
Abstract: In the last few years, due to new privacy 
regulations, research in data privacy has flourished. A 
large number of privacy models were developed most 
of which are based on the k-anonymity property. 
Because of several shortcomings of the k-anonymity 
model, other privacy models were introduced (l-

diversity, p-sensitive k-anonymity, (α, k) – anonymity, 
t-closeness, etc.). While differing in their methods and 
quality of their results, they all focus first on masking 
the data, and then protecting the quality of the data as a 
whole. We consider a new approach, where 
requirements on the amount of distortion allowed to the 
initial data are imposed in order to preserve its 
usefulness. Our approach consists of specifying quasi-
identifiers generalization boundaries, and achieving k-
anonymity within the imposed boundaries. We think 
that limiting the amount of generalization when 
masking microdata is indispensable for real life 
datasets and applications. In this paper, the constrained 

k-anonymity model and its properties are introduced 
and an algorithm for generating constrained k-
anonymous microdata is presented. Our experiments 
have shown that the proposed algorithm is comparable 
with existing algorithms used for generating k-
anonymity with respect to results quality, and that by 
using existing unconstrained k-anonymization 
algorithms the generalization boundaries are violated. 
We also discuss how the constrained k-anonymity 
model can be easily extended to other privacy models. 

 

1 Introduction 

A huge interest in data privacy has been generated 
recently within the public and media [14], as well as in 
the legislative body [6] and research community. 
 Many research efforts have been directed towards 
finding methods to anonymize datasets to satisfy the k-
anonymity property [16, 17]. These methods also 
consider minimizing one or more cost metrics between 
the initial and released microdata (a dataset where each 
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tuple corresponds to one individual entity). Of 
particular interest are the cost metrics that quantify the 
information loss [2, 5, 19, 27]. Although producing the 
optimal solution for the k-anonymity problem w.r.t. 
various proposed cost measures has been proved to be 
NP-hard [9], there are several polynomial algorithms 
that produce good solutions for the k-anonymity 
problem for real life datasets [1, 2, 8, 9, 21]. 
 Recent results have shown that k-anonymity fails 
to protect the privacy of individuals in all situations 
[12, 20, 26]. Several privacy models that extend the k-
anonymity model have been proposed in the literature 
to avoid k-anonymity short-comings: p-sensitive k-
anonymity [20] with its extension called extended p-

sensitive k-anonymity [3], l-diversity [12], (α, k)-
anonymity [24], t-closeness [10], (k, e)-anonymity [28], 
(c, k)-safety [13], m-confidentiality [25], personalized 
privacy [26], etc. 
 In general, the existing anonymization algorithms 
use different quasi-identifiers generalization strategies 
in order to obtain a masked microdata that is k-
anonymous (or satisfies an extension of k-anonymity) 
and conserves as much information intrinsic to the 
initial microdata as possible. To our knowledge, a 
privacy model that considers the specification of the 
maximum allowed generalization level for quasi-
identifier attributes in the masked microdata does not 
exist, nor does a corresponding anonymization 
algorithm capable of controlling the generalization 
amount. The ability to limit the amount of allowed 
generalization could be valuable, and, in fact, 
indispensable for real life datasets. For example, for 
some specific data analysis tasks, available masked 
microdata with the address information generalized 
beyond the US state level could be useless. In this case 
the only solution would be to ask the owner of the 
initial microdata to have the anonymization algorithm 
applied repeatedly on that data, perhaps with a 
decreased level of anonymity (a smaller k) until the 
masked microdata satisfies the maximum 
generalization level requirement (i.e. no address is 
generalized further than the US state). 
   In this paper, we first introduce a new anonymity 

model, called constrained k-anonymity, which 
preserves the k-anonymity requirement while 
specifying quasi-identifiers generalization boundaries 
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(or limits). Second, we describe an algorithm to 
transform a microdata set such that its corresponding 
masked microdata will comply with the constrained k-
anonymity. This algorithm relies on several properties 
stated and proved for the proposed privacy model.  
 The paper is organized as follows. Section 2 
introduces basic data privacy concepts; and 
generalization and tuple suppression techniques as a 
mean to achieve data privacy. Section 3 presents the 
new constrained k-anonymity model. An 
anonymization algorithm to transform microdata to 
comply with constrained k-anonymity is described in 
Section 4. Section 5 contains comparative quality 
results, in terms of information loss, processing time, 
for our algorithm and one of the existing k-
anonymization algorithms. The paper ends with future 
work directions and conclusions. 
 

