
On the Lindell-Pinkas Secure Computation of Logarithms:

From Theory to Practice

Raphael S. Ryger∗

Yale University

New Haven, CT USA

ryger@cs.yale.edu

Onur Kardes†

Stevens Institute of Technology

Hoboken, NJ USA

onur@cs.stevens.edu

Rebecca N. Wright†

Rutgers University

Piscataway, NJ USA

rebecca.wright@rutgers.edu

Abstract

Lindell and Pinkas demonstrated that it is feasible
to preserve privacy in data mining by employing a
combination of general-purpose and specialized secure-
multiparty-computation (SMC) protocol components.
Yet practical obstacles of several sorts have impeded
a fully practical realization of this idea. In this pa-
per, we address the correctness and practicality of one
of their primary contributions, a secure natural loga-
rithm computation, which is a building block crucial
to an SMC approach to privacy-preserving data min-
ing applications including construction of ID3 trees and
Bayesian networks. We first demonstrate a minor error
in the Lindell-Pinkas solution, then provide a correction
along with several optimizations. We explore a modest
trade-off of perfect secrecy for a performance advantage,
a strategy that adds flexibility in the effective applica-
tion of hybrid SMC to data mining.

1 Introduction

Privacy-preservation objectives in data mining can of-
ten be framed ideally as instances of secure multiparty
computation (SMC), wherein multiple parties cooperate
in a computation without thereby learning each other’s
inputs. The characterization of SMC is very encom-
passing, admitting a great variety of input and output
configurations, so that a general recipe for adding the
SMC input security to arbitrary well-specified multi-
party computations would seem to solve many quite
different problems in one fell swoop. Indeed, general
approaches to SMC were proposed for a variety of set-
tings already in the 1980s. Yet the framing of privacy
preservation for particular data-mining tasks as SMC
problems, making them amenable to the general ap-
proaches, is usually not useful. For all but the most

∗Supported in part by ONR grant N00014-01-1-0795 and by

US-Israel BSF grant 2002065.
†Supported in part by NSF grant 0331584.

trivial computations, the general SMC solutions have
been too cumbersome to apply and would be impracti-
cal to run. They require the computation to be repre-
sented as an algebraic circuit, with all loops unrolled to
as many iterations as would possibly be needed for the
supported inputs, and with all contingent branches of
the logic as conventionally expressed—such as iterations
that happen not to be needed—executed in every run
regardless of the inputs. One may reasonably conclude
that SMC is just a theoretical curiosity, not relevant for
real-world privacy-preserving data mining, where inputs
are not just a few bits but rather entire databases.

Lindell and Pinkas [LP00, LP02] have shown the lat-
ter conclusion to be inappropriate. A privacy-preserving
data-mining task, they point out, need not be cast as a
monolithic SMC problem to which to apply an expen-
sive general SMC solution. Instead, the task may be
decomposed into modules requiring SMC, all within a
computational superstructure that may itself admissi-
bly be left public. The modules requiring SMC may,
in part, be implemented with special-purpose proto-
cols with good performance, leaving general SMC as
a fallback (at the module-implementation level) only
where special approaches have not been found. The
key to such construction is that we are able to en-
sure secure chaining of the secure protocol components.
We prevent information from leaking at the seams be-
tween the SMC components by having them produce
not public intermediate outputs but rather individual-
party shares of the logical outputs, shares that may
then be fed as inputs to further SMC components. Lin-
dell and Pinkas illustrate this creative, hybrid method-
ology by designing a two-party SMC version of the
ID3 data-mining algorithm for building a classification
tree, a query-sequencing strategy for predicting an un-
known attribute—e.g., loan worthiness—of a new en-
tity whose other attributes—e.g., those characterizing
credit history, assets, and income—are obtainable by
(cost-bearing) query. At each construction step, the

P3DM’08, April 26, 2008, Atlanta, Georgia, USA.

ID3 algorithm enters an episode of information-theoretic
analysis of the database of known-entity attributes. The
privacy concern is introduced, in the Lindell-Pinkas set-
ting, by horizontal partitioning of that database be-
tween two parties that must not share their records.
The computation is to go through as if the parties have
pooled their data, yet without them revealing to each
other in their computational cooperation any more re-
garding their private data than is implied by the ulti-
mate result that is to be made known to them both.

While demonstrating the potential in a modular
SMC approach to prospective appliers of the theory,
Lindell and Pinkas offer SMC researchers and imple-
mentors some design suggestions for particular SMC
modules needed in their structuring of the two-party
ID3 computation. Strikingly, they need only three such
SMC modules, all relatively small and clearly useful for
building other protocols, namely, shares-to-shares log-
arithm and product protocols and a shares-to-public-
value minindex protocol. Their intriguing recommen-
dation for the secure logarithm protocol, critical to the
accuracy and performance of SMC data mining when-
ever information-theoretic analysis is involved, is our
focus in this paper.

