
Efficient Algorithms for Masking and Finding Quasi-Identifiers ∗

Rajeev Motwani† Ying Xu ‡

Abstract

A quasi-identifier refers to a subset of attributes that
can uniquely identify most tuples in a table. Incautious
publication of quasi-identifiers will lead to privacy leakage.
In this paper we consider the problems of finding and
masking quasi-identifiers. Both problems are provably hard
with severe time and space requirements. We focus on
designing efficient approximation algorithms for large data
sets.

We first propose two natural measures for quantifying
quasi-identifiers: distinct ratio and separation ratio. We
develop efficient algorithms that find small quasi-identifiers
with provable size and separation/distinct ratio guarantees,
with space and time requirements sublinear in the number
of tuples. We also propose efficient algorithms for masking
quasi-identifiers, where we use a random sampling tech-
nique to greatly reduce the space and time requirements,
without much sacrifice in the quality of the results. Our al-
gorithms for masking and finding quasi-identifiers naturally
apply to stream databases. Extensive experimental results
on real world data sets confirm efficiency and accuracy of
our algorithms.

1 Introduction
A quasi-identifier (also called a semi-key) is a subset

of attributes which uniquely identifies most entities in the
real world or tuples in a table. A well-known example is
that the combination of gender, date of birth, and zipcode
can uniquely determine about87% of the population in
United States. Quasi-identifiers play an important role in
many aspects of data management, including privacy, data
cleaning, and query optimization.

As pointed out in the seminal paper of Sweeney [25],
publishing data with quasi-identifiers leaves open attacks
that combine the data with other publicly available in-
formation to identify represented individuals. To avoid

∗P3DM’08, April 26, 2008, Atlanta, Georgia, USA.
†Stanford University. rajeev@cs.stanford.edu. Supported in part by

NSF Grant ITR-0331640, and a grant from Media-X.
‡Stanford University. xuying@cs.stanford.edu. Supported in part by

Stanford Graduate Fellowship and NSF Grant ITR-0331640.

such linking attacks via quasi-identifiers, the concept of k-
anonymity was proposed [25, 24] and many algorithms for
k-anonymity have been developed [23, 2, 4]. In this paper
we consider the problem of masking quasi-identifiers: we
want to publish a subset of attributes (we either publish the
exact value of every tuple on an attribute, or not publish
the attribute at all), so that no quasi-identifier is revealed
in the published data. This can be viewed as a variant of
k-anonymity where the suppression is only allowed at the
attribute level. While this approach is admittedly too restric-
tive in some applications, there are two reasons we consider
it. First, the traditional tuple-level suppression may distort
the distribution of the original data and the association be-
tween attributes, so sometimes it might be desirable to pub-
lish fewer attributes with complete and accurate informa-
tion. Second, as noted in [15], the traditional k-anonymity
algorithms are expensive and do not scale well to large data
sets; by restricting the suppression to a coarser level we are
able to design more efficient algorithms.

We also consider the problem of finding small keys
and quasi-identifiers, which can be used by adversaries to
perform linking attacks. When a table which is not properly
anonymized is published, an adversary would be interested
in finding keys or quasi-identifiers in the table so that once
he collects other persons’ information on those attributes,
he will be able to link the records to real world entities.
Collecting information on each attribute incurs certain cost
to the adversary (for example, he needs to look up yellow
pages to collect the area code of phone numbers, to get
party affiliation information from the voter list, etc), so the
adversary wishes to find a subset of attributes with a small
size or weight that is a key or almost a key to minimize the
attack cost.

Finding quasi-identifiers also has other important appli-
cations besides privacy. One application is data cleaning.
Integration of heterogeneous databases sometimes causes
the same real-world entity to be represented by multiple
records in the integrated database due to spelling mistakes,
inconsistent conventions, etc. A critical task in data clean-
ing is to identify and remove such fuzzy duplicates [3, 6].
We can estimate the ratio of fuzzy duplicates, for example
by checking some samples manually or plotting the distri-
bution of pairwise similarity; now if we can find a quasi-

identifier whose “quasiness” is similar to the fuzzy dupli-
cate ratio, then those tuples which collide on the quasi-
identifier are likely to be fuzzy duplicates. Finally, quasi-
identifiers are a special case of approximate functional de-
pendency [13, 22], and their automatic discovery is valuable
to query optimization and indexing [9].

In this paper, we study the problems of finding and
masking quasi-identifiers in given tables. Both problems are
provably hard with severe time and space requirements, so
we focus on designing efficient approximation algorithms
for large data sets. First we define measures for quantifying
the “quasiness” of quasi-identifiers. We propose two natural
measures – separation ratio and distinct ratio.

Then we consider the problem of finding the minimum
key. The problem is NP-hard and the best-known approxi-
mation algorithm is a greedy algorithm with approximation
ratio O(ln n) (n is the number of tuples); however, even
this greedy algorithm requires multiple scans of the table,
which are expensive for large databases that cannot reside
in main memory and prohibitive for stream databases. To
enable more efficient algorithms, we sacrifice accuracy by
allowing approximate answers (quasi-identifiers). We de-
velop efficient algorithms that find small quasi-identifiers
with provable size and separation/distinct ratio guarantees,
with both space and time complexities sublinear in the num-
ber of input tuples.

Finally we present efficient algorithms for masking
quasi-identifiers. We use a random sampling technique to
greatly reduce the space and time requirements, without
sacrificing much in the quality of the results.

Our algorithms for masking and finding minimum quasi-
identifiers naturally apply to stream databases: we only
require one pass over the table to get a random sample of the
tuples and the space complexity is sublinear in the number
of input tuples (at the cost of only providing approximate
solutions).

1.1 Definitions and Overview of Results

A key is a subset of attributes that uniquely identifies
each tuple in a table. Aquasi-identifier is a subset of
attributes that can distinguish almost all tuples. We propose
two natural measures for quantifying a quasi-identifier.
Since keys are a special case of functional dependencies,
our measures for quasi-identifiers also conform with the
measures of approximate functional dependencies proposed
in earlier work [13, 22, 11, 8].