2 K-Anonymity, Generalization and Suppression 

Let IM be the initial microdata and MM be the released 

(a.k.a. masked) microdata. The attributes characterizing 
IM are classified into the following three categories:  

� identifier attributes such as Name and SSN that can 
be used to identify a record. 

� key or quasi-identifier attributes such as ZipCode and 
Age that may be known by an intruder.  

� sensitive or confidential attributes such as 
PrincipalDiagnosis and Income that are assumed to 
be unknown to an intruder.  

 While the identifier attributes are removed from 
the published microdata, the quasi-identifier and 
confidential attributes are usually released to the 
researchers / analysts. A general assumption is that the 
values for the confidential attributes are not available 
from any external source. This assumption guarantees 
that an intruder cannot use the confidential attributes’ 
values to increase his/her chances of disclosure, and, 
therefore, modifying this type of attributes values is 
unnecessary. Unfortunately, an intruder may use record 
linkage techniques [23] between quasi-identifier 
attributes and external available information to glean 
the identity of individuals from the masked microdata. 
To avoid this possibility of disclosure, one frequently 
used solution is to modify the initial microdata, more 
specifically the quasi-identifier attributes values, in 
order to enforce the k-anonymity property. 

 To rigorously and succinctly express the k-
anonymity property, we use the following concept: 

Definition 1 (QI-Cluster): Given a microdata M, a QI-

cluster consists of all the tuples with identical 
combination of quasi-identifier attribute values in M. 

 There is no consensus in the literature over the 
term used to denote a QI-cluster. This term was not 
defined when k-anonymity was introduced [17, 18]. 
More recent papers use different terminologies such as 
equivalence class [24] and QI-group [26].  
 We define k-anonymity based on the minimum size 
of all QI-clusters. 

Definition 2 (K-Anonymity Property): The k-

anonymity property for an MM is satisfied if every QI-

cluster from MM contains k or more tuples. 

 A general method widely used for masking initial 
microdata to conform to the k-anonymity model is the 
generalization of the quasi-identifier attributes. 
Generalization consists in replacing the actual value of 
the attribute with a less specific, more general value 
that is faithful to the original [18].  

Initially, this technique was used for categorical 
attributes and employed predefined domain and value 
generalization hierarchies [18]. Generalization was 
extended for numerical attributes either by using pre-

defined hierarchies [7] or a hierarchy-free model [9]. 
To each categorical attribute a domain 

generalization hierarchy is associated. The values from 
different domains of this hierarchy are represented in a 
tree called value generalization hierarchy. We 
illustrate domain and value generalization hierarchy in 
Figure 1 for attributes ZipCode and Sex. 
 There are several ways to perform generalization. 
Generalization that maps all values of a quasi-identifier 
categorical attribute from IM to a more general domain 

in its domain generalization hierarchy is called full- 

domain generalization [9, 16]. Generalization can also 
map an attribute’s values to different domains in its 
domain generalization hierarchy, each value being 
replaced by the same generalized value in the entire 
dataset [7]. The least restrictive generalization, called 
cell level generalization [11], extends Iyengar model 
[7] by allowing the same value to be mapped to 
different generalized values, in distinct tuples.  
  

 
Figure 1: Examples of domain and value generalization hierarchies. 
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 Tuple suppression [16, 18] is the only other method 
used in this paper for masking the initial microdata. By 
eliminating entire tuples we are able to reduce the 
amount of generalization required for achieving the k-
anonymity property in the remaining tuples. Since the 
constrained k-anonymity model uses generalization 
boundaries, for many initial microdata sets suppression 
has to be used in order to generate constrained k-
anonymous masked microdata. 
 

3 Constrained K-Anonymity 

In order to specify a generalization boundary, we 
introduce the concept of a maximum allowed 
generalization value that is associated with each 
possible quasi-identifier attribute value from IM. This 

concept is used to express how far the owner of the data 
thinks that the quasi-identifier’s values could be 
generalized, such that the resulted masked microdata 
would still be useful. Limiting the amount of 
generalization for quasi-identifier attribute values is a 
necessity for various uses of the data. The data owner is 
often aware of the way various researchers are using the 
data and, as a consequence, he/she is able to identify 
maximum allowed generalization values. For instance, 
when the released microdata is used to compute various 
statistical measures related to the US states, the data 
owner will select the states as maximal allowed 
generalization values. The desired protection level 
should be achieved with minimal changes to the initial 
microdata IM. However, minimal changes may cause 

generalization that surpasses the maximal allowed 
generalization values and the masked microdata MM 

would become unusable. More changes are preferred in 
this situation if they do not contradict the generalization 
boundaries. 
 At this stage, for simplicity, we use predefined 
hierarchies for both categorical and numerical quasi-
identifier attributes, when defining maximal allowed 
generalization values. Techniques to dynamically build 
hierarchies for numerical attributes exist in the literature 
[4] and we intend to use them in our future research. 

