Efficient Algorithms for Masking and Finding Quasi-ldentifiers *

Rajeev Motwani Ying Xu ¥

Abstract such linking attacks via quasi-identifiers, the concept of k-
anonymity was proposed [25, 24] and many algorithms for
A quasi-identifier refers to a subset of attributes that k-anonymity have been developed [23, 2, 4]. In this paper
can uniquely identify most tuples in a table. Incautious we consider the problem of masking quasi-identifiers: we
publication of quasi-identifiers will lead to privacy leakage. want to publish a subset of attributes (we either publish the
In this paper we consider the problems of finding and exact value of every tuple on an attribute, or not publish
masking quasi-identifiers. Both problems are provably hard the attribute at all), so that no quasi-identifier is revealed
with severe time and space requirements. We focus orin the published data. This can be viewed as a variant of
designing efficient approximation algorithms for large data k-anonymity where the suppression is only allowed at the
sets. attribute level. While this approach is admittedly too restric-
We first propose two natural measures for quantifying tive in some applications, there are two reasons we consider
guasi-identifiers: distinct ratio and separation ratio. We it. First, the traditional tuple-level suppression may distort
develop efficient algorithms that find small quasi-identifiers the distribution of the original data and the association be-
with provable size and separation/distinct ratio guarantees, tween attributes, so sometimes it might be desirable to pub-
with space and time requirements sublinear in the numberlish fewer attributes with complete and accurate informa-
of tuples. We also propose efficient algorithms for masking tion. Second, as noted in [15], the traditional k-anonymity
guasi-identifiers, where we use a random sampling tech-algorithms are expensive and do not scale well to large data
nigue to greatly reduce the space and time requirements,sets; by restricting the suppression to a coarser level we are
without much sacrifice in the quality of the results. Our al- able to design more efficient algorithms.
gorithms for masking and finding quasi-identifiers naturally =~ We also consider the problem of finding small keys
apply to stream databases. Extensive experimental resultsand quasi-identifiers, which can be used by adversaries to
on real world data sets confirm efficiency and accuracy of perform linking attacks. When a table which is not properly
our algorithms. anonymized is published, an adversary would be interested
in finding keys or quasi-identifiers in the table so that once
he collects other persons’ information on those attributes,
he will be able to link the records to real world entities.
A quasi-identifier (also called a semi-key) is a subset Collecting information on each attribute incurs certain cost
of attributes which uniquely identifies most entities in the to the adversary (for example, he needs to look up yellow
real world or tuples in a table. A well-known example is pages to collect the area code of phone numbers, to get
that the combination of gender, date of birth, and zipcode party affiliation information from the voter list, etc), so the
can uniquely determine abo8% of the population in  adversary wishes to find a subset of attributes with a small
United States. Quasi-identifiers play an important role in size or weight that is a key or almost a key to minimize the
many aspects of data management, including privacy, dataattack cost.
cleaning, and query optimization. Finding quasi-identifiers also has other important appli-
As pointed out in the seminal paper of Sweeney [25], cations besides privacy. One application is data cleaning.
publishing data with quasi-identifiers leaves open attacksintegration of heterogeneous databases sometimes causes
that combine the data with other publicly available in- the same real-world entity to be represented by multiple
formation to identify represented individuals. To avoid records in the integrated database due to spelling mistakes,
inconsistent conventions, etc. A critical task in data clean-
~FP3DM'08, April 26, 2008, Atlanta, Georgia, USA. ing is to identify and remove such fuzzy duplicates [3, 6].
fStanford University. rajeev@cs.stanford.edu. Supported in part by We can estimate the ratio of fuzzy duplicates, for example

NSF Grant ITR-0331640, and a grant from Media-X. . . et
fstanford University. xuying@cs.stanford.edu. Supported in part by by checklng Some samples manua”y or plOttlng the distri

Stanford Graduate Fellowship and NSF Grant ITR-0331640. bution of pairwise similarity; now if we can find a quasi-

1 Introduction



identifier whose “quasiness” is similar to the fuzzy dupli-
cate ratio, then those tuples which collide on the quasi-
identifier are likely to be fuzzy duplicates. Finally, quasi-
identifiers are a special case of approximate functional de-
pendency [13, 22], and their automatic discovery is valuable
to query optimization and indexing [9].