(1) An α-distinct quasi-identifieris a subset of at-
tributes which becomes a key in the table remain-
ing after the removal of at most a1 − α fraction
of tuples in the original table.

(2) We say that a subset of attributesseparatesa
pair of tuplesx andy if x andy have different
values on at least one attribute in the subset.

An α-separation quasi-identifieris a subset of
attributes which separates at least anα fraction
of all possible tuple pairs.

age sex state
1 20 Female CA
2 30 Female CA
3 40 Female TX
4 20 Male NY
5 40 Male CA

Table 1. An example table. The first column labels
the tuples for future references and is not part of the
table.

We illustrate the notions with an example (Table 1). The
example table has3 attributes. The attributeage is a 0.6-
distinct quasi-identifier because it has3 distinct values in
a total of 5 tuples; it is a0.8-separation quasi-identifier
because8 out of 10 tuple pairs can be separated byage.
{sex, state} is 0.8-distinct and0.9-separation.

The separation ratio of a quasi-identifier is always larger
than its distinct ratio, but there is no one-to-one mapping.
Let us consider a0.5-distinct quasi-identifier in a table of
100 tuples. One possible scenario is that projected on the
quasi-identifier there are50 distinct values and each value
corresponds to2 tuples, so its separation ratio is1− 50

(100
2) ≈

0.99; another possible scenario is that for49 of the 50
distinct values there is only one tuple for each value, and all
the other51 tuples have the same value, and then this quasi-
identifier is 0.75-separation. Indeed, anα-distinct quasi-
identifier can be anα′-separation quasi-identifier whereα′

can be as small as2α− α2, or as large as1− 2(1−α)
n . Both

distinct ratio and separation ratio are very natural measures
for quasi-identifiers and have different applications as noted
in the literature on approximate functional dependency. In
this paper we study quasi-identifiers using both measures.

Given a table withn tuples andm attributes, we consider
the following problems. Thesizeof a key (quasi-identifier)
refers to the number of attributes in the key.

Minimum Key Problem:find a key of the mini-
mum size. This problem is provably hard so we
also consider its relaxed version:

(ε, δ)-Separation or -Distinct Minimum Key Prob-
lem: look for a quasi-identifier with a small size
such that, with probability at least1− δ, the out-
put quasi-identifier has separation or distinct ratio
at least1− ε.

β-Separation or -Distinct Quasi-identifier Mask-
ing Problem: delete a minimum number of at-
tributes such that there is no quasi-identifier with
separation or distinct ratio greater thanβ in the
remaining attributes.

In the example of Table 1,{age, state} is a minimum
key, with size2; the optimal solution to0.8-distinct quasi-
identifier masking problem is{sex, state}; the optimal
solution to0.8-separation quasi-identifier masking problem
is {age}, {sex} or {state}, all of size1.

The result data after quasi-identifier masking can be
viewed as an approximation to k-anonymity. For example,
after0.2-distinct quasi-identifier masking, the result data is
approximately5-anonymous, in the sense that on average
each tuple is indistinguishable from another 4 tuples. It does
not provide perfect privacy as there may still exist some tu-
ple with a unique value, nevertheless it provides anonymity
for the majority of the tuples. The k-anonymity problem
is NP-hard [17, 2]; further, Lodha and Thomas [15] note
that there is no efficient approximation algorithm known
that scale well for large data sets, and they also aim at pre-
serving privacy for majority. We hope to provide scalable
anonymizing algorithm by relaxing the privacy constraints.
Finally we would like to maximize the utility of published
data, and we measure utility in terms of the number of at-
tributes published (our solution can be generalized to the
case where attributes have different weights and utility is
the weighted sum of published attributes).

We summarize below the contributions of this paper.

1. We propose greedy algorithms for the (ε, δ)-separation
and distinct minimum key problems, which find small
quasi-identifiers with provable size and separation
(distinct) ratio guarantees, with space and time require-
ments sublinear inn. In particular, the space complex-
ity is O(m2) for the (ε, δ)-separation minimum key
problem, andO(m

√
mn) for (ε, δ)-distinct. The al-

gorithms are particularly useful whenn À m, which
is typical of database applications where a large table
may consist of millions of tuples, but only a relatively
small number of attributes. We also extend the algo-
rithms to find the approximate minimumβ-separation
quasi-identifiers. (Section 2)

2. We present greedy algorithms forβ-separation and
β-distinct quasi-identifier masking. The algorithms
are slow on large data sets, and we use a random
sampling technique to greatly reduce the space and
time requirements, without much sacrifice in the utility
of the published data. (Section 3)

3. We have implemented all the above algorithms and
conducted extensive experiments using real data sets.
The experimental results confirm the efficiency and
accuracy of our algorithms. (Section 4)

2 Finding Minimum Keys
In this section we consider the Minimum Key prob-

lem. First we show the problem is NP-hard (Section 2.1)
and the best approximation algorithm is a greedy algo-
rithm which givesO(lnn)-approximate solution (Section

2.2). The greedy algorithm requires multiple scans of the
table, which is expensive for large tables and inhibitive for
stream databases. To enable more efficient algorithms, we
relax the problem by allowing approximate answers, i.e. the
(ε, δ)-Separation (Distinct) Minimum Key problem. We de-
velop random sampling based algorithms with approxima-
tion guarantees and sublinear space (Section 2.3, 2.4).

2.1 Hardness Result

The Minimum Key problem is NP-Hard, which follows
easily from the NP-hardness of theMinimum Test Collec-
tion problem.

Minimum Test Collection:Given a setS of ele-
ments and a collectionC of subsets ofS, a test
collection is a subcollection ofC such that for
each pair of distinct elements there is some set
that contains exactly one of the two elements. The
Minimum Test Collection problem is to find a test
collection with the smallest cardinality.

