3, and then present the
PP versions in sections 4.2 and 4.4.

4.1 Overview of Support Vector Machines. We
describe in this section the fundamental classification
problems that lead to the standard quadratic Support
vector machine (SVM) formulation that minimizes a
quadratic convex function. We consider the problem
of classifying m points in the n-dimensional real space
Rn, represented by the m × n matrix A, according to
membership of each point Ai in the classes +1 or -1 as
specified by a given m×m diagonal matrix D with ones
or minus ones along its diagonal. For this problem, the
standard support vector machine with a linear kernel
AA′ [13] is given by the following quadratic program
for some ν > 0:

(4.1)

min
(w,γ,y)∈Rn+1+m

νe′y + 1
2w′w

s.t. D(Aw − eγ) + y ≥ e
y ≥ 0.

As depicted in Figure 1, w is the normal to the bounding
planes:

(4.2)
x′w − γ = +1
x′w − γ = −1,

and γ determines their location relative to the origin.
The first plane above bounds the class +1 points and
the second plane bounds the class -1 points when the
two classes are strictly linearly separable, that is when
the slack variable y = 0. The linear separating surface
is the plane

(4.3) x′w = γ,

midway between the bounding planes (4.2). If the
classes are linearly inseparable then the two planes
bound the two classes with a “soft margin” determined
by a nonnegative slack variable y, that is:
(4.4)
x′w − γ + yi ≥ +1, for x′ = Ai and Dii = +1,
x′w − γ − yi ≤ −1, for x′ = Ai and Dii = −1.



The 1-norm of the slack variable y is minimized with
weight ν in (4.1). The quadratic term in (4.1), which is
twice the reciprocal of the square of the 2-norm distance

2
‖w‖ between the two bounding planes of (4.2) in the n-

dimensional space of w ∈ Rn for a fixed γ, maximizes
that distance, often called the “margin”. Figure 1 de-
picts the points represented by A, the bounding planes
(4.2) with margin 2

‖w‖ , and the separating plane (4.3)

which separates A+, the points represented by rows of A
with Dii = +1, from A−, the points represented by rows
of A with Dii = −1. For this paper we used Newton-
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Figure 1: The bounding planes (4.2) with margin 2

‖w‖
,

and the plane (4.3) separating A+, the points represented

by rows of A with Dii = +1, from A−, the points

represented by rows of A with Dii = −1.

Lagrangian SVM (NSVM), an algorithm based on an
essentially equivalent formulations of this classification
problem [5]. In this formulation, the square of 2-norm of
the slack variable y is minimized with weight ν

2 instead
of the 1-norm of y as in (4.1). In addition the distance
between the planes (4.2) is measured in the (n + 1)-
dimensional space of (w, γ) ∈ Rn+1, that is 2

‖(w,γ)‖ .

Measuring the margin in this (n+1)-dimensional space
instead of Rn induces strong convexity and has little or
no effect in general on the problem.

4.2 Privacy Preserving SVMs. For our privacy
preserving application we chose to use a technique on
random kernel mappings recently proposed by Man-
gasarian and Wild on [11]. The algorithm is based on
two simple basic ideas:

1. The use of reduced kernel mappings [9, 8],
where the kernel centers are randomly chosen.
Instead of using the complete kernel function
K(A,A′) : Rm×n → Rm×m as it is usually done
in kernel methods they propose the use of a re-

duced kernel K(A,B′) : Rm×n → Rm×m̃, where
B ∈ Rm̃×n is a completely random matrix with
fewer rows than the number of available features,
(m̃ < n) .

2. Each entity makes public only a common
randomly generated linear transformation
of the data given by the matrix product of its
privately held matrix of data rows multiplied by
the transpose of a common random matrix B for
linear kernels, and a similar kernel function for
nonlinear kernels. In our experimental setting,
we assumed that all the available patient data
is normalized between 0 and 1 and therefore the
elements of B were generated according to a normal
distribution with mean zero, variance one and
standard deviation one.