In this paper, we study the problems of finding and
masking quasi-identifiers in given tables. Both problems are
provably hard with severe time and space requirements, so
we focus on designing efficient approximation algorithms

for large data sets. First we define measures for quantifying  Taple 1. An example table. The first column labels

the “quasiness” of quasi-identifiers. We propose two natural 1 tuples for future references and is not part of the
measures — separation ratio and distinct ratio. table.

Then we consider the problem of finding the minimum
key. The problem is NP-hard and the best-known approxi- e illustrate the notions with an example (Table 1). The
mation algorithm is a greedy algorithm with approximation example table ha8 attributes. The attributageis a 0.6-
ratio O(Inn) (n is the number of tuples); however, even distinct quasi-identifier because it hagistinct values in
this greedy algorithm requires multiple scans of the table, a total of 5 tuples; it is a0.8-separation quasi-identifier
which are expensive for large databases that cannot resid@ecause8 out of 10 tuple pairs can be separated age
in main memory and prohibitive for stream databases. To {sex, state} is 0.8-distinct andd.9-separation.
enable more efficient algorithms, we sacrifice accuracy by  The separation ratio of a quasi-identifier is always larger
allowing approximate answers (quasi-identifiers). We de- than its distinct ratio, but there is no one-to-one mapping.
velop efficient algorithms that find small quasi-identifiers |et us consider &.5-distinct quasi-identifier in a table of
with provable size and separation/distinct ratio guarantees,100 tuples. One possible scenario is that projected on the
with both space and time complexities sublinear in the num- quasi-identifier there ar&0 distinct values and each value
ber of input tuples. corresponds t@ tuples, so its separation ratiolis- o< ~
Fipglly we present efficient algorithmg for ma;king 0.99; another possible scenario is that 4% of tﬁe 50
quasi-identifiers. We use a random sampling technique todistinct values there is only one tuple for each value, and all

greatly reduce the space and time requirements, Wlthoutthe other51 tuples have the same value, and then this quasi-

sac(glflcw;g m.tthh |r}the qua';l_llty of t:fe rg_sults._ . . identifier is0.75-separation. Indeed, am-distinct quasi-
uraigonthms for masking and finding minimum quast- 40 ytifier can be am’-separation quasi-identifier whené

identifiers naturally apply to stream databases: we onl _
y apply ygan be as small @&y — o2, or as large a$ — 20=a) Both

require one pass over the table to get a random sample of th distinct ratio and separation ratio are ve na?ural measures
tuples and the space complexity is sublinear in the number P y

of input tuples (at the cost of only providing approximate forqua_S|—|dent|f|ers and haye d|fferent.appl|cat|ons as noted
solutions). in the literature on approximate functional dependency. In

this paper we study quasi-identifiers using both measures.

1.1 Definitions and Overview of Results Given a table with tuples andn attributes, we consider
A keyis a subset of attributes that uniquely identifies the following problems. Thsizeof a key (quasi-identifier)

each tuple in a table. Ayuasi-identifieris a subset of  refers to the number of attributes in the key.

attributes that can distinguish almost all tuples. We propose Minimum Key Problemifind a key of the mini-

two natural measures for quantifying a quasi-identifier. mum size. This problem is provably hard so we

Since keys are a special case of functional dependencies,  ziso consider its relaxed version:

our measures for quasi-identifiers also conform with the

measures of approximate functional dependencies proposed

in earlier work [13, 22, 11, 8].

An «-separation quasi-identifiers a subset of
attributes which separates at leastaifraction
of all possible tuple pairs.

age | sex state
20 | Female| CA
30 | Female| CA
40 | Female| TX
20 | Male NY
40 | Male CA

abrowNPE

(¢, 9)-Separation or -Distinct Minimum Key Prob-
lem: look for a quasi-identifier with a small size
such that, with probability at lea$t— §, the out-
put quasi-identifier has separation or distinct ratio
at leastl — e.

(1) An a-distinct quasi-identifieis a subset of at-
tributes which becomes a key in the table remain-
ing after the removal of at mostla— « fraction

: Ve (-Separation or -Distinct Quasi-identifier Mask-
of tuples in the original table.

ing Problem: delete a minimum number of at-

(2) We say that a subset of attributesparatesa
pair of tuplesz andy if x andy have different

values on at least one attribute in the subset.

tributes such that there is no quasi-identifier with
separation or distinct ratio greater thann the
remaining attributes.