Minimum Test Collection is equivalent to a special case
of the Minimum Key problem where each attribute is
boolean: letS be the set of tuples andC be all the attributes;
each subset inC corresponds to an attribute and contains all
the tuples whose values aretrue in this attribute, then a test
collection is equivalent to a key in the table. Minimum Test
Collection is known to be NP-hard [7], therefore the Mini-
mum Key problem is also NP-hard.

2.2 A Greedy Approximation Algorithm

The best known approximation algorithm for Minimum
Test Collection is a greedy algorithm with approximation
ratio 1 + 2 ln |S| [18], i.e. it finds a test collection with
size at most1 + 2 ln |S| times the smallest test collection
size. The algorithm can be extended to the more general
Minimum Key problem, where each attribute can be from
an arbitrary domain, not just boolean.

Before presenting the algorithm, let us consider a naive
greedy algorithm: compute the separation (or distinct) ratio
of each attribute in advance; each time pick the attribute
with the highest separation ratio in the remaining attributes,
until we get a key. The algorithm is fast and easy to
implement, but unfortunately it does not perform well when
the attributes are correlated. For example if there are
many attributes pairwise highly correlated and each has a
high separation ratio, then the optimal solution probably
includes only one of these attributes while the above greedy
algorithm is likely to pick all of them. The approximation
ratio of this algorithm can be arbitrarily bad.

A fix to the naive algorithm is to pick each time the
attribute which separates the largest number of tuple pairs
not yet separated. To prove the approximation ratio of
the algorithm, we reduce Minimum Key to the Minimum
Set Cover problem. The reduction plays an important role

in designing algorithms for finding and masking quasi-
identifiers in later sections.

Minimum Set Cover:Given a finite setS (called
the ground set) and a collectionC of subsets of
S, a set coverI is a subcollection ofC such that
every element inS belongs to at least one member
of I. Minimum Set Coverproblem asks for a set
cover with the smallest size.

Given an instance of Minimum Key withn tuples andm
attributes, we reduce it to a set cover instance as follows:
the ground setS consists of all distinct unordered pairs of
tuples (|S| = (

n
2

)
); each attributec in the table is mapped to

a subset containing all pairs of tuples separated by attribute
c. Now a collection of subsets coversS if and only if the
corresponding attributes can separate all pairs of tuples, i.e.,
those attributes form a key, therefore there is a one-to-one
map between minimum set covers and minimum keys.

Consider the example of Table 1. The ground set
of the corresponding set cover instance contains10 el-
ements where each element is a pair of tuples. The
column age is mapped to a subsetcage with 8 pairs:
{(1, 2), (1, 3), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (4, 5)}; the
columnsexis mapped to a subsetcsex with 6 pairs, andstate
7 pairs. The attribute set{age, sex} is a key; correspond-
ingly the collection{cage, csex} is a set cover.

The Greedy Set Cover Algorithmstarts with an empty
collection (of subsets) and adds subsets one by one until ev-
ery element inS has been covered; each time it chooses the
subset covering the largest number of uncovered elements.
It is well known that this greedy algorithm is a1 + ln |S|
approximation algorithm for Minimum Set Cover.

LEMMA 2.1. [12] The Greedy Set Cover Algorithm out-
puts a set cover of size at most1+ln |S| times the minimum
set cover size.

TheGreedy Minimum Key Algorithmmimics the greedy
set cover algorithm: start with an empty set of attributes and
add attributes one by one until all tuple pairs are separated;
each time chooses an attribute separating the largest number
of tuple pairs not yet separated. The running time of the
algorithm isO(m3n). It is easy to infer the approximation
ratio of this algorithm from Lemma 2.1:

THEOREM 2.1. Greedy Minimum Key Algorithm outputs a
key of size at most1 + 2 ln n times the minimum key size.

The greedy algorithms are optimal because neither prob-
lem is approximable withinc ln |S| for somec > 0 [10].
Note that this is the worst case bound and in practice the
algorithms usually find much smaller set covers or keys.

2.3 (ε, δ)-Separation Minimum Key

The greedy algorithm in the last section is optimal in
terms of approximation ratio, however, it requires multiple
scans (O(m2) scans indeed) of the table, which is expensive

for large data sets. In this and next section, we relax the
minimum key problem by allowing quasi-identifiers and
design efficient algorithms with approximate guarantees.

We use the standard (ε, δ) formulation: with probability
at least1 − δ, we allow an “error” of at mostε, i.e. we
output a quasi-identifier with separation (distinct) ratio at
least 1 − ε. The (ε, δ) Minimum Set Cover Problem is
defined similarly and requires the output set cover covering
at least a1− ε fraction of all elements.

Our algorithms are based on random sampling. We first
randomly samplek elements (tuples), and reduce the input
set cover (key) instance to a smaller set cover (key) instance
containing only the sampled elements (tuples). We then
solve the exact minimum set cover (key) problem in the
smaller instance (which is again a hard problem but has
much smaller size, so we can afford to apply the greedy
algorithms in Section 2.2), and output the solution as an
approximate solution to the original problem. The number
of samplesk is carefully chosen so that the error probability
is bounded. We present in detail the algorithm for (ε, δ)-set
cover in Section 2.3.1; the (ε, δ)-Separation Minimum Key
problem can be solved by reducing to (ε, δ) Minimum Set
Cover (Section 2.3); we discuss (ε, δ)-Distinct Minimum
Key in Section 2.4.

2.3.1 (ε, δ) Minimum Set Cover The key observation
underlying our algorithm is that to check whether a given
collection of subsets is a set cover, we only need to check
some randomly sampled elements if we allow approximate
solutions. If the collection only covers part ofS, then it
will fail the check after enough random samples. The idea
is formalized as the following lemma.

LEMMA 2.2. s1, s2, . . . , sk are k elements independently
randomly chosen fromS. If a subsetS′ satisfies|S′| <
α|S|, thenPr[si ∈ S′,∀i] < αk.

The proof is straightforward. The probability that a ran-
dom element ofS belongs toS′ is |S′|/|S| < α, therefore
the probability of allk random elements belonging toS′ is
at mostαk.