The present authors have been engaged in a privacy-
preserving data-mining project [YW06, KRWF05] very
much inspired by Lindell and Pinkas. Our setting is sim-
ilar: a database is arbitrarily partitioned between two
parties wishing to keep their portions of the data pri-
vate to the extent that is consistent with achieving their
shared objective of discovering a Bayes-net structure in
their combined data. The information-theoretic consid-
erations and the scoring formula they lead to are very
similar to those in the ID3 algorithm for classification-
strategy building, as is the external flow of control that
invokes scoring on candidate next query attributes given
a set of query attributes that has already been decided
upon. (The details and their differences are not ger-
mane to the present discussion.) The adaptation we do
for privacy preservation in our two-party setting is, not
surprisingly, very similar to what Lindell and Pinkas do.
Indeed, we need the same SMC components that they
do and just one more, for computing scalar products of
binary-valued vectors. The latter additional need has
more to do with the difference in setting—we are admit-
ting arbitrary, rather than just horizontal, partitioning
of the data—than with the difference in analytical ob-
jective. In fact, our software would not require much ad-
justment to serve as a privacy-preserving two-party ID3
implementation—in fact, supporting arbitrarily parti-
tioned data, given the incorporated scalar-product com-
ponent.

Launching our investigation a few years after Lin-

dell and Pinkas’s paper, we have had the advantage of
the availability of the Fairplay system [MNPS04] for ac-
tually implementing the Yao-protocol components. We
have created tools to support the entire methodology,
enabling us to take our protocol from a theoretical sug-
gestion all the way to usable software. This exercise has
been illuminating. On one hand, it has produced the
most convincing vindication of which we are aware of
Lindell and Pinkas’ broad thesis regarding the practical
achievability of SMC in data mining while teaching us
much about the software engineering required for com-
plex SMC protocols. On the other hand, as is typical in
implementation work, it has revealed flaws in a number
of areas of the underlying theoretical work, including
our own. In this paper, we present our observations
on the Lindell-Pinkas logarithm proposal. We correct a
mathematical oversight and address a general modular-
SMC issue that it highlights, the disposition of scaling
factors that creep into intermediate results for technical
reasons.

We begin in Section 2 with a careful account of the
Lindell-Pinkas proposal for a precision-configurable se-
cure two-party shares-to-shares computation of natural
logarithms. In Section 3, we explain the mathemati-
cal oversight in the original proposal and show that the
cost of a straightforward fix by scale-up is surprisingly
low, although leaving us with a greatly inflated scale-up
factor. In Sections 4 and 5, we propose efficient alterna-
tives for doing arbitrary scaling securely. These enable a
significant optimization in the first phase of the Lindell-
Pinkas protocol, allowing removal of the table look-up
from the Yao circuit evaluation. We briefly point out
the effectiveness of a simple dodge of most of the prob-
lematics of the Lindell-Pinkas protocol in Section 6. We
conclude with a discussion of our implementation of the
revised Lindell-Pinkas protocol and its performance in
Section 7.

2 The Lindell-Pinkas lnx protocol

The Lindell-Pinkas proposed protocol for securely com-
puting lnx is intended as a component in a larger se-
cure two-party protocol. The parties are presumed not
to know, and must not hereby learn, either the argu-
ment or its logarithm. They contribute secret shares
of the argument and obtain secret shares of its log-
arithm. The proposed design for this protocol mod-
ule is itself modular, proceeding in two chained phases
involving different technology. The first phase inter-
nally determines n and ε such that x = 2n(1 + ε) with
−1/4 ≤ ε < 1/2. Note that, since n is an approximate
base-2 logarithm of x, the first phase gets us most of
the way to the desired logarithm of x. Furthermore,
this phase dominates the performance time of the en-

tire logarithm protocol: in absence of a specialized SMC
protocol for the first phase, Lindell and Pinkas fall back
to dictating it be implemented using Yao’s general ap-
proach to secure two-party computation, entailing gate-
by-gate cryptography-laden evaluation of an obfuscated
Boolean circuit. Yet the main thrust of the Lindell-
Pinkas recommendation is in the second phase, which
takes (the secret shares of) ε delivered by phase one
and computes an additive correction to the logarithm
approximation delivered (as secret shares) by phase one.

We will return to the performance-critical consid-
erations in implementing phase one, not addressed by
Lindell and Pinkas. We assume that its Boolean cir-
cuitry reconstitutes x from its shares; consults the top
1-bit in its binary representation and the value of the
bit following it to determine n and ε as defined; repre-
sents n and ε in a manner to be discussed; and returns
shares of these representations to the respective par-
ties. These values allow an additive decomposition of
the sought natural logarithm of x,

(2.1) lnx = ln 2n(1 + ε) = n ln 2 + ln(1 + ε)

The purpose is to take advantage of the Taylor expan-
sion of the latter term,
(2.2)

ln(1 + ε) =

∞
∑

i=1

(−1)i−1εi

i
= ε −

ε2

2
+

ε3

3
−

ε4

4
+ · · ·

to enable, in phase two, correction of the phase-one ap-
proximation of the logarithm with configurable preci-
sion by choice of the number of series terms to be used—
a parameter k to be agreed upon by the parties. The
computation in the second, refining phase is to proceed
by oblivious polynomial evaluation, a specialized SMC
technology which is inexpensive compared to the Yao
protocol of the first phase.