In the example of Table age, state} is a minimum 2.2). The greedy algorithm requires multiple scans of the
key, with size2; the optimal solution t@.8-distinct quasi-  table, which is expensive for large tables and inhibitive for
identifier masking problem igsez, state}; the optimal stream databases. To enable more efficient algorithms, we
solution to0.8-separation quasi-identifier masking problem relax the problem by allowing approximate answers, i.e. the
is {age}, {sex} or {state}, all of sizel. (e, 6)-Separation (Distinct) Minimum Key problem. We de-

The result data after quasi-identifier masking can be velop random sampling based algorithms with approxima-
viewed as an approximation to k-anonymity. For example, tion guarantees and sublinear space (Section 2.3, 2.4).
after0.2-distinct quasi-identifier masking, the result data is 21
approximatelys-anonymous, in the sense that on average
each tuple is indistinguishable from another 4 tuples. Itdoes ~ The Minimum Key problem is NP-Hard, which follows
not provide perfect privacy as there may still exist some tu- €asily from the NP-hardness of tidinimum Test Collec-
ple with a unique value, nevertheless it provides anonymity tion problem.

Hardness Result

for the majority of the tuples. The k-anonymity problem Minimum Test CollectionGiven a setS of ele-

is NP-hard [17, 2]; further, Lodha and Thomas [15] note ments and a collectioi’ of subsets ofS, a test
that there is no efficient approximation algorithm known collection is a subcollection of’ such that for
that scale well for large data sets, and they also aim at pre- 5. pair of distinct elements there is some set
serving privacy for majority. We hope to provide scalable that contains exactly one of the two elements. The
anonymizing algorithm by relaxing the privacy constraints. Minimum Test Collection problem is to find a test
Finally we would like to maximize the utility of published collection with the smallest cardinality.

data, and we measure utility in terms of the number of at- o o . _
tributes published (our solution can be generalized to the Minimum Test Collection is equivalent to a special case

case where attributes have different weights and utility is of the Minimum Key problem where each attribute is
the weighted sum of published attributes). boolean: letS be the set of tuples and be all the attributes;

We summarize below the contributions of this paper. each subset it corresponds to an attribute and contains all
the tuples whose values aree in this attribute, then a test
collection is equivalent to a key in the table. Minimum Test
Collection is known to be NP-hard [7], therefore the Mini-
mum Key problem is also NP-hard.

1. We propose greedy algorithms for thed)-separation
and distinct minimum key problems, which find small
guasi-identifiers with provable size and separation
(distinct) ratio guarantees, with space and time require-
ments sublinear in. In particular, the space complex- 2.2 A Greedy Approximation Algorithm
ity is O(m?) for the (, d)-separation minimum key
problem, andO(m+/mn) for (e, d)-distinct. The al-
gorithms are particularly useful when>> m, which
is typical of database applications where a large table
may consist of millions of tuples, but only a relatively
small number of attributes. We also extend the algo-
rithms to find the approximate minimugseparation an arbitrary domain, not just boolean.

quasi-identifiers. (Section ?) ) Before presenting the algorithm, let us consider a naive
2. We present greedy algorithms fgt-separation and  greedy algorithm: compute the separation (or distinct) ratio
f-distinct quasi-identifier masking. The algorithms o each attribute in advance; each time pick the attribute
are slow on large data sets, and we use a randomyth the highest separation ratio in the remaining attributes,
sampling technique to greatly reduce the space andntjj we get a key. The algorithm is fast and easy to
time requirements, without much sacrifice in the utility jmplement, but unfortunately it does not perform well when
of the published data. (Section 3) the attributes are correlated. For example if there are
3. We have implemented all the above algorithms and many attributes pairwise highly correlated and each has a
conducted extensive experiments using real data setshigh separation ratio, then the optimal solution probably
The experimental results confirm the efficiency and includes only one of these attributes while the above greedy
accuracy of our algorithms. (Section 4) algorithm is likely to pick all of them. The approximation
s . ratio of this algorithm can be arbitrarily bad.
2 Finding Minimum Keys A fix to the naive algorithm is to pick each time the
In this section we consider the Minimum Key prob- attribute which separates the largest number of tuple pairs
lem. First we show the problem is NP-hard (Section 2.1) not yet separated. To prove the approximation ratio of
and the best approximation algorithm is a greedy algo- the algorithm, we reduce Minimum Key to the Minimum
rithm which givesO(In n)-approximate solution (Section Set Cover problem. The reduction plays an important role