Now we combine the idea of random sample checking
with the greedy algorithm for the exact set cover. Our
Greedy Approximate Set Cover algorithmis as follows:

1. Choosek elements uniformly at random fromS (k is
defined later);

2. Reduce the problem to a smaller set cover instance: the
ground setS̃ consists of thek chosen elements; each
subset in the original problem maps to a subset which
is the intersection of̃S and the original subset;

3. Apply Greedy Set Cover Algorithm to find an exact set
cover forS̃, and output the solution as an approximate
set cover toS.

Let n be the size of the ground setS, and m be the
number of subsets. We say a collection of subsets is anα-
set coverif it covers at least anα fraction of the elements.

THEOREM 2.2. With probability1−δ, the above algorithm
with k = log 1

1−ε

2m

δ outputs a (1 − ε)-set cover whose

cardinality is at most(1 + ln log 1
1−ε

2m

δ)|I∗|, whereI∗ is
the optimal exact set cover.

Proof. Denote byS̃ the ground set of the reduced instance
(|S̃| = k); by Ĩ∗ the minimum set cover of̃S . The greedy
algorithm outputs a subcollection of subsets covering all
k elements ofS̃, denoted byĨ. By Lemma 2.1,|Ĩ| ≤
(1 + ln |S̃|)|Ĩ∗|. Note thatI∗, the minimum set cover
of the original setS, corresponds to a set cover ofS̃, so
|Ĩ∗| ≤ |I∗|, and hence|Ĩ| ≤ (1 + ln k)|I∗|.

We map Ĩ back to a subcollectionI of the original
problem. We have
|I| = |Ĩ| ≤ (1 + ln k)|I∗| = (1 + ln log 1

1−ε

2m

δ)|I∗|.
Now bound the probability thatI is not a1− ε-set cover.

By Lemma 2.2, the probability that a subcollection covering
less than a1− ε fraction ofS covers allk chosen elements
of S̃ is at most

(1− ε)k = (1− ε)
log 1

1−ε

2m

δ = (1− ε)log1−ε
δ

2m =
δ

2m
.

There are2m possible subcollections; by union bound,
the overall error probability, i.e. the probability that any
subcollection is not a (1−ε)-cover ofS but is an exact cover
of S̃, is at mostδ. Hence, with probability at least1 − δ, I
is a (1− ε)-set cover forS.

If we takeε andδ as constants, the approximation ratio is
essentiallyln m+O(1), which is smaller than1+ln n when
n À m. The space requirement of the above algorithm is
mk = O(m2) and running time isO(m4).

2.3.2 (ε, δ)-Separation Minimum Key The reduction
from Minimum Key to Minimum Set Cover preserves the
separation ratio: anα-separation quasi-identifier separates
at least anα fraction of all pairs of tuples, so its corre-
sponding subcollection is anα-set cover; and vice versa.
Therefore, we can reduce the (ε, δ)-Separation Minimum
Key problem to the (ε, δ)-Set Cover problem where|S| =
O(n2). The complete algorithm is as follows.

1. Randomly choosek = log 1
1−ε

2m

δ pairs of tuples;

2. Reduce the problem to a set cover instance where
the ground set̃S is the set of thosek pairs and each
attribute maps to a subset of thek pairs separated by
this attribute;

3. Apply Greedy Set Cover Algorithm to find an exact set
cover forS̃, and output the corresponding attributes as
a quasi-identifier to the original table.

THEOREM 2.3. With probability1−δ, the above algorithm
outputs a (1−ε)-separation quasi-identifier whose size is at
most(1 + ln log 1

1−ε

2m

δ)|I∗|, whereI∗ is the smallest key.

The proof directly follows Theorem 2.2. The approxima-
tion ratio is essentiallyln m+O(1). The space requirement
of the above algorithm ismk = O(m2), which significantly
improves upon the input sizemn.

2.4 (ε, δ)-Distinct Minimum Key

Unfortunately, the reduction to set cover does not neces-
sarily map anα-distinct quasi-identifier to anα-set cover.
As pointed out in Section 1.1, anα-distinct quasi-identifier
corresponds to anα′-separation quasi-identifier, and thus
reduces to anα′-set cover, whereα′ can be as small as
2α−α2, or as large as1− 2(1−α)

n . Therefore reducing this
problem directly to set cover gives too loose bound, and a
new algorithm is desired.

Our algorithm for finding distinct quasi-identifiers is
again based on random sampling. We reduce the input
(ε, δ)-Distinct Minimum Key instance to a smaller (exact)
Minimum Key instance by randomly choosingk tuples and
keeping allm attributes. The following lemma bounds the
probability that a subset of attributes is an (exact) key in
the sample table, but not anα-distinct quasi-identifier in the
original table.

LEMMA 2.3. Randomly choosek tuples from input tableT
to form tableT1. Letp be the probability that an (exact) key
of T1 is not anα-distinct quasi-identifier inT . Then

p < e−
(1

α
−1)k(k−1)

2n

Proof: Suppose we haven balls distributed ind = αn dis-
tinct bins. Randomly choosek balls without replacement,
and the probability that thek balls are all from different bins
is exactlyp. Letx1, x2, . . . , xd be the number of balls in the
d bins (

∑d
i=1 xi = n, xi > 0), then

p =

∑
all{i1,i2,...,ik} xi1xi2 . . . xik(

n
k

) .

p is maximized when allxis are equal, i.e. each bin has
1
α balls. Next we computep for this case. The first ball
can be from any bin; to choose the second ball, we have
n−1 choices, but it cannot be from the same bin as the first
one, so1

α − 1 of then − 1 choices are infeasible; similar
arguments hold for the remaining balls. Summing up, the
probability that allk balls are from distinct bins is

p = 1(1−
1
α
− 1

n− 1
)(1− 2(1

α
− 1)

n− 2
) . . . (1− (k − 1)(1

α
− 1)

n− (k − 1)
)

≤ e
−(

1
α
−1

n−1 +
2(1

α
−1)

n−2 +
(k−1)(1

α
−1)

n−(k−1))

< e−
(1

α
−1)k(k−1)

2n �

The Greedy (ε, δ)-Distinct Minimum Key Algorithm is
as follows:

1. Randomly choosek =
√

2(1−ε)
ε n ln 2m

δ tuples and
keep all attributes to form tableT1;

2. Apply Greedy Minimum Key Algorithm to find an
exact key inT1, and output it as a quasi-identifier to
the original table.