Next, we formally introduce the PPSVM algorithm
as presented in [11]

Algorithm 4.1. Nonlinear PPSVM Algorithm

(I) All q entities agree on the same random matrix
B ∈ Rm̄×n with m̄ < n for security reasons as
justified in the explanation immediately following
this algorithm. All entities make public the class
matrix D (labels) where Dll = ±, l = 1, . . . ,m for
the each of the data matrices Ai, i = 1, . . . , q that
they all hold.

(II) Each entity generates its own privately held random
matrix B·j ∈ Rm̄×nj , j = 1, . . . . . . , p, where nj is
the number of input features held by entity j.

(III) Each entity j makes public its nonlinear kernel
K(Aj , B

′). This does not reveal Aj but allows the
public computation of the full nonlinear kernel:
(4.5)

K(A,B′) = K














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
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


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



, B′


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=


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

K(A1, B
′)

K(A2, B
′)

...
K(Aq, B

′)











(IV) A publicly calculated linear classifier K(x′, B′)u −
γ = 0 is computed by any linear hyperplane based
classification or regression method method such as
the ones presented in sections 4.1 and 4.3.

(V) For each new x ∈ Rn, obtained by an entity, that
entity privately computes K(x′, B′) and classifies
the given x according to the sign of K(x′, B′)u−γ.

Note that algorithm 4.1 works for any kernel with
the following associative property:

K

([

C
D

]

, F

)

=

[

K(C,F )
K(D,F )

]



Which is, in particular, the case of the linear kernel
K(A,B′) = AB′ and that we will use for the rest of the
paper.

As stated in [11], it is important to note than in the
the above algorithm no entity j reveals its data nor its
components of a new testing data point. When m̄ < n,
there is an infinite number of matrices Ai ∈ Rmi×n in
the solution set of the equation AiB

′ = Pi, when B and
Pi are given. This claim can be justified by the well-
known properties of under-determined systems of lin-
ear equations. Furthermore, the following proposition
which is originally stated and proved in [11] is aimed to
formally support the claim presented above:

Proposition 4.2. (infinite solutions of AiB
′ = Pi

if m̄ < n) Given the matrix product P ′
i = AiB′ ∈

Rmi×m̄, where Ai ∈ Rmi×n is unknown and B is a
known matrix in Rm̄×n with m̄ < n, there are an infinite
number of solutions, including:

(

n
m̄

)mi

=

(

n!

(n − m̄)!m̄!

)mi

possible solutions Ai ∈ Rmi×n to the equation AiB
′ =

Pi. Furthermore, the infinite number of matrices in

the affine hull of these

(

n
m̄

)mi

matrices also satisfy

AiB
′ = Pi.

4.3 Overview of Cox Regression. Cox regression,
or the Cox propositional-hazards model, is one of the
most popular algorithms for survival analysis [3]. Apart
from baing a classification algorithm which directly deal
with binary or multi-class outcomes, Cox regression
defines a semi-parametric model to directly relate the
predictive variables with the real outcome which is in
general the survival time (e.g., in years).

Let T represent survival time. The so-called haz-
ard function is a representation of the distribution of
survival times, which assesses the instantaneous risk of
demise at time t, conditional on survival to that time:

h(t) = lim
∆t→0

Pr[(t ≤ T < t + ∆t)|T ≥ t]

∆t
.

The Cox regression model assumes a linear model for the
log-hazard, or as a multiplicative model for the hazard:

(4.6) log h(t) = α(t) + w′x,

where x denote the covariates for each observation, and
the baseline hazard α(t) is unspecified. This model is
semi-parametric because while the baseline hazard can
take any form, the covariates enter the model linearly.

Now given any two observations xi and xj , from the
definition of hazard function we can get

h(ti)

h(tj)
= exp[w′(xi − xj)],

which is independent of time t. The baseline hazard
α(t) also does not affect the hazard ratio. This is why
the Cox model is a proportional-hazards model.

And Cox has showed in [3] that even though the
baseline hazard is unspecified, the Cox model can still be
estimated by the method of partial likelihood. It is also
possible to extract an estimate of the baseline hazard
after having fit the model.