The best known approximation algorithm for Minimum
Test Collection is a greedy algorithm with approximation
ratio 1 + 21n|S| [18], i.e. it finds a test collection with
size at mostl + 21n|S| times the smallest test collection
size. The algorithm can be extended to the more general
Minimum Key problem, where each attribute can be from



in designing algorithms for finding and masking quasi- for large data sets. In this and next section, we relax the

identifiers in later sections. minimum key problem by allowing quasi-identifiers and
Minimum Set CoverGiven a finite sefS (called design efficient algorithms with app_roximgte guaran?e_es.
the ground set and a collectiorC' of subsets of We use the standard, ¢) formulation: with pr(_)bablllty
S, aset coverl is a subcollection of’ such that at leastl — 4, we allow an “error” of at most, i.e. we
every element ir$ belongs to at least one member output a quasi-identifier with separation (distinct) ratio at

leastl — e. The , ) Minimum Set Cover Problem is
defined similarly and requires the output set cover covering
at least a — e fraction of all elements.

Our algorithms are based on random sampling. We first
randomly samplé elements (tuples), and reduce the input

of I. Minimum Set Coveproblem asks for a set
cover with the smallest size.

Given an instance of Minimum Key with tuples andn
attributes, we reduce it to a set cover instance as follows:

thelground sef ?O”S'ﬁts of all d!St'?‘Ct un?rQered pairs of - ot cover (key) instance to a smaller set cover (key) instance
tuples (S| = (3)); each attribute in the table is mapped to containing only the sampled elements (tuples). We then
a subset containing all pairs of tuples separated by attnbuteso'\/e the exact minimum set cover (key) problem in the

c. Now a cgllectmp of subsets covessif and. only if the . smaller instance (which is again a hard problem but has
corresponding attributes can separate all pairs of tuples, .8.much smaller size, so we can afford to apply the greedy

those attributes fqrm a key, therefore the're. is a one'to'onealgorithms in Section 2.2), and output the solution as an
map between minimum set covers and minimum keys.

) approximate solution to the original problem. The number
Consider the example of Table 1. The ground set usampleg; is carefully chosen so that the error probability
of the corresponding set cover mstanf:e contaiifisel- is bounded. We present in detail the algorithm foi§-set
gcr)rl]jrrrﬁ a\llge]eirse rﬁgggeglig]e;tsfbsaeifalrw?fh t%plszi.rs The over in Section 2.3.1; the: (5)-Separation Minimum Key
ge ' roblem can be solved by reducin Minimum Set
{(1,2),(1,3), (1,5), (2,3), (2,4), (2,5), (3,4), (4,5)}; the ¢ ¢ g0

X / , Cover (Section 2.3); we discuss, §)-Distinct Minimum
columnsexis mapped to a subsel., with 6 pairs, andstate Key in Section 2.4.
7 pairs. The attribute seftage, sex} is a key; correspond- B _
ingly the collection{c, e, ez } iS @ set cover. 2.3.1 @.,5) M|n|mum Se_t Cover The key observathn

The Greedy Set Cover Algorithrstarts with an empty underlying our algorithm is that to check whether a given

collection (of subsets) and adds subsets one by one until eveollection of subsets is a set cover, we only need to check
ery element irS has been covered; each time it chooses the S0me randomly sampled elements if we allow approximate
subset covering the largest number of uncovered elementssSolutions. If the collection only covers part 6f then it
It is well known that this greedy a|g0rithm isla+ In |S‘ will fail the check after enough random Samples. The idea
approximation algorithm for Minimum Set Cover. is formalized as the following lemma.

LEMMA 2.1. [12] The Greedy Set Cover Algorithm out-
puts a set cover of size at mdst1n |.S| times the minimum
set cover size.

LEMMA 2.2. s1,82,...,5; are k elements independently
randomly chosen fron$. If a subsetS’ satisfies|.S’| <
alS|, thenPr[s; € S,Vi] < o*.