Definition 3. (Maximum Allowed Generalization 

Value): Let Q be a quasi-identifier attribute (categorical 
or numerical), and HQ its predefined value 

generalization hierarchy. For every leaf value v ∈ HQ, 

the maximum allowed generalization value of v, 
denoted by MAGVal(v), is the value (leaf or not-leaf) in 
HQ situated on the path from v to the root, such that: 

� for any released microdata, the value v is permitted to 
be generalized only up to MAGVal(v) and 

� when several MAGVals exist on the path between v 
and the hierarchy root, then the MAGVal(v) is the first 
MAGVal that is reached when following the path from 
v to the root node. 

Figure 2 contains an example of defining maximal 
allowed generalization values for a subset of values for 
the Location attribute. The MAGVals for the leaf values 
“San Diego” and “Lincoln” are “California”, and, 
respectively, “Midwest” (the MAGVals are marked by * 
characters that delimit them). This means that the quasi-
identifier Location’s value “San Diego” may be 
generalized to itself or “California”, but not to “West 
Coast” or “United States”.  Also, “Lincoln” may be 
generalized to itself, “Nebraska”, or “Midwest”, but not 
to “United States”. 

 

Figure 2: Examples of MAGVals. 
  

 The second requirement in the MAGVal’s definition 
specifies that the hierarchy path between a leaf value v 
and MAGVal(v) can contain no node other than 
MAGVal(v) that is a maximum allowed generalization 
value. This restriction is imposed in order to avoid any 
ambiguity about the MAGVals of the leaf values in a 
sensitive attribute hierarchy. Note that several MAGVals 
may exist on a path between a leaf and the root as a 
result of defining MAGVals for other leaves within that 
hierarchy.  

Definition 4. (Maximum Allowed Generalization Set): 
Let Q be a quasi-identifier attribute and HQ its 

predefined value generalization hierarchy. The set of all 

MAGVals for attribute Q is called Q’s maximum 

allowed generalization set, and it is denoted by 

MAGSet(Q) = { MAGVal(v) | ∀v ∈ leaves(HQ) } (The 

notation leaves(HQ) represents all the leaves from the 

HQ value generalization hierarchy).  

 Given the hierarchy for the attribute Location 
presented in Figure 2, MAGSet(Location) = {California, 
Kansas, Midwest}. 
 Usually, the data owner/user only has 
generalization restrictions for some of the quasi-
identifiers in a microdata that is to be masked. If for a 
particular quasi-identifier attribute Q there are not any 
restrictions in respect to its generalization, then no 
maximal allowed generalization values are specified for 
Q’s value hierarchy; in this case, each leaf value in HQ is 

considered to have the HQ’s root value as its maximal 

allowed generalization value. 
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Record Name SSN Age Location Sex Race Diagnosis Income 
r1 Alice 123456789 32 San Diego M W AIDS 17,000 

r2 Bob 323232323 30 Los Angeles M W Asthma 68,000 

r3 Charley 232345656 42 Wichita M W Asthma 80,000 

r4 Dave 333333333 30 Kansas City M W Asthma 55,000 

r5 Eva 666666666 35 Lincoln F W Diabetes 23,000 

r6 John 214365879 20 Lincoln M B Asthma 55,000 

r7 Casey 909090909 25 Wichita F B Diabetes 23,000 

Figure 3: An initial microdata set IM 
 

Record Age Location Sex Race  Record Age Location Sex Race 
r1 30-32 California M W  r1 30-32 California M W 

r2 30-32 California M W  r2 30-32 California M W 
           

r3 30-42 MidWest * W  r3 25-42 Kansas * * 

r4 30-42 MidWest * W  r4 25-42 Kansas * * 

r5 30-42 MidWest * W  r7 25-42 Kansas * * 
           

r6 20-25 MidWest * B  r5 20-35 Lincoln * * 

r7 20-25 MidWest * B  r6 20-35 Lincoln * * 

a)       b) 

Figure 4: Two masked microdata sets MM1 and MM2 for the initial microdata IM. (Only the quasi-identifier 

attribute values are shown in the masked microdata sets) 

Definition 5. (Constraint Violation): We say that the 

masked microdata MM has a constraint violation if one 

quasi-identifier value, v, in IM, is generalized in one 

tuple in MM beyond its specific maximal generalization 

value, MAGVal(v).  