4.4 Privacy Preserving Cox Regression. The
main idea of the privacy preserving SVM is to perform
a random mapping of the original predictive variables
into a new space, and then perform standard SVM on
the new space. Since in the Cox regression the interac-
tion between the parameter of the models and the data
is linear, we can also apply the same idea presented in
section 4.2 for the privacy preserving Cox regression.
Given the random matrix B and assuming that we are
using a linear kernel, equation 4.6 is slightly changed to:

(4.7) log h(t) = α(t) + w′xB′,

Again it is important to note, that to our knowledge,
this is the first time that privacy preserving techniques
are applied for survival analysis methods.

5 Application: 2-Year Survival Prediction for
Non-Small Cell Lung Cancer Patients

Radiotherapy, combined with chemotherapy, is treat-
ment of choice for a large group of non-small cell lung
cancer (NSCLC) patients. The treatment is not re-
stricted to patients with mediastinal lymph node metas-
tasis, but is also indicated for patients who are inoper-
able because of their physical condition. In addition,
the marginal role of radiotherapy and chemotherapy for
the survival of NSCLC patients has been changed into
one of significant importance. Improved radiotherapy
treatment techniques allow an increase of the radiation
dose, while at the same time more effective chemoradi-
ation schemes are being applied. These developments
have lead to an improved outcome in terms of survival.
Although the introduction of FDG-PET scans has en-
abled more accurate detection of positive lymph nodes
and distant metastases, leading to stage migration, the
TNM staging system is still highly inaccurate for the
prediction of survival outcome for this group of patients
[1]. In summary, an increasing number of patients is
being treated successfully with (chemo) radiation, but



an accurate estimation of the survival probability for an
individual patient, taking into account patient, tumor
as well as treatment characteristics and offering the pos-
sibility for treatment decision-making, is currently not
available.

At present, generally accepted prognostic factors
for inoperable patients are performance status, weight
loss, presence of comorbidity, use of chemotherapy in
addition to radiotherapy, radiation dose and tumor size.
For other factors such as gender and age the literature
shows inconsistent results, making it impossible to draw
definitive conclusions. In these studies CT-scans were
used as the major staging tool. However, the increasing
use of FDG-PET scans offers the possibility to identify
and use new prognostic factors. In a recent study it was
shown that number of involved nodal areas quantified
by PET-CT was an important prognostic factor [1].
We performed this retrospective study to develop and
validate several prediction models for 2-year survival of
NSCLC patients, treated with (chemo) radiotherapy,
taking into account all known prognostic factors. To
the best of our knowledge, this is the first study of
prediction models for NSCLC patients treated with
(chemo)radiotherapy

5.1 Patient Population. Between May 2002 and
January 2007, a total number of 455 inoperable NSCLC
patients, stage I-IIIB, were referred to MAASTRO clinic
to be treated with curative intent. Clinical data of all
these patients were collected retrospectively by review-
ing the clinical charts. If PET was not used as a stag-
ing tool, patients were excluded from the study. This
resulted in the inclusion of 399 patients. The primary
gross tumor volume (GTVprimary) and nodal gross tu-
mor volume (GTVnodal) were calculated, as delineated
by the treating radiation oncologist, using a commercial
radiotherapy treatment planning system (Computerized
Medical Systems, Inc, CMS). The sum of GTVprimary

and GTVnodal resulted in the GTV. For patients treated
with sequential chemotherapy these volumes were cal-
culated using the post-chemotherapy imaging informa-
tion. The creation of the volumes was based on PET
and CT information only; bronchoscopic findings were
not taken into account. The number of positive lymph
node stations was assessed by the nuclear medicine spe-
cialist using either an integrated FDG-PET-CT scan or
a CT-scan combined with FDG-PET-scan. T-stage and
N-stage were assessed using pre-treatment CT, PET and
mediastinoscopy when applicable. For patients treated
with sequential chemotherapy stage as well as number
of positive lymph node stations was assessed using pre-
chemotherapy imaging information.