In this rough mathematical plan, the value ε to
be passed from phase one to phase two is a (generally
non-integer) rational and the terms in the decomposi-
tion of the final result in equation (2.1) are (generally
non-integer) reals, whereas the values we will accept
and produce in the two SMC phases are most natu-
rally viewed as integers. We are, then, representing
the rational and the reals as integers through scale-up
and finite-precision approximation. We have consider-
able latitude in choice of the scale-up factors, partic-
ularly considering that the scale-up of a logarithm is
just the logarithm to a different base—just as good for
information-theoretic purposes as long as the base is
used consistently. Still, several considerations inform
our choice of scale-up factors. We want the scale-ups to
preserve enough precision. On the other hand, there is
a performance penalty, here and elsewhere in the larger

computation to which this component is contributing,
especially in Yao-protocol episodes, for processing addi-
tional bits. The chosen scale-up must work mathemati-
cally within the larger computation. If an adjustment of
the scaling were to be needed for compatibility with the
rest of the computation—other than further scale-up by
an integer factor—it would entail another secure compu-
tation. (We return to this issue in §4.) For the Lindell-
Pinkas ID3 computation or for our Bayes-net structure-
discovery computation, both information-theoretic, no
adjustment would be needed. All the terms added and
subtracted to get scores within the larger computation
would be scaled similarly, and those scaled scores serve
only in comparison with each other.

We assume that the parties have common knowl-
edge of some upper bound N on n, the approximate
base-2 logarithm of the input x, and we have phase one
deliver the rational ε scaled up by 2N . This loses no in-
formation, deferring control of the precision of the cor-
rection term, ln 2n(1+ε) in some scale-up, to phase two.
Bearing in mind that the slope of the natural-logarithm
function is around 1 in the interval around 1 to which
we are constraining 1 + ε, we aim for a scale-up of the
correction term by at least 2N , and plan to scale up
the main term of the decomposition, n ln 2, to match.
Lindell and Pinkas suggest that the mapping from n to
n ln 2 · 2N be done by table look-up within the Yao pro-
tocol of phase one. Any further integer scale-up of the
main term to match the scaling of the correction term
can be done autonomously by the parties, without SMC,
by modular multiplication of their respective shares.

Lindell and Pinkas stipulate that the sharing be
with respect to a finite field F that is large enough
in a sense we discuss in more detail in Section 3.
A non-field ring will do provided that any particular
needed inverses exist. This allows us, e.g., to use
Paillier homomorphic encryption in a Zpq both for
the oblivious polynomial evaluation needed in phase
two of this logarithm component and, subsequently in
the larger computation, for the shares-to-shares secure
multiplication to compute x lnx—without additional
secure Yao computations to convert the sharing from
one modulus to another. The only inverses Lindell and
Pinkas need here are of powers of 2, and these would be
available in Zpq.

The set-up for phase two, then, preserving the
Lindell-Pinkas notation, is that phase one has delivered
to the parties, respectively, shares β1 and β2 such that
β1 +F β2 = n ln 2 · 2N , toward (whatever ultimate scale-
up of) the main term of the decomposition (2.1); and
shares α1 and α2 such that α1 +F α2 = ε · 2N , toward
the phase-two computation of (the scale-up of) the
correction term of the decomposition. We continue to

phase two.
Replacing ε in formula (2.2) with (α1 +F α2)/2N ,

we get

(2.3) ln(1 + ε) =

∞
∑

i=1

(−1)i−1(α1 +F α2)
i

i 2Ni

In this infinite-series expression, the only operation to
be carried out in the finite ring F is the recombination
of the shares, α1 and α2, as noted. The objective in
phase two is to compute the series in sufficiently good
approximation through oblivious polynomial evaluation
by the two parties, returning shares of the value to the
parties. So we need to get from the infinite series—
a specification of a limit in R for what appear to be
operations in Q—to a polynomial over the finite ring F
that may be evaluated so as to contribute to the sought
shares. This will entail several steps of transformation.

Step 1. The computation must be finite. We take
only k terms of the series.

Step 2. We deal somehow with the division that
appears in the summand. We need to be sure we end up,
when the transformation is complete, with a polynomial
over F . We can scale up the whole formula to cancel
some or all of the division. The disposition of any
remaining division, as we work toward determining the
coefficients of the polynomial to be evaluated, turns out
to be problematic, largely occasioning this paper. (The
existence of modular inverses in F for the remaining
divisors is not sufficient.) For the moment, let σ be
whatever scale-up factor we decide to use here.

Step 3. We reinterpret the outer summation and
the multiplication, including the binomial exponentia-
tion and the multiplication by σ, as modular addition
and multiplications in F . Note that we cannot even
open the parentheses by formal exponentiation, apply-
ing a distributive law, without first reinterpreting the
multiplication as in F . We have no law regarding the
distribution of multiplication in Z over addition in F .
This requires that we assure ourselves that the rein-
terpretation does not alter the value of the expression.
Lindell and Pinkas ensure this by requiring F to be suf-
ficiently large, and we will review the consideration.