Definition 6. (Constrained K-Anonymity): The masked 

microdata MM satisfies the constrained k-anonymity 

property if it satisfies k-anonymity and it does not have 
any constraint violation. 

 We note that a k-anonymous masked microdata 
may have multiple constraint violations, but any masked 
microdata that satisfies constrained k-anonymity 
property will not have any constraint violations; or in 
other words, any quasi-identifier value, v, from the 
initial microdata will never be generalized beyond its 
MAGVal(v) in any constrained k-anonymous  masked 
microdata. 
 Consider the following example. The initial 
microdata set IM in Figure 3 is characterized by the 

following attributes: Name and SSN are identifier 
attributes (to be removed from the masked microdata), 
Age, Location, Sex, and Race are the quasi-identifier 
attributes, and Diagnosis and Income are the sensitive 
attributes. The attribute Location values and their 
MAGVals are described by Figure 2. The remaining 
quasi-identifier attributes do not have any generalization 
boundary requirements.  
 Figure 4 illustrates two possible masked microdata 
MM1 and MM2 for the initial microdata IM. In this 

figure, only quasi-identifier values are shown, the 
confidential attribute values will be kept unchanged 
from the initial microdata IM (Diagnosis and Income 

attributes from Figure 3). The first masked microdata, 

MM1, satisfies 2-anonymity, but contradicts constrained 

2-anonymity w.r.t. Location attribute’s maximal allowed 
generalization. On the other hand, the second microdata 
set, MM2, satisfies constrained 2-anonymity: every QI-

cluster consists of at least 2 tuples, and none of the 
Location initial attribute’s values are generalized 
beyond its MAGVal. 

 

4 GreedyCKA - An Algorithm for Constrained K-

Anonymization 

In this section we assume that the initial microdata set 
IM, the generalization boundaries for its quasi-identifier 

attributes, expressed as MAGVals in their corresponding 
hierarchies, and the k value (as in k-anonymity) are 
given. First, we will describe a method to decide if IM 

can be masked to comply with constrained k-anonymity 
using generalization only, and second, we will introduce 
an algorithm for achieving constrained k-anonymity.  
 Our approach to constrained k-anonymization 
partially follows an idea found in [1] and [2], which 
consists in modeling and solving k-anonymization as a 
clustering problem. Basically, the algorithm takes an 
initial microdata set IM and establishes a “good” 

partitioning of it into clusters. The released microdata 
set MM is afterwards formed by generalizing the quasi-

identifier attributes’ values of all tuples inside each 
cluster to the same values (called generalization 
information for a cluster). However, it is not always 
possible to mask an initial microdata to satisfy 
constrained k-anonymity only by generalization. 
Sometimes a solution to constrained k-anonymization 
has to combine generalization with suppression. In this 
case, our algorithm suppresses the minimal set of tuples 



from IM such that is possible to build a constrained k-

anonymous masked microdata for the remaining tuples. 
 The constrained k-anonymization by clustering 
problem can be formally stated as follows. 

Definition 7. (Constrained K-Anonymization by 

Clustering Problem): Given a microdata IM, the 

constrained k-anonymization by clustering problem 
for IM is to find a partition S = {cl1, cl2, … , clv, clv+1} 

of IM, where clj ⊆ IM, j=1..v+1, are called clusters 

and: =

=

U
v

j

jcl

1

IM – clv+1; =I ji clcl ∅, i, j = 1..v+1, i≠j; 

|clj | ≥ k, j=1..v ; and a cost measure is optimized. The 
cluster clv+1 is formed of all the tuples in IM that have to 

be suppressed in MM, and the tuples within every 

cluster clj, j=1..v will be generalized (their quasi-
identifier attributes) in MM to common values. 

 The generalization information of a cluster, which 
is introduced next, represents the minimal covering 
“tuple” for that cluster. Since in this paper we use 
predefined value generalization hierarchies for both 
categorical and numerical attributes, we do not have to 
consider a definition that distinguishes between these 
two types of attributes [21]. 

 Definition 8. (Generalization Information): Let cl = 
{r1, r2, …, ru} be a cluster of tuples selected from IM, 

QI = {Q1, Q2, ..., Qs} be the set of quasi-identifier 

attributes. The generalization information of cl w.r.t. 
quasi-identifier attribute set QI is the “tuple” gen(cl), 

having the scheme QI, where for each attribute Qj ∈ QI, 

gen(cl)[Qj] = the lowest common ancestor in HQj of 

{r1[Qj],  …, ru[Qj]}. 