THEOREM 2.4. With probability1−δ, the above algorithm
outputs a (1 − ε)-distinct quasi-identifier whose size is at
most(1 + 2 ln k)|I∗|, whereI∗ is the smallest exact key.

The proof is similar to Theorem 2.2, substituting Lemma
2.2 with Lemma 2.3. k is chosen such thatp ≤ δ

2m to
guarantee that the overall error probability is less thanδ.
The approximation ratio is essentiallyln m + ln n + O(1),
which improves the1 + 2 lnn result for the exact key. The
space requirement ismk = O(m

√
mn), sublinear in the

number of tuples of the original table.

2.5 Minimum β-Separation Quasi-identifier

In previous sections, our goal is to find a small quasi-
identifier that is almost a key. Note thatε indicates
our “error tolerance”, not our goal. For (ε, δ)-Separation
Minimum Key problem, our algorithm is likely to out-
put quasi-identifiers whose separation ratios are far greater
than 1 − ε. For example, suppose the minimum key of
a given table consists of 100 attributes, while the mini-
mum0.9-separation quasi-identifier has 10 attributes, then
our (0.1, 0.01)-separation algorithm may output a quasi-
identifier that has say 98 attributes and is0.999-separation.
However, sometimes we may be interested in finding0.9-
separation quasi-identifiers which have much smaller sizes.
For this purpose we consider theMinimum β-Separation
Quasi-identifier Problem: find a quasi-identifier with the
minimum size and separation ratio at leastβ.

The Minimumβ-Separation Quasi-identifier Problem is
at least as hard as Minimum Key since the latter is a special
case whereβ = 1. So again we consider the approximate
version by relaxing the separation ratio: we require the
algorithm to output a quasi-identifier with separation ratio
at least(1− ε)β with probability at least1− δ.

We present the algorithm for approximateβ-set cover;
theβ-separation quasi-identifier problem can be reduced to
β-set cover as before.

The Greedy Minimumβ-Set Cover algorithmworks as
follows: first randomly samplek = 16

βε2 ln 2m

δ elements
from the ground setS, and construct a smaller set cover
instance defined on thek chosen elements; run the greedy
algorithm on the smaller set cover instance until get a sub-
collection covering at least(2−ε)βk/2 elements (start with
an empty subcollection; each time add to the subcollection a
subset covering the largest number of uncovered elements).

THEOREM 2.5. The Greedy Minimumβ-Set Cover algo-
rithm runs in spacemk = O(m2), and with probability at
least1 − δ, outputs a(1 − ε)β-set cover with size at most
(1 + ln (2−ε)βk

2)|I∗|, whereI∗ is the minimumβ-set cover
of S.

The proof can be found in our technical report. This
algorithm also applies to the minimum exact set cover
problem (the special case whereβ = 1), but the bound
is worse than Theorem 2.2; see our technical report for
detailed comparison.

The minimumβ-separation quasi-identifier problem can
be solved by reducing toβ-set cover problem and applying
the above greedy algorithm. Unfortunately, we cannot
provide similar algorithms forβ-distinct quasi-identifiers;
the main difficulty is that it is hard to give a tight bound
to the distinct ratio of the original table by only looking at
a small sample of tuples. The negative results on distinct
ratio estimation can be found in [5].

3 Masking Quasi-Identifiers
In this section we consider the quasi-identifier masking

problem: when we release a table, we want to publish a
subset of the attributes subject to the privacy constraint that
noβ-separation (orβ-distinct) quasi-identifier is published;
on the other hand we want to maximize the utility, which
is measured by the number of published attributes. For
each problem, we first present a greedy algorithm which
generates good results but runs slow for large tables, and
then show how to accelerate the algorithms using random
sampling. (The algorithms can be easily extended to the
case where the attributes have weights and the utility is the
sum of attribute weights.)

3.1 Masking β-Separation Quasi-identifiers

As in Section 2.2, we can reduce the problem to a set
cover type problem: let the ground setS be the set of
all pairs of tuples, and let each attribute correspond to
a subset of tuple pairs separated by this attribute, then
the problem of Maskingβ-Separation Quasi-identifier is
equivalent to finding a maximum number of subsets such
that at most aβ fraction of elements inS is covered by
the selected subsets. We refer to this problem asMaximum
Non-Set Cover problem. Unfortunately, the Maximum Non-
Set Cover problem is NP-hard by a reduction from the
Dense Subgraph problem. (See our technical report for the
hardness proof.)

We propose a greedy heuristic for maskingβ-separation
quasi-identifiers: start with an empty set of attributes, and
add attributes to the set one by one as long as the separation
ratio is belowβ; each time pick the attribute separating the
least number of tuple pairs not yet separated.

The algorithm produces a subset of attributes satisfying
the privacy constraint and with good utility in practice,

however it suffers from the same efficiency issue as the
greedy algorithm in Section 2.2: it requiresO(m2) scans
of the table and is thus slow for large data sets. We again
use random sampling technique to accelerate the algorithm:
the following lemma gives a necessary condition for aβ-
separation quasi-identifier in the sample table (with high
probability), so only looking at the sample table and pruning
all attribute sets satisfying the necessary condition will
guarantee the privacy constraint. The proof of the lemma
is omit for lack of space.

LEMMA 3.1. Randomly samplek pairs of tuples, then aβ-
separation quasi-identifier separates at leastαβ of the k
pairs, with probability at least1− e−(1−α)2βk/2.