Step 4. We replace the occurrence of ‘α2’ in
(2.3)—as truncated, division-resolved, and modularly
reinterpreted—with the variable ‘y’. Knowing α1, party
1 does the formal exponentiations and collects terms, all
modulo |F|, yielding a polynomial in ‘y’ over F . Party
1 randomly chooses z1 ∈ F and subtracts it from the
constant term of the polynomial. Where Q(y) is the
resulting polynomial and z2 is its value at y = α2, to be
obtained by party 2 through the oblivious polynomial

evaluation to follow, we have
(2.4)

z2 = Q(y) |y=α2
=

k
∑

i=1

σ(−1)i−1(α1 + y)i

i 2Ni
− z1

∣

∣

∣

∣

∣

y=α2

where all operations—once the approach to the division
in the summand is sorted out—are in F , so that

z1 +F z2 ≈

∞
∑

i=1

σ(−1)i−1(α1 +F α2)
i

i 2Ni
= ln(1 + ε) · σ

—all operations here, except as indicated, back in
R. Thus, the computation of z2 according to (2.4)
by oblivious polynomial evaluation accomplishes the
sharing of ln(1 + ε) · σ as z1 and z2. The parties
may autonomously modularly multiply β1 and β2 by
lcm(2N , σ)/2N , giving β′

1 and β′
2, respectively; and

modularly multiply z1 and z2 by by lcm(2N , σ)/σ,
giving z′1 and z′2, respectively; and modularly add their
respective results from these scale-ups. Then, per the
decomposition in (2.1),

(β′

1 +F z′1) +F (β′

2 +F z′2) = (β′

1 +F β′

2) +F (z′1 +F z′2)

≈ (n ln 2 + ln(1 + ε)) · lcm(2N , σ) = lnx · lcm(2N , σ)

accomplishing the original goal of securely computing
shares of ln x from shares of x—if with a scale-up that
we hope is innocuous. But this sketch of the protocol
still needs to be fleshed out. We back up now, first
briefly to step 3, and then to step 2, our main focus.

By the time we get to step 3, we should be left with
an expression prescribing finitely many operations in Z,
viewing +F as an operation in Z and viewing division
as a partially-defined operation in Z. Looking ahead to
step 4, we will be replacing the occurrences of ’α2’ in
this expression with the variable ’y’ and algebraically
reorganizing it into the polynomial Q(y) (with a change
to the constant term). In this step 3, we change only
the semantics of the expression arrived at, not its syn-
tactic composition. The claim to be made is that the
hybrid expression at hand, involving some modular ad-
ditions but otherwise non-modular operations, can be
reinterpreted to involve only modular operations with-
out change to the induced expression value—allowing
the expression then to be transformed syntactically with
guarantee of preservation of value, but now with respect
to the new semantics. This tricky claim, made implic-
itly, bears explicit examination. We can frame the issue
abstractly. Suppose ϕ is an arbitrarily complex numeri-
cal expression built recursively of variables and function
symbols (admitting constants as 0-ary function sym-
bols). We have a conventional interpretation of ϕ in
the domain Z. We also have an alternate interpretation

of ϕ in the domain Zm. Furthermore, we have an alter-
nate expression, ϕ′, obtained from ϕ by transformations
guaranteed to preserve the value of the whole under the
interpretation in Zm for any assignment of values from
Zm to the variables. We intend to compute ϕ′ as in-
terpreted in Zm. Under what circumstances can we be
assured that this computation will yield the same value
as does evaluation of the original expression ϕ according
to the original interpretation in Z? In the case at hand,
ϕ is

(2.5)

k
∑

i=1

σ(−1)i−1(α1 +F y)i

i 2Ni

(with some decision as to how to interpret the division),
whereas ϕ′ is

Q(y) + z1

to be interpreted in Zm (where m = |F|) and be so
computed, with the value to be assigned to ’y’ in both
cases being α2.

There are obvious strong sufficient conditions under
which modular reinterpretation preserves value. We do
have to be careful to take into account, in generaliz-
ing, that in our instance ε may be negative, and that
our summation expression has sign alternation, so we
need to proceed via a “signed-modular” interpretation,
wherein the mod-m integers ⌈m

2 ⌉ to m − 1 are viewed
as “negative”, i.e., they are isomorphically replaced by
the integers −⌊m

2 ⌋ to −1. (Choosing the midpoint for
the cutover here is arbitrary, in principle, but appro-
priate for our instance.) If (a) for the values we are
contemplating assigning to the variables, the recursive
evaluation of ϕ under the original interpretation assigns
values to the subexpressions of ϕ that are always inte-
gers in the interval [−⌊m

2 ⌋, ⌊
m
2 ⌋]; and if (b) the functions

assigned to the function symbols in the signed-modular
reinterpretation agree with the functions assigned by
the original interpretation whenever the arguments and
their image under the original function are all in that
signed-mod-m interval; then the signed-modular rein-
terpretation will agree with the original interpretation
on the whole expression ϕ for the contemplated value
assignments to the variables. Note that we need not
assume that the reinterpretation associates with the
function symbols the signed-modular analogues of the
original functions, although this would ensure (b). Nor
would a stipulation of modular agreement be sufficient,
in general, without condition (a), even if the original
evaluation produces only (overall) values in the signed-
mod-m domain for value assignments of interest. The
danger is that modular reduction of intermediate values,
if needed, may lose information present in the original

evaluation. In our case, the single variable, ’y’, is as-
signed the value α2, which may be as large as, but no
larger than, m − 1. The constant α1 is similarly less
than m. We can view these mod-m values, returned by
the Yao protocol in phase one, as being the correspond-
ing signed-mod-m values instead, with +F operating on
them isomorphically. Moreover, α1 +F y then evaluates
into the interval [− 1