The Greedy Minimum Key Algorithmimics the greedy
set cover algorithm: start with an empty set of attributes and  The proof is straightforward. The probability that a ran-
add attributes one by one until all tuple pairs are separatedidom element o5 belongs taS’ is |S’|/|S| < «, therefore
each time chooses an attribute separating the largest numbehe probability of allk random elements belonging & is
of tuple pairs not yet separated. The running time of the at mosta*.

algorithm isO(m3n). It is easy to infer the approximation Now we combine the idea of random sample checking
ratio of this algorithm from Lemma 2.1: with the greedy algorithm for the exact set cover. Our
THEOREM 2.1. Greedy Minimum Key Algorithm outputs a  Greedy Approximate Set Cover algoritisras follows:
key of size at modt+ 2Inn times the minimum key size. 1. Choosek elements uniformly at random fro (k is

The greedy algorithms are optimal because neither prob-  defined later);
lem is approximable withir:In [S| for somec > 0 [10]. 2. Reduce the problem to a smaller set cover instance: the
Note that this is the worst case bound and in practice the ground setS consists of the: chosen elements; each
algorithms usually find much smaller set covers or keys. subset in the original problem maps to a subset which
2.3 (e, §)-Separation Minimum Key is the intersection o and the original subset;

The greedy algorithm in the last section is optimal in 3. Apply Greedy Set Cover Algorithm to find an exact set
terms of approximation ratio, however, it requires multiple cover forS, and output the solution as an approximate
scans Q(m?) scans indeed) of the table, which is expensive set cover toS.



Let n be the size of the ground sét, andm be the
number of subsets. We say a collection of subsets is-an
set covelif it covers at least an fraction of the elements.

THEOREM 2.2. With probabilityl — 4§, the above algorithm
with £ = logi =~ outputs a { — ¢)-set cover whose
cardinality is at mos{(1 + Inlog_1_ %)
the optimal exact set cover.

)|I*|, whereI* is

Proof. Denote byS the ground set of the reduced instance
(IS| = k); by I* the minimum set cover of . The greedy
algorithm outputs a subcollection of subsets covering all
k elements ofS, denoted byl. By Lemma 2.1,|I| <

(1 + In|S|)|I*|. Note thatl*, the minimum set cover
of the original setS, corresponds to a set cover 8f so
|I*| < |I*|, and hencel| < (1 + Ink)|I*|.

We map I back to a subcollectiod of the original
problem. We have

1| = [I] < (1 +Ink)[I*| = (1+Inlog_+_ 2)[I7],

Now bound the probability thatis not al — e-set cover.
By Lemma 2.2, the probability that a subcollection covering
less than d — e fraction of S covers allk chosen elements
of S is at most

om
1 =
1—e o

s 0

ST

log

1-ef=(1-¢

(1-— e)logl_e
There are2™ possible subcollections; by union bound,
the overall error probability, i.e. the probability that any
subcollection is not al(—¢)-cover of S but is an exact cover
of S, is at mos®. Hence, with probability at leagt— 4, I
isa (L — ¢)-set cover forS.

If we takee andé as constants, the approximation ratio is
essentiallyn m+O(1), which is smaller tham+1n n when
n > m. The space requirement of the above algorithm is
mk = O(m?) and running time i€ (m*).

2.3.2 €, 0)-Separation Minimum Key The reduction
from Minimum Key to Minimum Set Cover preserves the
separation ratio: an-separation quasi-identifier separates
at least anx fraction of all pairs of tuples, so its corre-
sponding subcollection is anm-set cover; and vice versa.
Therefore, we can reduce the, §)-Separation Minimum
Key problem to thed, §)-Set Cover problem wher| =
O(n?). The complete algorithm is as follows.

1. Randomly choosé = 1ogl% % pairs of tuples;

THEOREM 2.3. With probabilityl — 4, the above algorithm
outputs a { — ¢)-separation quasi-identifier whose size is at
most(1 + Inlog 1 %M)H* , wherel* is the smallest key.

The proof directly follows Theorem 2.2. The approxima-
tion ratio is essentiallyn m+ O(1). The space requirement
of the above algorithm isik = O(m?), which significantly
improves upon the input sizen.

2.4 (e, §)-Distinct Minimum Key

Unfortunately, the reduction to set cover does not neces-
sarily map am-distinct quasi-identifier to an-set cover.

As pointed out in Section 1.1, andistinct quasi-identifier
corresponds to an’-separation quasi-identifier, and thus
reduces to am’-set cover, wherex’ can be as small as
2a — o2, or as large a$ — w Therefore reducing this
problem directly to set cover gives too loose bound, and a
new algorithm is desired.

Our algorithm for finding distinct quasi-identifiers is
again based on random sampling. We reduce the input
(¢, §)-Distinct Minimum Key instance to a smaller (exact)
Minimum Key instance by randomly choosikguples and
keeping allm attributes. The following lemma bounds the
probability that a subset of attributes is an (exact) key in
the sample table, but not andistinct quasi-identifier in the
original table.