 For the cluster cl, its generalization information 
gen(cl) is the tuple having as value for each quasi-
identifier attribute the most specific common 
generalized value for all that attribute values from cl’s 
tuples. In the corresponding MM, each tuple from the 

cluster cl will have its quasi-identifier attributes values 
replaced by gen(cl). 
 To decide whether an initial microdata can be 
masked to satisfy constrained k-anonymity property 
using generalization only, we introduce several 
properties. These properties will also allow us, in case 
that constrained k-anonymity cannot be achieved using 
generalization only, to select the tuples that must be 
suppressed. 

Property 1. Let IM be a microdata set and cl a cluster 

of tuples from IM. If cl contains two tuples ri and rj such 

that MAGVal(ri[Q]) ≠ MAGVal(rj[Q]), where Q is a 
quasi-identifier attribute, then the generalization of the 
tuples from cl to gen(cl) will create at least one 

constraint violation. 

Proof. Assume that there are two tuples ri and rj within 

cl such that MAGVal(vi) ≠ MAGVal(vj), where vi = ri[Q] 

and vj = rj[Q], vi, vj ∈ leaves(HQ). Let a be a value 

within HQ that is the first common ancestor for 
MAGVal(vi) and MAGVal(vj). Depending on how 
MAGVal(vi) and MAGVal(vj) are located relatively to 
one another in the Q’s value generalization hierarchy, a 
can be one of them, or a value on a superior tree level. 
In any case, a will be different from, and an ancestor for 
at least one of MAGVal(vi) or MAGVal(vj). This is a 

consequence of the fact that MAGVal(vi) ≠ MAGVal(vj): 
a common ancestor of two different nodes x and y in a 
tree is a node which is different from at least one of the  
nodes x and y. Because of this fact, when cl will be 
generalized to gen(cl), gen(cl)[Q] will be a (or 
depending on the other tuples in cl, even an ancestor of 
a) – therefore at least one of the values vi and vj will be 
generalized further than its maximal allowed generali-
zation value, leading to a constraint violation. // q.e.d. 

 Property 1 restricts the possible solutions of the 
constrained anonymization by clustering problem to 
those partitions S of IM for which every cluster to be 

generalized doesn’t show any constraint violation w.r.t. 
each of the quasi-identifier attributes. The following 
definition introduces a masked microdata that will help 
us to express when the IM can be transformed to satisfy 

constrained k-anonymity using generalization only. 

Definition 9. (Maximum Allowed Microdata): The 

maximum allowed microdata for a microdata IM, 

MAMMAMMAMMAM, is the masked microdata where every quasi-

identifier value, v, in IM is generalized to MAGVal(v).  

Property 2. For a given IM, if its maximum allowed 

microdata MAM is not k-anonymous, then any masked 

microdata obtained from IM by applying generalization 

only will not satisfy constrained k-anonymity. 

Proof. Assume that MAM is not k-anonymous, and there 

is a masked microdata MM that satisfies constrained k-

anonymity. This means that every QI-cluster from MM 

has at least k elements and it does not have any 
constraint violation. Let cli be a cluster of elements from 
IM that is generalized to a QI-cluster in MM (i = 1, .., 

v). Because MM satisfies constrained k-anonymity, the 

generalization of cli to gen(cli) does not create any 
constraint violation. Based on Property 1, for each 
quasi-identifier attribute, all entities from cli share the 
same MAGVals. As a consequence, by generalizing all 
quasi-identifier attributes values to their corresponding 
MAGVals (this is the procedure to create the MAM 

microdata) all entities from the cluster cli (for all i = 1, 
.., v) will be contained within the same QI-cluster. This 



means that each QI-cluster in MAM contains one or 

more QI-clusters from MM and its size will, then, be at 

least k. In conclusion, MAM is k-anonymous, which is a 

contradiction with our initial assumption. // q.e.d. 

Property 3. If MAM satisfies k-anonymity then MAM 

satisfies the constrained k-anonymity property. 

Proof. This follows from the definition of MAM. 

Property 4. An initial microdata, IM, can be masked to 

comply with constrained k-anonymity using only 
generalization if and only if its corresponding MAM 

satisfies k-anonymity. 

Proof. “If”: If MAM satisfies k-anonymity, then based 

on Property 3, MAM is also constrained k-anonymous, 

and IM can be masked to MAM (in the worst case – or 

even to a less generalized masked microdata) to comply 
with constrained k-anonymity.  

      “Only If”: If MAM does not satisfy k-anonymity, 

then based on Property 2, any masked microdata 
obtained by applying generalization only to IM will not 

satisfy constrained k-anonymity. // q.e.d. 