Additionally, a smaller number of patients treated

at the other two centers, the Gent hospital and the
Leuven hospital, were also collected for this study.
There are respectively 112 and 40 patients from the
Gent and Leuven hospitals, and the same set of clinical
variables as the MAASTRO patients were measured.

5.2 Radiotherapy Treatment Variables. No elec-
tive nodal irradiation was performed and irradiation was
delivered 5 days per week. Radiotherapy planning was
performed with a Focus (CMS) system, taking into ac-
count lung density and according to ICRU 50 guide-
lines. There were four different radiotherapy treatment
regimes applied for these patients in this retrospective
study, therefore to account for the different treatment
time and number of fractions per day, the equivalent
dose in 2 Gy fractions, corrected for overall treatment
time (EQD2,T), was used as a measure for the inten-
sity of chest radiotherapy 5.8. Adjustment for dose per
fraction and time factors were made as follows:

EQD2,T = D

(

d + β

2 + β

)

− γ max(0, T − Tk),(5.8)

where D is the total radiation dose, d is dose per
fraction, β = 10 Gy, T is overall treatment time, Tk

is the accelerated repopulation kick-off time which is
28 days, and γ is the loss in dose per day due to
repopulation which is 0.66 Gy/day.

5.3 Experimental Setup. In this paper we focus on
2-year survival prediction for these NSCLC patients,
which is the most interesting prediction from clinical
perspective. The survival status was evaluated in
December 2007. The following 6 clinical predictors
are used to build the prediction models: gender (two
groups: male/female), WHO performance status (three
groups: 0/1/ ≥ 2), lung function prior to treatment
(forced expiratory volume, in the range of 17 ∼ 139),
number of positive lymph node stations (five groups:
0/1/2/3/ ≥ 4), natural logarithm of GTV (in the range
of −0.17 ∼ 6.94), and the equivalent dose corrected by
time (EQD2,T) from (5.8). The mean values across
patients are used to impute the missing entries if some
of these predictors are missing for certain patients. To
account for the very different number of patients from
the three sites, a subset of MAASTRO patients were
selected for the following study. In the following we
use the names “MAASTRO”, “Gent” and “Leuven” to
denote the data from the three different centers.

For the SVM methods, since they can only deal
with binary outcome, we only use the patients with 2-
year follow-up and create an outcome for them with +1
meaning they survived 2 years, and −1 meaning they
didn’t survive 2 years. This setting leads to 70, 37 and
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Figure 2: AUC comparison for privacy preserving SVMs with 40% (left) and 60% (right) training patients. The error bars
are calculated based on 100 times of random splits of the data.
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Figure 3: AUC comparison between PP-SVMs and non PP-SVMs (which explicitly use all the training data from different
centers, and thus upper-bound the predictive performance of PP-SVMs). We compare the two with different percentages
of training patients (left), in a scatter plot (middle), and with different dimensions m̄ for PP-SVMs (right) for a 40% split.

23 patients for the MAASTRO, Gent and Leuven sets,
respectively. For the Cox regression methods, we can
potentially use all the patients with the exact number of
survived years, and do right censoring for those patients
who are still alive. Under this setting we end up with 80,
85 and 40 patients for MAASTRO, Gent and Leuven,
respectively.

Under the privacy preserving setting, we are inter-
ested in assessing the predictive performance of a model
combining the patient data from the three centers to-
gether, compared to the models trained based on each of
these centers. The data combination needs to be done
in a way that sensitive information is not uncovered.
Therefore for our experiments we trained the following
4 models under each configuration:

• PP model: Apply the privacy preserving tech-
niques we have introduced and train a model using
combined data from the three centers.

• MAASTRO, Gent and Leuven models: Train

models using only the MAASTRO, Gent and Leu-
ven training patients repectively.

For each of the configurations, we vary the percentage of
training patients in each of the centers, and report the
Area Under the ROC Curve (AUC) for the test patients.
Note that the testing was performed using all the test
patients from all centers.