LEMMA 2.3. Randomly choosktuples from input tablg”
to form tableT;. Letp be the probability that an (exact) key
of 77 is not ana-distinct quasi-identifier ir{". Then

(L -Dk(k-1)
2n

p<e
Proof: Suppose we have balls distributed inl = an dis-
tinct bins. Randomly choosk balls without replacement,
and the probability that theeballs are all from different bins
is exactlyp. Letzy, zo,. .., x4 be the number of balls in the
dbins (X0, #; = n,; > 0), then

xik

. Zall{il,ig,...,ik} Ty Tig -+ - -
- n
(v)

p is maximized when alk;s are equal, i.e. each bin has
L balls. Next we compute for this case. The first ball
can be from any bin; to choose the second ball, we have
n — 1 choices, but it cannot be from the same bin as the first
one, soé — 1 of then — 1 choices are infeasible; similar

2. Reduce the problem to a set cover instance wherearguments hold for the remaining balls. Summing up, the

the ground sef is the set of thosé pairs and each
attribute maps to a subset of thepairs separated by
this attribute;

. Apply Greedy Set Cover Algorithm to find an exact set
cover forS, and output the corresponding attributes as
a quasi-identifier to the original table.

probability that allk balls are from distinct bins is

s -1 2 -1 (k-1)(5 -1
= 1(1—-= 1——= (-
( nfl)( n—2 ) n—(k—-1) )
11 2d-v - E-v
e_(%ll‘* n‘,x_gl + nj(k(inl)

7(571)1‘-(1@71)

e on



The Greedy {, §)-Distinct Minimum Key Algorithm is
as follows:

1. Randomly choosé& = \/@nln%’z tuples and

keep all attributes to form tablg ;

2. Apply Greedy Minimum Key Algorithm to find an
exact key inTy, and output it as a quasi-identifier to
the original table.

THEOREM 2.4. With probabilityl — 4, the above algorithm
outputs a [ — ¢)-distinct quasi-identifier whose size is at
most(1 + 21n k)|I*|, wherel* is the smallest exact key.

The proof is similar to Theorem 2.2, substituting Lemma
2.2 with Lemma 2.3. k is chosen such that < an to
guarantee that the overall error probability is less than
The approximation ratio is essentiallym + Inn + O(1),
which improves thd + 21nn result for the exact key. The
space requirement ik = O(m+/mn), sublinear in the

number of tuples of the original table.

2.5 Minimum [3-Separation Quasi-identifier

In previous sections, our goal is to find a small quasi-
identifier that is almost a key. Note that indicates
our “error tolerance”, not our goal. Fot,{)-Separation
Minimum Key problem, our algorithm is likely to out-

THEOREM2.5. The Greedy Minimung-Set Cover algo-
rithm runs in spacenk = O(m?), and with probability at
least]l — ¢, outputs a(1 — €)3-set cover with size at most
(1+1In %)H*L wherel* is the minimuny3-set cover
of S.

The proof can be found in our technical report. This
algorithm also applies to the minimum exact set cover
problem (the special case whefe = 1), but the bound
is worse than Theorem 2.2; see our technical report for
detailed comparison.

The minimumg-separation quasi-identifier problem can
be solved by reducing t8-set cover problem and applying
the above greedy algorithm. Unfortunately, we cannot
provide similar algorithms fog-distinct quasi-identifiers;
the main difficulty is that it is hard to give a tight bound
to the distinct ratio of the original table by only looking at
a small sample of tuples. The negative results on distinct
ratio estimation can be found in [5].

3 Masking Quasi-ldentifiers

In this section we consider the quasi-identifier masking
problem: when we release a table, we want to publish a
subset of the attributes subject to the privacy constraint that
no 3-separation (op-distinct) quasi-identifier is published;
on the other hand we want to maximize the utility, which

put quasi-identifiers whose separation ratios are far greateks measured by the number of published attributes. For
thanl — e For example, suppose the minimum key of each problem, we first present a greedy algorithm which
a given table consists of 100 attributes, while the mini- generates good results but runs slow for large tables, and
mum 0.9-separation quasi-identifier has 10 attributes, then then show how to accelerate the algorithms using random
our (0.1,0.01)-separation algorithm may output a quasi- sampling. (The algorithms can be easily extended to the

identifier that has say 98 attributes and i899-separation.
However, sometimes we may be interested in findirty

case where the attributes have weights and the utility is the
sum of attribute weights.)

separation quasi-identifiers which have much smaller sizes.