The Greedy Approximateβ-Separation Masking Algo-
rithm is as follows:

1. Randomly choosek pairs of tuples;

2. Let β′ = (1 −
√

2 ln(2m/δ)
βk)β. Run the following

greedy algorithm on the selected pairs: start with an
empty setC of attributes, and add attributes to the set
C one by one as long as the number of separated pairs
is belowβ′k; each time pick the attribute separating
the least number of tuple pairs not yet separated;

3. Publish the set of attributesC.

By the nature of the algorithm the published attributes
C do not contain quasi-identifiers with separation greater
thanβ′ in the sample pairs; by Lemma 3.1, this ensures that
with probability at least1 − 2me−(1−β′/β)2βk/2 = 1 − δ,
C do not contain anyβ-separation quasi-identifier in the
original table. Therefore the attributes published by the
above algorithm satisfies the privacy constraint.

THEOREM 3.1. With probability at least1 − δ, the above
algorithm outputs an attribute set with separation ratio at
mostβ.

We may over-prune because the condition in Lemma 3.1
is not a sufficient condition, which means we may lose some
utility. The parameterk in the algorithm offers a tradeoff
between the time/space complexity and the utility. Obvi-
ously both the running time and the space increase linearly
with k; on the other hand, the utility (the number of pub-
lished attributes) also increases withk because the pruning
condition becomes tighter ask increases. Our experiment
results show that the algorithm is able to dramatically re-
duce the running time and space complexity, without much
sacrifice in the utility (see Section 4).

3.2 Masking β-Distinct Quasi-identifiers

For maskingβ-distinct quasi-identifiers, we can use
a similar greedy heuristic: start with an empty set of
attributes, and each time pick the attribute adding the least

number of distinct values, as long as the distinct ratio is
belowβ. And similarly we can use a sample table to trade
off utility for efficiency.

1. Randomly choosek tuples and keep all the columns to
form a sample tableT1;

2. Let β′ = (1 −
√

2 ln(2m/δ)
βk)β. Run the following

greedy algorithm onT1: start with an empty setC of
attributes, and add attributes to the setC one by one
as long as the distinct ratio is belowβ′; each time pick
the attribute adding the least number of distinct values;

3. Publish the set of attributesC.

Lemma 3.2 and Theorem 3.2 state the privacy guarantee
of the above algorithm.

LEMMA 3.2. Randomly samplek tuples from the input
table T into a small tableT1 (k ¿ n, wheren is the
number of tuples inT). A β-distinct quasi-identifier ofT
is an αβ-distinct quasi-identifier ofT1 with probability at
least1− e−(1−α)2βk/2.

Proof. By the definition ofβ-distinct quasi-identifier, the
tuples has at leastβn distinct values projected on the quasi-
identifier. Take (any) one tuple from each distinct value,
and call those representing tuples “good tuples”. There are
at leastβn good tuples inT .

Let k1 be the number of distinct values inT1 projected
on the quasi-identifier, andk′ be the number of good tuples
in T1. We havek1 ≥ k′ because all good tuples are distinct.
(The probability that any good tuple is chosen more than
once is negligible whenk ¿ n.) Next we bound the
probability Pr[k′ ≤ αβk]. Since each random tuple has
a probability at leastβ of being good, and each sample are
chosen independently, we can use Chernoff bound (see [19]
Ch. 4) and get

Pr[k′ ≤ αβk] ≤ e−(1−α)2βk/2

Sincek1 ≥ k′, we have

Pr[k1 ≤ αβk] ≤ Pr[k′ ≤ αβk] ≤ e−(1−α)2βk/2

Hence with probability at least1−e−(1−α)2βk/2, the quasi-
identifier has distinct ratio at leastαβ in T1.

THEOREM 3.2. With probability at least1−δ, the attribute
set published by the algorithm has distinct ratio at mostβ.

4 Experiments
We have implemented all algorithms for finding and

masking quasi-identifiers, and conducted extensive exper-
iments using real data sets. All experiments were run on a
2.4GHz Pentium PC with1GB memory.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 50 100 150 200 250
 0

 5

 10

 15

 20

 25

 30

 35

 40
R

un
ni

ng
 T

im
e

(s
ec

on
ds

)

U
til

ity
 (

pu

bl
is

he
d

at
tr

ib
ut

es
)

Sample Size k (*1000)

Running time
Utility

(a) Masking0.5-distinct quasi-identifiers

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120 140 160 180 200
 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

U
til

ity
 (

pu

bl
is

he
d

at
tr

ib
ut

es
)

Sample Size k (*1000)

Running time
Utility

(b) Masking0.8-separation quasi-identifiers

Figure 1. Performance of masking quasi-identifier
algorithms with different sample sizes on table
california. Figures (a) and (b) show how the running
time (the left y axis) and the utility (the righty
axis) change with the sample size (the parameterk)
in Greedy Approximate algorithms for masking0.5-
distinct and0.8-separation quasi-identifiers.

4.1 Data Sets

One source of data sets is the census microdata “Public-
Use Microdata Samples (PUMS)” [1], provided by US
Census Bureau. We gather the 5 percent samples of Census
2000 data from all states and put into a table “census”.
To study the performance of our algorithms on tables with
different sizes, we also extract 1 percent samples of state-
level data and select4 states with different population sizes
– Idaho, Washington, Texas and California. We extract41
attributes including age, sex, race, education level, salary
etc. We only use adult records (age≥ 20) because many
children are indistinguishable even with all41 attributes.
The tablecensushas 10 million distinct adults, and the
sizes ofIdaho, Washington, TexasandCalifornia are 8867,
41784, 141130 and 233687 respectively.

We also use two data setsadult andcovtypeprovided by
UCI Machine Learning Repository [21]. Thecovtypetable

has581012 rows and54 attributes. We use 14 attributes
of adult including age, education level, marital status; the
number of records inadult is around30000.