 Now we have all the tools required to check 
whether an initial microdata IM can be masked to 

satisfy the constrained k-anonymity property using 
generalization only. We follow the next two steps: 

� Compute MAM for IM. This is done by replacing 

each quasi-identifier attribute value with its 
corresponding MAGVal. 

� If all QI-clusters from MAM have at least k entities 

than the IM can be masked to satisfy constrained k-

anonymity. 

 It is very likely that there are some QI-clusters in 
MAM with size less than k. We use the notation OUT to 

represent all entities from these QI-clusters (for 
simplicity we use the same notation to refer to entities 
from both IM and MAM). Unfortunately, the entities 

from OUT cannot be k-anonymized while preserving the 

constraint condition, as shown by the Property 6. For a 
given IM with its corresponding MAM and OUT sets the 

following two properties hold: 

Property 5. IM \ OUT can be masked using 

generalization only to comply with constrained k-
anonymity. 

Proof. By definition of the OUT set, all QI-clusters from 

MAM \ OUT  have size k or more, which means that 

MAM \ OUT satisfies the k-anonymity property. Based 

on Property 4 (MAM \ OUT  is the maximum allowed 

microdata for IM \ OUT ), IM \ OUT can be masked 

using generalization only to comply with constrained k-
anonymity. // q.e.d. 

Property 6. Any subset of IM that contains one or more 

entities from OUT cannot be masked using 

generalization only to achieve constrained k-anonymity.    

Proof. We assume that there is an initial microdata IM’, 

a subset of IM, that contains one or more entities from 

OUT, and IM’ can be masked using generalization only 

to comply with constrained k-anonymity. Let x ∈ OUT 

∩ IM’. Let MAM’ be the maximum allowed microdata 

for IM’. Based on Property 4, if IM’ can be masked to 

be constrained k-anonymous, then MAM’ is k-

anonymous, therefore x will belong to a QI-cluster with 
size at least k. By construction MAM’ is a subset of 

MAM, and therefore, the size of each QI-cluster from 

MAM is equal to or greater than the size of the 

corresponding QI-cluster from MAM’. This means that x 

will belong to a QI-cluster with size at least k in the 

MAM. This is a contradiction with x ∈ OUT. // q.e.d. 

 The Properties 5 and 6 show that OUT is the 

minimal tuple set that must be suppressed from IM such 

that the remaining set could be constrained k-
anonymized. To compute a constrained k-anonymous 
masked microdata using minimum suppression and 
generalization only we follow an idea found in [1] and 
[2], which consists in modeling and solving k-
anonymization as a clustering problem. First, we 
suppress all tuples from the OUT set. Next, we create all 

QI-clusters in the maximum allowed microdata for IM \ 

OUT. Last, each such cluster will be divided further, if 

possible, using the clustering approach from [1, 2], into 
several clusters, all with size greater than or equal to k. 
This approach uses a greedy technique that tries to 
optimize an information loss (IL) measure. The 
information loss measure we use in our algorithm 
implementation was introduced in [2]. We present it in 
Definitions 10 and 11. Note that this IL definition 
assumes that value generalization hierarchies are 
predefined for all quasi-identifier attributes.  

Definition 10. (Cluster Information Loss): Let cl ∈ S 

be a cluster, gen(cl) its generalization information and 

QI = {Q1, Q2, .., Qt} the set of quasi-identifier attributes. 

The cluster information loss caused by generalizing cl 

tuples to gen(cl) is: 

∑
=

Λ
⋅=

t

j Q

j

j
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Qclgenheight
clclIL

1
)(

])))[(((
|| )(  

where:  

� |cl| denotes the cluster cl cardinality; 

� Λ(w), w∈HQj is the subhierarchy of HQj rooted in w; 
� height(HQj) is the height of the tree hierarchy HQj. 

 



Definition 11. (Total Information Loss): Total 

information loss for a partition S of the initial microdata 

set is the sum of the information loss measure for all 
clusters in S. 

 In is worth noting that, for the constrained k-
anonymization by clustering problem, the cluster of 
tuples to be suppressed, clv+1, will have the maximum 
possible IL value for a cluster of the same size as clv+1. 
The information loss for this cluster will be:  IL(clv+1) = 

|clv+1|⋅n, where n is the number of quasi-identifier 
attributes. When performing experiments to compare 
the quality of constrained k-anonymous microdata and 
k-anonymous microdata, produced for the same IM, the 

information loss of the constrained k-anonymous 
solution includes the information loss caused by the 
suppressed cluster as well, and not only for the 
generalized clusters. More than that, for every 
suppressed tuple we consider the maximum information 
loss that it can cause when it is masked. This way, the 
quality of the constrained k-anonymous solutions will 
not be biased because of a favored way of computing 
information loss for the suppressed tuples.  
  The two-stage constrained k-anonymization 
algorithm called GreedyCKA is depicted in Figure 5. 