42N , 1
22N), where we can arrange

for the endpoints to be much smaller in absolute value
than ⌊m

2 ⌋. This allows Lindell and Pinkas to reason
about setting m high enough so that indeed all subex-
pressions of our ϕ will evaluate, in the original inter-
pretation, into the signed-mod-m domain. Note that if
formal powers of ’α1’ and of ’y’ appeared as subexpres-
sions in our original expression ϕ, as they do in our ϕ′,
the polynomial Q(y)+z1 which we actually compute, we
would have concern over potential loss of information in
modular reduction impeding the modular reinterpreta-
tion; but the power subexpressions appear only after we
have reinterpreted and transformed ϕ, and are by then
of no concern.

We now return to step 2, attending to the division
in the Taylor-series terms.

3 The division problem

We have already seen that choices of scaling factor are
governed by several considerations including preserva-
tion of precision, avoidance of division where it cannot
be carried out exactly, and compatibility among inter-
mediate results. For preservation of precision, we have
been aiming to compute the main and correction terms
of (2.1) scaled up by at least 2N . Lindell and Pinkas in-
corporate this factor into their σ in preparing the poly-
nomial. To dispose of the i factors in the denomina-
tor in (2.4), they increase the scale-up by a factor of
lcm(2, . . . , k). With σ now at 2N lcm(2, . . . , k), the trun-
cated Taylor series we are looking at in step 2 becomes

ln(1 + ε) · 2N lcm(2, . . . , k) ≈
k

∑

i=1

(−1)i−1 (lcm(2, . . . , k)/i) (α1 +F α2)
i

2N(i−1)
(3.6)

We know that in step 3 we will be reinterpreting the
operations in this expression—more precisely, in the
expression we intend this expression to suggest—as
operations in F . Clearly, since k is agreed upon before
the computation, the subexpression ’lcm(2, . . . , k)/i’
may be replaced immediately by (a token for) its integer
value. We are still left with a divisor of 2N(i−1), but
Lindell and Pinkas reason that (α1 +F α2)

i, although
not determined until run time, will be divisible by
2N(i−1). After all, (α1 +F α2)

i will be (ε · 2N)i, and
the denominator was designed expressly to divide this

to leave εi·2N . Apparently, all we need to do is allow the
division bar to be reinterpreted in step 3 as the (partially
defined) division operation in Zm, i.e., multiplication by
the modular inverse of the divisor. We can assume that
m is not even, so that powers of 2 have inverses modulo
m. Furthermore, whenever a divides b (in Z) and b < m,
if a has an inverse (a ∈ Z∗

m) then a−1b in Zm is just the
integer b/a. It would appear that the strong sufficient
conditions for reinterpretation are met.

The trouble is that, although (α1 +F α2)
i = (ε ·2N)i

is an integer smaller than m (given that we will ensure
that m is large enough) and although the expression

‘(ε · 2N)i’ appears to be formally divisible by the
expression ‘2N(i−1)’, the integer (ε · 2N)i is not, in
general, divisible by the integer 2N(i−1). In Q, the
division indeed yields εi2N , which is just the scale-up
by 2N we engineered it to achieve. That rational scale-
up is an integer for i = 1, but will generally not be an
integer for i > 1. (Roughly, εi2N is an integer if the
lowest-order 1 bit in the binary representation of x is
within N/i digits of its highest-order 1 bit—a condition
that excludes most values of x already for i = 2.) This
undermines the sufficient condition Lindell and Pinkas
hoped to rely on to justify the modular reinterpretation,
our step 3. Without the divisibility in the integers,
there is no reason to believe that reinterpretation of
the division by 2N(i−1) as modular multiplication by
its mod-m inverse (2N(i−1))−1 would have anything
to do with the approximation we thought we were
computing. The ensuing formal manipulation in step
4 to get to a polynomial to be evaluated obliviously
would be irrelevant.

The immediate brute-force recourse is to increase
the scale-up factor, σ, currently at 2N lcm(2, . . . , k),
to 2Nklcm(2, . . . , k). This leaves our truncated Taylor
series as

ln(1 + ε) · 2Nklcm(2, . . . , k) ≈
k

∑

i=1

(−1)i−1 2N(k−i)(lcm(2, . . . , k)/i) (α1 +F α2)
i(3.7)

Phase one still feeds phase two shares of ε scaled up
by 2N . For compatibility with the larger scale-up
of the correction term of the decomposition as now
delivered (in shares) by phase two, the parties will
autonomously scale up their shares of the main term
of the decomposition by a further factor of 2N(k−1).