4.2 Masking Quasi-identifiers

The greedy approximate algorithms for masking quasi-
identifiers are randomized algorithms that guarantee to sat-
isfy the privacy constraints with probability1 − δ. We set
δ = 0.01, and the privacy constraint are satisfied in all ex-
periments, which confirms the accuracy of our algorithms.

Figure 1 shows the tradeoff between the running time
and the utility (the number of attributes published), using
the california data set. Both the running time and the
utility decrease as the sample sizek decreases; however,
the running time decreases linearly withk while the utility
degrades very slowly. For example, running the greedy
algorithm for masking0.5-distinct quasi-identifiers on the
entire table (without random sampling) takes 80 minutes
and publishes 34 attributes (the rightmost point in Figure a);
using a sample of30000 tuples the greedy algorithm takes
only 10 minutes and outputs 32 attributes. Figure b shows
the impact ofk on the masking separation quasi-identifier
algorithm. To run the greedy algorithm for masking0.8-
separation quasi-identifier on the entire table takes 728
seconds (not shown in the figure); using a sample of50000
pairs offers the same utility and only takes 30 seconds.
The results show that our random sampling technique can
greatly improve time and space complexity (space is also
linear ink), with only minor sacrifice on the utility.

Data Sets
Greedy Greedy Approximate

time utility time utility
adult 36s 12 - -
covtype - - 2000s 46
idaho 172s 33 - -
wa 880s 34 620s 33
texas 3017s 35 630s 33
ca 4628s 34 606s 32
census - - 755s 30

Table 2. Algorithms for masking 0.5-distinct
quasi-identifiers. The column “Greedy” represents
the greedy algorithm on the entire table; the column
“Greedy Approximate” represents running greedy al-
gorithm on a random sample of30000 tuples. We
compare the running time and the utility (the num-
ber of published attributes) of the two algorithms on
different data sets. The results of Greedy oncensus
andcovtypeare not available because the algorithm
does not terminate in 10 hours; the results of Greedy
Approximate onadultandIdahoare not available be-
cause the input tuple number is less than30000.

Data Sets
Greedy Greedy Approximate

time utility time utility
adult 19s 5 2s 5
covtype 2 hours 38 104s 37
idaho 147s 24 30s 23
wa 646s 23 35s 23
texas 1149s 19 34s 19
ca 728s 16 30s 16
census - - 170s 17

Table 3. Algorithms for masking 0.8-separation
quasi-identifiers. The column “Greedy” represents
the greedy algorithm on the entire table, and the
column “Greedy Approximate” represents running
greedy algorithm on a random sample of50000 pairs
of tuples. We compare the running time and the utility
of the two algorithms on different data sets. The
result of Greedy oncensusis unavailable because the
algorithm does not terminate in 10 hours.

Table 2 and 3 compare the running time and the utility
(the number of published attributes) of running the greedy
algorithm on the entire table versus on a random sample
(we use a sample of30000 tuples in Table 2 and a sample
of 50000 pairs of tuples in Table 3). Results on all data
sets confirm that the random sampling technique is able to
reduce the running time dramatically especially for large
tables, with only minor impact on the utility. For the largest
data setcensus, running the greedy algorithm on the entire
table does not terminate in 10 hours, while with random
sampling it only takes no more than 13 minutes for masking
0.5-distinct quasi-identifier and 3 minutes for masking0.8-
separation quasi-identifier.

4.3 Approximate Minimum Key Algorithms

Finally we examine the greedy algorithms for finding
minimum key and (ε, δ)-separation or -distinct minimum
key in Section 2. Table 4 shows the experimental results
of the Greedy Minimum Key, Greedy(0.1, 0.01)-Distinct
Minimum Key, and Greedy(0.001, 0.01)-Separation Mini-
mum Key algorithms on different data sets.

The Greedy Minimum Key algorithm (applying greedy
algorithm directly on the entire table) works well for small
data sets such asadult, idaho, but becomes unaffordable
as the data size increases. The approximate algorithms for
separation or distinct minimum key are much faster. For the
tableCalifornia, the greedy minimum key algorithm takes
almost one hour, while the greedy distinct algorithm takes
2.5 minutes, and greedy separation algorithm merely sec-
onds; for the largest tablecensus, the greedy minimum key
algorithm takes more than 10 hours, while the approximate
algorithms take no more than 15 minutes. The space and

time requirements of our approximate minimum key algo-
rithms are sublinear in the number of input tuples, and we
expect the algorithms to scale well on even larger data sets.

We measure the distinct and separation ratios of the
output quasi-identifiers, and find the ratios always within
errorε. This confirms the accuracy of our algorithms.

Theorem 2.3 and 2.4 provide the theoretical bounds on
the size of the quasi-identifiers found by our algorithms
(ln m or ln mn times the minimum key size). Those
bounds are worst case bounds, and in practice we usually
get much smaller quasi-identifiers. For example, we find
that the minimum key size ofadult is 13 by exhaustive
search, and the greedy algorithm for both distinct and
separation minimum key find quasi-identifiers no larger
than the minimum key. (For other data sets in Table 4,
computing the minimum key exactly takes prohibitively
long time, so we are not able to verify the approximation
ratio of our algorithms.) We also generate synthetic tables
with known minimum key sizes, then apply the greedy
distinct minimum key algorithm (withε = 0.1) on those
tables and are always able to find quasi-identifiers no larger
than the minimum key size. Those experiments show
that in practice our approximate minimum key algorithms
usually perform much better than the theoretical worst case
bounds, and are often able to find quasi-identifiers with high
separation (distinct) ratio and size close to the minimum.

5 Related Work

The implication of quasi-identifiers to privacy is first
formally studied by Sweeney, who also proposed the k-
anonymity framework as a solution to this problem [25, 24].
Afterwards there is numerous work which studies the com-
plexity of this problem [17, 2], designs and implements
algorithms to achieve k-anonymity [23, 4], or extends
upon the framework [16, 14]. Our algorithm for mask-
ing quasi-identifiers can be viewed as an approximation to
k-anonymity where the suppression must be conducted at
the attribute level. Also it is an “on average” k-anonymity
because it does not provide perfect anonymity for every
individual but does so for the majority; a similar idea is
used in [15]. On the other side, our algorithms for find-
ing keys/quasi-identifiers attempt to attack the privacy of
published data from the adversary’s point of view, when the
publish data is not k-anonymized. To the best of our knowl-
edge, there is no existing work addressing this problem.