For this purpose we consider tidinimum 3-Separation
Quasi-identifier Problem find a quasi-identifier with the
minimum size and separation ratio at ledst

The Minimum 3-Separation Quasi-identifier Problem is

3.1 Masking g-Separation Quasi-identifiers

As in Section 2.2, we can reduce the problem to a set
cover type problem: let the ground sétbe the set of
all pairs of tuples, and let each attribute correspond to

at least as hard as Minimum Key since the latter is a speciala subset of tuple pairs separated by this attribute, then

case whereg = 1. So again we consider the approximate

the problem of Masking3-Separation Quasi-identifier is

version by relaxing the separation ratio: we require the equivalent to finding a maximum number of subsets such

algorithm to output a quasi-identifier with separation ratio
at least(1 — ¢)5 with probability at least — 4.
We present the algorithm for approximateset cover;

that at most &3 fraction of elements inS is covered by
the selected subsets. We refer to this problefasimum
Non-Set Cover problentnfortunately, the Maximum Non-

the 3-separation quasi-identifier problem can be reduced toSet Cover problem is NP-hard by a reduction from the

(-set cover as before.

The Greedy Minimum3-Set Cover algorithnworks as
follows: first randomly samplé = %m% elements
from the ground sef, and construct a smaller set cover
instance defined on the chosen elements; run the greedy

algorithm on the smaller set cover instance until get a sub-

collection covering at lea$® — ¢) 5k /2 elements (start with

Dense Subgraph problem. (See our technical report for the
hardness proof.)

We propose a greedy heuristic for maskifigeparation
guasi-identifiers: start with an empty set of attributes, and
add attributes to the set one by one as long as the separation
ratio is belowg; each time pick the attribute separating the
least number of tuple pairs not yet separated.

an empty subcollection; each time add to the subcollectiona The algorithm produces a subset of attributes satisfying
subset covering the largest number of uncovered elements)the privacy constraint and with good utility in practice,



however it suffers from the same efficiency issue as the number of distinct values, as long as the distinct ratio is
greedy algorithm in Section 2.2: it requiré§m?) scans below 5. And similarly we can use a sample table to trade
of the table and is thus slow for large data sets. We againoff utility for efficiency.

use random sampling technique to accelerate the algorithm:
the following lemma gives a necessary condition fos-a
separation quasi-identifier in the sample table (with high
probability), so only looking at the sample table and pruning 2. Let 8/ = (1 — ,/%)ﬁ. Run the following

1. Randomly choosé tuples and keep all the columns to
form a sample tablé?;

a” attribute sets Satisfying the necessary Condition will greedy a|g0rithm Oﬂ’l: start with an empty sat’ Of
guarantee the privacy constraint. The proof of the lemma attributes, and add attributes to the éebne by one
is omit for lack of space. as long as the distinct ratio is belg#{; each time pick

. the attribute adding the least number of distinct values;
LEmMA 3.1. Randomly samplg pairs of tuples, then &- g

separation quasi-identifier separates at least of the k 3. Publish the set of attributes.

pairs, with probability at least — e~ (1—)"/%/2, Lemma 3.2 and Theorem 3.2 state the privacy guarantee

. . . of the above algorithm.
The Greedy Approximatei-Separation Masking Algo-

rithm is as follows: LEMMA 3.2. Randomly samplé: tuples from the input
1. Randomly choosé pairs of tuples; table T into a small tableT; (¢ < n, wheren is the
. (27 /5) . number of tuples i¥’). A S-distinct quasi-identifier of”

2. Let" = (1 — /=5 )B. Runthe following 5 an s-distinct quasi-identifier of; with probability at

greedy algorithm on the selected pairs: start with an |ggst] — ¢—(1-)?8k/2

empty setC of attributes, and add attributes to the set

C one by one as long as the number of separated pairsProof. By the definition of 3-distinct quasi-identifier, the

is below 5'k; each time pick the attribute separating tuples has at leagtn distinct values projected on the quasi-

the least number of tuple pairs not yet separated,; identifier. Take (any) one tuple from each distinct value,
3. Publish the set of attribute®. and call those representing tuples “good tuples”. There are
at leastgn good tuples iril".