6 Results

In Figure 2 we show the results for privacy preserving
SVM models, with 2 example training percentages (40%
and 60%). The other percentages yield similar results.
The error bars are over 100 runs with random split of
training/test patients for each center, and each time a
random B matrix of dimensionality 5×6 is used for the
PP-SVM models. As can be seen, the PP-SVM models
achieve the best performance compared to other single-
center based models. This is mainly because PP-SVM
models are able to use more data in model training, at
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Figure 4: AUC comparison for privacy preserving Cox regression models with 40% (left) and 60% (right) training patients.
The error bars are calculated based on 100 times of random splits of the data.
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Figure 5: AUC comparison between PP-CoxReg and non PP-CoxReg (which explicitly use all the training data from
different centers, and thus upper-bound the predictive performance of PP-CoxReg). We compare the two with different
percentages of training patients (left), in a scatter plot (middle), and with different dimensions m̄ for PP-CoxReg (right)
in a 40% split.

the same time without violating the privacy regulations.
When we increase the training percentages, all models
will improve (compare Figure 2 right to left), and the
single-center based models have a higher improvement.
However the PP-SVM models still perform the best.

It is easy to realize that PP-SVM will end up with
a performance loss compared to a non PP-SVM model,
which explicitly combines all the training patients from
different centers and does not preserve privacy. This
is because in PP-SVMs a random matrix B projects
each patient into a lower dimensional space (for privacy
preserving purpose), and thus leads to information loss.
To empirically evaluate how much performance loss the
PP-SVMs have, we show a more extensive comparison
in Figure 3. On the left we show the comparison with
different percentages of the training/test splits, and as
can be seen the gaps between PP-SVMs and non PP-
SVMs are not very big. This indicates PP-SVMs can
achieve similar predictive performance while satisfying

the privacy preserving requirement. The scatter plot in
the middle is another way to visualize these results. On
the right we vary the mapping dimensions m̄ for the B
matrix we used in PP models, and as expected, bigger
m̄ yield better predictive performance. Therefore, in
practice we normally choose m̄ = n − 1 to maximize
the performance of the PP models (which still perfectly
satisfies the privacy preserving requirements). From
this comparison we see that there is a big error bar for
different B matrices, and one interesting future work is
to identify the best B matrix for PP models.

In Figure 4 we also empirically evaluate the results
for privacy preserving Cox regression models, also with
the 2 example training percentages (40% and 60%).
They have the same trend as we have seen in Fig-
ure 2, but it is interesting that with a higher per-
centage of training data (e.g., 60% on the right), PP-
CoxReg performs the same as the model trained using
only MAASTRO training patients. This indicates PP-



CoxReg model is more sensitive to the different charac-
teristics of the data from different centers. In practice,
we need to carefully investigate the different data dis-
tributions to estimate the benefits of combining them.

We also empirically compare the PP Cox regres-
sion models with non PP-CoxReg models in Figure 5.
As can be seen, the gaps between PP-CoxReg and non
PP-CoxReg models are even smaller than those be-
tween PP-SVM and non PP-SVM models, meaning PP-
CoxReg models are more accurate toward the non pri-
vacy preserving solutions. In practice we still need to
choose m̄ = n − 1 to maximize the PP-CoxReg perfor-
mance, and to choose the best B matrix if possible.

7 Discussion and Conclusions

We have applied a simple recently proposed PP tech-
nique in a real clinical setting where data is shared
across three European institutions in order to build
more accurate predictive models than the ones obtained
using only data from one institute. We have extended
the previously proposed PP algorithm (originally sug-
gested for SVM) to cox regression. As far as we know
this is the first work that addresses privacy preserving
concerns for survival models. The work presented here
is based on preliminary results and we are already work-
ing on designing improved algorithms to address several
concerns that arise when performing our experiments.
One of the concerns that arise (as shown in section 6)
is how to address the impact of the variability of the
matrix B on the performance of the predictive models.
For that, we are currently experimenting with formu-
lations in which the B matrix is intended not only to
“de-identify” the data but also to optimally improve
model performance. Another relevant concern that we
are looking into is, how to weight the importance of data
from different institutions, assuming that the reliability
of the data or the labels varies among institutions.
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