Our algorithms exploit the idea of using random samples
to trade off between accuracy and space complexity, and can
be viewed as streaming algorithms. Streaming algorithms
emerged as a hot research topic in the last decade; see [20]
for a survey of this area.

Keys are special cases of functional dependencies, and
quasi-identifiers are a special case of approximate func-
tional dependency. Our definitions of separation and dis-

Data Sets
Greedy distinct Greedy (ε = 0.1) separation Greedy (ε = 0.001)

time key size time key size distinct ratio time key size separation ratio
adult 35.5s 13 8.8s 13 1.0 3.11s 5 0.99995
covtype 964s 5 78.1s 3 0.9997 27.1s 2 0.999996
idaho 50.4s 14 15.2s 8 0.997 1.07s 3 0.9999
wa 490s 22 34.1s 8 0.995 7.14s 3 0.99993
texas 2032s 29 120s 14 0.995 13.2s 4 0.99995
ca 3307s 29 145s 13 0.994 16.3s 4 0.99998
census - - 808s 17 0.993 120s 3 0.99998

Table 4. Running time and output key sizes of the Greedy Minimum Key, Greedy(0.1, 0.01)-Distinct Minimum
Key, and Greedy (0.001, 0.01)-Separation Minimum Key algorithms. The result of Greedy Minimum Key on
censusis not available because the algorithm does not terminate in 10 hours.

tinct ratios for quasi-identifiers are adapted from the mea-
sures for quantifying approximations of functional depen-
dencies proposed in [13, 22].

6 Conclusions and Future Work
In this paper, we designed efficient algorithms for dis-

covering and masking quasi-identifiers in large tables.
We developed efficient algorithms that find small quasi-
identifiers with provable size and separation/distinct ratio
guarantees, with space and time complexity sublinear in the
number of input tuples. We also designed efficient algo-
rithms for masking quasi-identifiers in large tables.

All algorithms in the paper can be extended to the
weighted case, where each attribute is associated with a
weight and the size/utility of a set of attributes is defined as
the sum of their weights. The idea of using random samples
to trade off between accuracy and space complexity can
potentially be explored in other problems on large tables.

References

[1] Public-use microdata samples (pums).
http://www.census.gov/main/www/pums.html.

[2] G. Aggarwal, T. Feder, K. Kenthapadi, R. Motwani, R. Pan-
igrahy, D.Thomas, and A. Zhu. Anonymizing tables. In
ICDT, 2005.

[3] R. Ananthakrishna, S. Chaudhuri, and V. Ganti. Eliminating
fuzzy duplicates in data warehouses. InVLDB, 2002.

[4] R. Bayardo and R. Agrawal. Data privacy through optimal
k-anonymization. InICDE, 2005.

[5] M. Charikar, S. Chaudhuri, R. Motwani, and V. Narasayya.
Towards estimation error guarantees for distinct values. In
PODS, 2000.

[6] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani. Robust
and efficient fuzzy match for online data cleaning. In
SIGMOD, 2003.

[7] M. R. Garey and D. S. Johnson. Computers and intractabil-
ity. 1979.

[8] C. Giannella and E. Robertson. On approximation measures
for functional dependencies.Information Systems, 2004.

[9] C. M. Giannella, M. M. Dalkilic, D. P. Groth, and E. L.
Robertson. Using horizontal-vertical decompositions to im-
prove query evaluation.LNCS 2405.

[10] B. Halldorsson, M. Halldorsson, and R. Ravi. Approxima-
bility of the minimum test collection problem. InESA, 2001.

[11] Y. Huhtala, J. Karkkainen, P. Porkka, and H. Toivonen.
Discovery of functional and approximate dependencies using
partitions. InICDE, 1998.

[12] D. Johnson. Approximation algorithms for combinatorial
problems. InJ. Comput. System Sci., 1974.

[13] J. Kivinen and H. Mannila. Approximate dependency infer-
ence from relations. InTheoretical Computer Science, 1995.

[14] N. Li, T. Li, and S. Venkatasubramanian. t-closeness:
Privacy beyond k-anonymity and l-diversity. InICDE, 2007.

[15] S. Lodha and D. Thomas. Probabilistic anonymity.Techni-
cal Report.

[16] Machanavajjhala, J. Gehrke, and D. Kifer. l-diversity:
privacy beyond k-anonymity. InICDE, 2006.

[17] A. Meyerson and R. Williams. On the complexity of optimal
k-anonymity. InPODS, 2004.

[18] B. Moret and H. Shapiro. On minimizing a set of tests. In
SIAM Journal on Scientific and Statistical Computing, 1985.

[19] R. Motwani and P. Raghavan. Randomized algorithm. 1995.
[20] S. Muthukrishnan. Data streams: Algorithms and applica-

tions. 2005.
[21] D. Newman, S. Hettich, C. Blake, and C. Merz.

Uci repository of machine learning databases.
http://www.ics.uci.edu/∼mlearn/MLRepository.html.

[22] B. Pfahringer and S. Kramer. Compression-based evaluation
of partial determinations. InSIGKDD, 1995.

[23] P. Samarati and L. Sweeney. Generalizing data to provide
anonymity when disclosing information. InPODS, 1998.

[24] L. Sweeney. Achieving k-anonymity privacy protection us-
ing generalization and suppression. InInternational Journal
on Uncertainty, Fuzziness and Knowledge-based Systems,
2002.

[25] L. Sweeney. k-anonymity: a model for protecting pri-
vacy. InInternational Journal on Uncertainty, Fuzziness and
Knowledge-based Systems, 2002.