The natural concern that a scaling factor so much
larger will require F to be much larger, with adverse
performance implications, turns out to be unfounded.
Surprisingly, the guideline given by Lindell and Pinkas
for the size of F—namely, 2Nk+2k or more—need not
be increased by much. The original guideline actually

remains sufficient for the step-3 reinterpretation of the
operations to be sound. But now, with the (unshared)
scaled-up correction term alone so much wider, requir-
ing some 2Nk bits of representation, we are in danger of
running out of room in the space for the scaled-up main
term if log2 N > 2k. Raising the size requirement for F
to 2Nk+2k+log

2
N should be sufficient. If we want to pro-

vide, in the larger protocol, for computation of x lnx,
scaled up to x(σ lnx), in the same space F , we need to
raise the size requirement for F to 2Nk+2k+log

2
N+N

Our larger scale-up here does not carry any addi-
tional information, of course. The creeping growth in
the computational space does affect performance, but
only minimally. Even in Yao SMC episodes, the larger
space affects only the modular addition to reconstitute
shared inputs at the outset and the modular addition
to share the computed results at the end. The compu-
tation proper is affected by the size of the space of the
actual unshared inputs, but not by the size of the space
for modular sharing.

The more significant issue is that we continue to be
saddled with scaling factors that are best not incurred
in building blocks intended for general use. We explore
efficient ways to reverse unwanted scaling. The problem
is tantamount to that of efficiently introducing wanted
arbitrary—i.e., not necessarily integral—scaling. Lin-
dell and Pinkas need such scaling to get from base-2
logarithms to natural logarithms in phase one of the
protocol. A good solution to this problem of secure ar-
bitrary scaling will enable us to do better than (even a
smart implementation of) the table look-up inside the
phase-one Yao protocol that they call for, in addition
to allowing reversal of whatever scale-up is delivered by
the entire logarithm protocol.

4 Secure non-integer scaling of shared values

Suppose parties 1 and 2 hold secret shares modulo
m, respectively γ1 and γ2, of a value γ; and suppose
σ = κ + ρ is a scaling factor to be applied to γ, where
κ is a non-negative integer and 0 ≤ ρ < 1. σγ is not,
in general, an integer, but a solution that can provide
the parties shares of an integer approximation of σγ
suffices. κγ may be shared exactly simply by having the
parties autonomously modularly scale up their shares
by κ. That leaves the sharing of (an approximation of)
ργ, the shares to be added modularly to the shares of
κγ to obtain shares of (an approximation of) σγ. The
problem is that approximate multiplication by a non-
integer does not distribute over modular addition, even
approximately!

A bifurcated distributive property does hold, how-
ever. If the ordinary sum γ1 + γ2 is < m, the usual
distributive law for multiplication of the sum by ρ holds

approximately for approximate multiplication. If, on
the other hand, the ordinary sum γ1 + γ2 is ≥ m, then
the modular sum is, in ordinary terms, γ1 + γ2 − m,
so that the distribution of the multiplication by ρ over
the modular addition of γ1 and γ2 will need an adjust-
ment of approximately −ρm. This suggests the follow-
ing protocol to accomplish the scaling by ρ mostly by
autonomous computation by the parties on their own
shares, but with a very minimal recourse to a Yao pro-
tocol to select between the two cases just enumerated.
The Yao computation takes ργ1 and ργ2, each rounded
to the nearest integer, as computed by the respective
parties; and the original shares γ1 and γ2 as well. Party
1 also supplies a secret random input z1 < m. The cir-
cuit returns to party 2 either (ργ1 + ργ2) +modm z or
(ργ1 + ργ2 − ρm) +modm z accordingly as γ1 + γ2 < m
or not. Party 1’s share is m − z1. The integer approx-
imation of ρm is built into the circuit. The cumulative
approximation error is less than 1.5, and usually less
than 1.

But an unconventional approach can allow us to do
better still.

5 The practical power of imperfect secrecy

In implementing secure protocols, we tend to be induced
by different considerations to choose moduli for sharing
that are vastly larger than the largest value that will be
shared. In the Lindell-Pinkas logarithm proposal, for
instance, if N is 13, as to accommodate ID3 database
record counts of around 8,000, and k is 4, our share
space is of a size greater than 1020. Prior to our
correction, logarithms are to be returned scaled up by
around 105, making for a maximum output of around
106. Thus, the size of the sharing space is larger than
the largest shared value by a factor of 1014. In such
a configuration, it is a bit misleading to state that the
distributive law is bifurcated. The case of the shares not

jointly exceeding the modulus is very improbable. If we
could assume the nearly certain case of the shares being
excessive—i.e., needing modular reduction—to hold, we
would not need a Yao episode to select between two
versions of the scaling computation. Each party would
scale autonomously and party 1 would subtract ρm to
correct for the excess.

We could abide the very small chance of error in
this assumption. But better would be to guarantee
(approximate) correctness of the autonomous scaling
by contriving to ensure that the shares be excessive.
This turns out to be quite tricky in theory while
straightforward in practice. It entails a small sacrifice
of the information-theoretic perfection of the secrecy in
the sharing, but the sacrifice should be of no practical
significance.