We present below the pseudocode of the 
GreedyCKA Algorithm: 

 
Algorithm GreedyCKA is 

Input IM – initial microdata;  
  k – as in k-anonymity; 

Output  S ={cl1,cl2,… clv,clv+1} - a solution for 
the constrained k-anonymization by 

clustering problem for IM; 
 Compute MAM and OUT;  

  S = ∅; 

 For each QI-cluster from MAM \ OUT, cl,  
 { 

   // By cl we refer to the entities from IM  

   // that are clustered together in MAM. 

   S’ = Greedy_k-member_Clustering(cl, k); // [2] 

   S = S ∪ S’;  
 } 

 v = | S |; 

 clv+1 = OUT; 
 

End GreedyCKA; 

 

This idea of dividing IM into clusters based on 

common MAGVals of the quasi-identifiers can be 
employed for other privacy models as well, not only for 
k-anonymity. For instance, if we use an algorithm that 
creates a p-sensitive k-anonymous masked microdata 
[20], such as EnhancedPKClustering [22], we just need 
to execute that algorithm instead of Greedy_k-

member_Clustering, for each QI-cluster from MAM \  

OUT. The obtained masked microdata will be p-

sensitive k-anonymous and will satisfy the 
generalization boundaries. We can define this new 

privacy model as constrained p-sensitive k-anonymity. 
Using similar modifications in the GreedyCKA 
algorithm, we can introduce constrained versions of 

other privacy models such as: constrained l-diversity 

[12], constrained t-closeness [10], etc. and generate 
their corresponding masked microdata sets. 

 

5 Experimental Results 

In this section we compare the GreedyCKA and 
Greedy_k-member_Clustering [2] algorithms with 
respect to: the quality of the results they produce 
measured against the information loss measure; the 
algorithms’ efficiency as expressed by their running 
time; the number of constraint violation that k-
anonymous masked microdata produced by Greedy_k-

member_Clustering have; and the suppression amount 
performed by GreedyCKA in order to produce 
constrained k-anonymous masked microdata in presence 
of different constraint sets. 

The two algorithms were implemented in Java; tests 
were executed on a dual CPU machine with 3.00 GHz 
and 1 GB of RAM, running Windows 2003 Server.  

A set of experiments were performed for an IM 

consisting of 10,000 tuples randomly selected from the 
Adult dataset from the UC Irvine Machine Learning 
Repository [15]. In all the experiments, we considered a 
set of eight quasi-identifier attributes: education-num, 
workclass, marital-status, occupation, race, sex, age, 
and native-country. 

 

Figure 5: The two-stage process in creating constrained k-anonymous masked microdata. 
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 The GreedyCKA and Greedy_k-member_Clus-

tering algorithms were applied to this microdata set, for 

different k values, from k=2 to k=10. Two different 

generalization constraint sets were successively 

considered for every k value. First, only the native-

country attribute’s values were subject to generalization 

constraints, as depicted in Figure 6. Second, both 

native-country and age had generalization boundaries; 

the value generalization hierarchy and the maximum 

allowed generalization values for the age attribute are 

illustrated in Figure 7. In Figures 6 and 7, the MAGVals 

are depicted as bold and delimited by * characters. Of 

course, Greedy_k-member_Clustering proceeded 

without taking into consideration the generalization 

boundaries, as it is a “simple”, unconstrained k-

anonymization algorithm. This is why the masked 

microdata it produces will generally contain numerous 

constraint violations. On the other side, the k-

anonymization process of GreedyCKA is conducted in 

respect to the specified generalization boundaries; this is 

why the masked microdata produced by GreedyCKA is 

free of constraint violations. 

The quasi-identifier attributes without 

generalization boundaries have the following heights for 

their corresponding value generalization hierarchies: 

education-num – 4, workclass – 1, marital-status – 2, 

occupation – 1, race – 1, and sex – 1. 

However, masking microdata to comply with the 

more restrictive constrained k-anonymity model 

sometimes comes with a price. As the experiments 

show, it is possible to lose more of the intrinsic 

microdata information when masking it to satisfy 

constrained k-anonymity than when masking it to satisfy 

k-anonymity only. Figure 8 presents comparatively the 

information loss measure for the masked microdata 

created by GreedyCKA and Greedy_k-

member_Clustering, with the two different constraint 

sets and for k values in the range 2-10. 