Let t be the largest value to be shared, much
smaller than the modulus m. We can ensure that
shares are excessive by restricting the independently set
share to be greater than t. But we can show that if
it is agreed that the independent share will be chosen
uniformly randomly from the interval [t+1, m−1] then,
if it is actually chosen within t of either end of this
interval, information will leak to the other party through
the complementary share given him for certain of the
values from [0, t] that might be shared—to the point
of completely revealing the value to the other party
in the extreme case. If the choice is at least t away
from the ends of the choice interval, perfect secrecy is
maintained. But if we take this to heart and agree
that the independent share must be from the smaller
interval [2t + 1, m − 1 − t] then the same argument
can be made regarding the possibility that the choice
is actually within t of the ends of this smaller interval.
Recursively, to preserve secrecy, we would lop off the
ends of the choice interval until nothing was left.

But as in the “surprise quiz” (or “unexpected
hanging”) paradox, wherein we establish that it is
impossible to give a surprise quiz “some day next week,”
the conclusion here, too, is absurd from a practical
point of view. If the independent share is chosen from
some huge, but undeclared, interval around m/2, huge
by comparison with t but tiny by comparison with m,
there simply is no problem with loss of secrecy. We
can assume that the sharing is excessive, and arbitrary
scaling can be accomplished by the parties completely
autonomously.

We may be able to look at the random choice of the
independent share from an undeclared interval instead
as a non-uniform random choice, the distribution being
almost flat, with the peak probability around m/2
dropping off extremely gradually to 0 as the ends
of [t + 1, m − 1] are approached. As long as the
probabilities are essentially the same in a cell of radius t
around whatever independent share is actually chosen—
and it is exceedingly unlikely that there not exist
a complete such cell around the choice—secrecy is
preserved. But theorizing about the epistemology here
is beyond our scope. The point is that, in practice, it
seems worth considering that we can gain performance
by not requiring Yao episodes when non-integer scaling
is needed.

In the Lindell-Pinkas protocol, for scaling the ap-
proximate base-2 logarithms determined in phase one
to corresponding approximate natural logarithms, this
approach is fine. For getting rid of the scale-up de-
livered in the final result, beyond whatever scale-up is
sufficient for the precision we wish to preserve, we would
need to extend the size of F somewhat before using this

approach, now that our correction has greatly increased
the maximum value that may be delivered as shares by
the oblivious polynomial evaluation. On balance, con-
sidering the added expense that would be incurred in
other components of the larger protocol, it is best not
to enlarge F (further) and to reverse the scaling of the
result, if necessary, by the method of the preceding sec-
tion.

6 Alternative: Pretty good precision, high

performance

For many purposes, a much simpler secure computation
for logarithms may offer adequate precision. The base
is often not important, as noted, so base 2 may do—as
indeed it would in the ID3 computation. Noting that in
the interval [1, 2] the functions y = log2 x and y = x− 1
agree at the ends of the interval and deviate by only
0.085 in the middle, we have the Yao circuit determine
the floor of the base-2 logarithm and then append to
its binary representation the four bits of the argument
following its top 1-bit. This gives a result within 1/16 of
the desired base-2 logarithm. We used this approach in
our Bayes-net structure computation [YW06, KRWF05]
while sorting out the issues with the much more complex
Lindell-Pinkas proposal. As in the Lindell-Pinkas secure
ID3 computation, the logarithms inform scores that, in
turn, are significant only in how they compare with
other scores, not in their absolute values. As long as
the sense of these score comparisons is not affected,
inaccuracies in the logarithms are tolerable. We bear in
mind also that, in the particular data-mining contexts
we are addressing, the algorithms are based on taking
the database as a predictive sample of a larger space.
In so depending on the database, they are subject to
what may be regarded as sampling error in any case.
From that perspective, even the reversal of sense in
some comparisons of close scores cannot be regarded
as rendering the approach inappropriate.

However, as much simpler as this approach is, the
performance consideration in its favor is considerably
weakened once we remove the conversion from base-2
to scaled-up natural logarithms from the Yao portion of
the Lindell-Pinkas protocol, as we now see we can do.

7 Implementation and performance

We have evolved an array of tools to aid in developing
hybrid-SMC protocols of the style demonstrated by
Lindell and Pinkas. These will be documented in a
Yale Computer Science Department technical report
and will be made available. Among the resources are
a library of Perl functions offering a level of abstraction
and control we have found useful for specifying the
generation of Boolean circuits; scripts for testing circuits

without the overhead of secure computation; particular
circuit generators, as for the phase-one Yao episode
in the Lindell-Pinkas logarithm protocol and for the
minindex Yao episode needed for the best-score selection
in their larger secure ID3 computation; additional SMC
components not involving circuits; and a library of
Perl functions facilitating the coordination of an entire
hybrid-SMC computation involving two parties across a
network.

We have been developing and experimenting on
NetBSD and Linux operating systems running on Intel
Pentium 4 CPUs at 1.5 to 3.2 GHz. We use the Fairplay
run-time system, written in Java and running over Sun
JRE 1.5, to execute Yao-protocol episodes. The Yao
episode in phase one of the Lindell-Pinkas logarithm
protocol completely dominates the running time of the
entire logarithm computation, making the peformance
of Fairplay itself critical.

We cannot address the performance of multiparty
computations without giving special attention to the
cost of communication. This element is a wildcard,
dependent on link quality and sheer propagation de-
lay across the network distance between the parties.
We have done most of our experimentation with the
communication component trivialized by running both
parties on the same machine or on two machines on
the same LAN. For a reality check, we did some ex-
perimenting with one party at Yale University in New
Haven, CT and the other party at Stevens Institute of
Technology in Hoboken, NJ, with a 15 ms round-trip
messaging time between them. There was no significant
difference in performance in Yao computations. Admit-
tedly, this is at a relatively small network distance. But
there is another way to look at this. If network distance
were really making the communication cost prohibitive,
the two parties anxious to accomplish the joint data-
mining computation securely could arrange to run the
protocol from outposts of theirs housing prepositioned
copies of their respective private data, the outposts se-
curely segregated from each other but at a small network
distance. From this perspective, and recognizing that
the protocols we are considering involve CPU-intensive
cryptographic operations, it is meaningful to assess their
performance with the communication component mini-
mized.

With the parties running on 3.2 GHz CPUs, and
working with a 60-bit modulus, it takes around 5
seconds to run the complete Lindell-Pinkas logarithm
computation. In more detail, to accommodate input
x of up to 17 bits (≤ 131071), with k = 3 terms of
the series to be computed in phase 2 (for an absolute
error within 0.0112), we generate a circuit of 1497 gates
and the computation runs in around 5.0 seconds. With

the same modulus, to accommodate input x of only
up to 13 bits (≤ 8191), allowing k = 4 terms of
the series to be computed in phase 2 (for an absolute
error within 0.0044), we generate a circuit of 1386
gates and the computation runs in around 4.9 seconds.
Accommodating inputs of only up to 10 bits (≤ 1023),
allowing as many k = 5 series terms (for an absolute
error within 0.0018), the gate count comes down to 1314
and the running time comes down to around 4.8 seconds.

Clearly, a 5-second wait for a single result of
a Lindell-Pinkas secure-logarithm computation seems
quite tolerable, but it serves little purpose in itself, of
course. This is a shares-to-shares protocol intended for
incorporation in a larger data-mining protocol that will
ultimately leave the parties with meaningful results. It
is reasonable to ask, in such a larger hybrid-SMC pro-
tocol, how badly would a 5-second delay for each loga-
rithm computation—and, presumably, comparable de-
lays for other needed SMC building blocks—bog down
the entire data-mining algorithm?

We can give a rough idea, based on experiment,
of the performance that appears to be possible now
in an entire privacy-preserving data-mining computa-
tion based on a hybrid-SMC approach. Without fully
qualifying the tasks, software versions, and hardware
involved, our secure Bayes-net structure-discovery im-
plementation has run against an arbitrarily privately
partitioned database of 100,000 records of six fields in
about 2.5 hours. This involved almost 500 invocations
of the secure logarithm protocol, each involving a Yao-
protocol episode run using the Fairplay system, as well
as other component protocols. The overall time, com-
puting against this many records, was dominated not by
the Yao protocol episodes of the logarithm and minin-
dex components but rather by the scalar-product com-
putations needed to determine securely the numbers of
records matching patterns across the private portions
of the logical database. The scalar-product computa-
tions require a number of homomorphic-encryption op-
erations linear in the number of records in the database.

In developing and using these tools over some time,
we note that the room for improvement in performance
as implementations are optimized is large. Improve-
ments that do not affect complexity classes, hence of
lesser interest to theoreticians, are very significant to
practitioners. Improvements in complexity class are
there as well; we gained a log factor in our gate counts in
the logarithm circuits over our initial naive implementa-
tion. Meanwhile, it is clear that significant hybrid-SMC
computations are already implementable in a maintain-
able, modular manner with a development effort that
is not exorbitant. Performance of such computations
is becoming quite reasonable for realistic application in

privacy-preserving data-mining contexts.

Acknowledgments

We thank Benny Pinkas for helpful discussion of the
design of the original Lindell-Pinkas logarithm protocol.

References

[KRWF05] Onur Kardes, Raphael S. Ryger, Rebecca N.
Wright, and Joan Feigenbaum. Implementing privacy-
preserving Bayesian-net discovery for vertically parti-
tioned data. In Proceedings of the ICDM Workshop on

Privacy and Security Aspects of Data Mining, pages
26–34, 2005.

[LP00] Yehuda Lindell and Benny Pinkas. Privacy pre-
serving data mining. In Advances in Cryptology –

CRYPTO ’00, volume 1880 of Lecture Notes in Com-

puter Science, pages 36–54. Springer-Verlag, 2000.
[LP02] Yehuda Lindell and Benny Pinkas. Privacy preserv-

ing data mining. Journal of Cryptology, 15(3):177–206,
2002.

[MNPS04] Dahlia Malkhi, Noam Nissan, Benny Pinkas, and
Yaron Sella. Fairplay – a secure two-party computation
system. In Proc. of the 13th Symposium on Security,
pages 287–302. Usenix, 2004.

[YW06] Zhiqiang Yang and Rebecca N. Wright. Privacy-
preserving computation of Bayesian networks on ver-
tically partitioned data. IEEE Transactions on Data

Knowledge Engineering, 18(9), 2006. An earlier version
appeared in KDD 2004.