As expected, the information loss value is generally 

greater when constraints are considered in the k- 

anonymization process. Exceptions may however occur. 

For example, GreedyCKA obtained better results then 

Greedy_k-member_Clustering for k = 8, 9 and 10, when 

only native_country was constrained. The information 

lost is influenced, of course, by the constraint 

requirements and by the microdata distribution w.r.t. the 

constrained attributes. When more quasi-identifiers have 

generalization boundaries or more restrictive generalize-

tion boundaries, the information lost in the constrained 

k-anonymization process will generally increase. 

Regarding the running time, we can state that 

GreedyCKA will always be more efficient than 

Greedy_k-member_Clustering. The explanation for this 

fact is that, when generalization boundaries are imposed, 

they will cause the initial microdata to be divided in 

several subsets (the QI-clusters of MAM), on which 

Greedy_k-member_Clustering will be afterwards 

applied. Greedy_k-member_Clustering has an O(n2) 

complexity, and applying it on smaller microdata 

subsets will reduce the processing time. More 

constraints and QI-clusters exist in MAM, more 

significant is the reduction of the processing time for 

microdata masking (see Figure 9).  

 

 
 

Figure 6: MAGVals for the quasi-identifier attribute Country. 
 

 
Figure 7: MAGVals for the quasi-identifier attribute Age. 
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Figure 8: Information Loss (IL) for GreedyCKA and Greedy_k-member_Clustering. 
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Figure 9: Running Time for GreedyCKA and Greedy_k-member_Clustering.

 As pointed out, when Greedy_k-member_Cluste-

ring is applied to k-anonymize IM, the resulting masked 

microdata usually contains numerous constraint 

violations. Table 1 reports the number of constraint 

violations in the outcome of the Greedy_k-member_ 

Clustering unconstrained k-anonymization algorithm, 

for two maximal generalization requirement sets. 
   

k No of constraint violations 

for 1 constrained attribute – 

native_country 

No of constraint violations 

for 2 constrained attributes – 

native_country, age 

2 605 2209 

3 991 3824 

4 1377 5297 

5 1657 6163 

6 1906 6964 

7 2198 7743 

8 2354 8417 

9 2550 8931 

10 2728 9549 

Table 1: Constraint violations in Greedy_k-

member_Clustering  
 

k 2 3 4 5 6 7 8 9 10 

No of suppressed tuples for 
1 constrained attribute – 

native_country 

0 0 0 0 0 0 0 0 0 

No of  suppressed tuples for 
2 constrained attributes– 

native_country, age 

5 15 24 28 48 60 81 97 106 

Table 2: Number of tuples suppressed by GreedyCKA 
 

 Table 2 shows the number of tuples suppressed by 

GreedyCKA, while masking the initial microdata. 

 All in all, our experiments proved that constrained 

k-anonymous masked microdata can be achieved 

without sacrificing the data quality to a significant 

extent, when compared to a corresponding k-anonymous 

unconstrained masked microdata.  

 While the constrained k-anonymity model responds 

to a necessity in real-life applications, the existing k-

anonymization algorithms are not able to build masked 

microdata that comply with it. In this context, 

GreedyCKA takes optimal suppression decisions, based 

on the proved properties of the new model (Properties 5 

and 6), and builds high-quality constrained k-

anonymous masked microdata. 

 

6 Conclusions and Future Work 

In this paper we defined a new privacy model, called 
constrained k-anonymity, which takes into consideration 
generalization boundaries imposed by the data owner 
for quasi-identifier attributes. Based on the model 
properties, an efficient algorithm to generate a masked 
microdata to comply with constrained k-anonymity 
property was introduced. Our experiments showed that 
the proposed algorithm obtains comparable information 
loss values with Greedy_k-member_Clustering 

algorithm, while the masked microdata sets obtained by 
the latter have many constraint violations.  

(h
o
u
rs
) 



 In this paper we used predefined hierarchies for all 
quasi-identifier attributes. As future work we plan to 
extend this concept further for numerical attributes. We 
plan to provide a technique to dynamically determine 
for each numerical quasi-identifier value, its maximal 
allowed generalization, based on that attribute’s values 
in the analyzed microdata and a minimal user input. 
 We also pointed out that the constraint k-anonymity 
property and even our proposed algorithm, GreedyCKA, 
can be extended to other privacy models (models such 

as constrained l-diversity, constrained (α, k)-anonymity, 
constrained p-sensitive k-anonymity, etc. can be easily 
defined). Finding specific properties for these enhanced 
privacy models, and developing improved algorithms to 
generate masked microdata to comply with such models 
are subject of future work.  
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