Let k; be the number of distinct values iy projected
on the quasi-identifier, and be the number of good tuples
in T;. We havek; > &’ because all good tuples are distinct.

By the nature of the algorithm the published attributes
C do not contain quasi-identifiers with separation greater
thang’ in the sample pairs; by Lemma 3.1, this ensures that

i ili _771—1—',(32162_ _ . X
with probability _at least — 2™e _( - )_ﬁ_ / ___1 ) 0, (The probability that any good tuple is chosen more than
C do not contain any3-separation quasi-identifier in the . g negligible wherk < n.) Next we bound the

original table. Therefore the attributes published by the probability Pr[k’ < afk]. Since each random tuple has
above algorithm satisfies the privacy constraint. a probability at least of being good, and each sample are
chosen independently, we can use Chernoff bound (see [19]

T 3.1. With probability at leastl — 4, the ab
HEOREM ith probability at leas e above Ch. 4) and get

algorithm outputs an attribute set with separation ratio at

mosts. Prii < afk] < o—(1—0)2Bk/2

We may over-prune because the condition in Lemma 3.1
is not a sufficient condition, which means we may lose some
utility. The parametek: in the algorithm offers a tradeoff
between the time/space complexity and the utility. Obvi-
ously both the running time and the space increase linearly,
with k; on the other hand, the utility (the number of pub-
lished attributes) also increases witlbecause the pruning

condition becomes tighter dsincreases. Our experiment T.corem3.2. With probability at least — 4, the attribute

results show that the algorithm is able to dramatically re- gt published by the algorithm has distinct ratio at m@st
duce the running time and space complexity, without much

sacrifice in the utility (see Section 4). 4 Experiments

Sincek; > k', we have
Prlk; < apfk] < Prk’ < afk] < o~ (1—a)*Bk/2

Hence with probability at leagt— e~(1=)*8k/2 the quasi-
identifier has distinct ratio at leas{3 in T3 .

3.2 Masking §-Distinct Quasi-identifiers We have implemented all algorithms for finding and

For masking g-distinct quasi-identifiers, we can use masking quasi-identifiers, and conducted extensive exper-
a similar greedy heuristic: start with an empty set of iments using real data sets. All experiments were run on a
attributes, and each time pick the attribute adding the least2.4GHz Pentium PC witH GB memory.



5000

R L 13 @
% - JUNEVES =
€ 4000 L 50 3
8 3500 {f £
& 3000 | % 5
v 2
g 2500 f 20 5
= =
o 2000 | 15 3
£ 1500 f &
c 10
z 1000 E
500 | Running time ——— 1 5 5§
Utility -~
0 : : : 0
0 50 100 150 200 250
Sample Size k (*1000)

(a) Masking0.5-distinct quasi-identifiers

120 20
18 %‘
o 100 - P
2 16 -S
S E
S sl 14 5
) i 12 o
P 2
£ 60 {10 &
F {8 3
j=2 L o
£ 40 le &

c

4 >
g 20F o 4 £
Runningtime ——— { 2 3§

Utilty - |

0 L L L L
0 20 40 60 80 100120140160180 20!
Sample Size k (*1000)

0

(b) Masking0.8-separation quasi-identifiers

Figure 1. Performance of masking quasi-identifier
algorithms with different sample sizes on table
california. Figures (a) and (b) show how the running
time (the lefty axis) and the utility (the righty
axis) change with the sample size (the paramkgjer
in Greedy Approximate algorithms for masking-
distinct and).8-separation quasi-identifiers.

4.1 Data Sets

One source of data sets is the census microdata “Public-

Use Microdata Samples (PUMS)” [1], provided by US

has581012 rows and54 attributes. We use 14 attributes
of adult including age, education level, marital status; the
number of records iadultis around30000.

4.2 Masking Quasi-identifiers

The greedy approximate algorithms for masking quasi-
identifiers are randomized algorithms that guarantee to sat-
isfy the privacy constraints with probability — 6. We set
0 = 0.01, and the privacy constraint are satisfied in all ex-
periments, which confirms the accuracy of our algorithms.

Figure 1 shows the tradeoff between the running time
and the utility (the number of attributes published), using
the california data set. Both the running time and the
utility decrease as the sample sizedecreases; however,
the running time decreases linearly wittwhile the utility
degrades very slowly. For example, running the greedy
algorithm for maskind).5-distinct quasi-identifiers on the
entire table (without random sampling) takes 80 minutes
and publishes 34 attributes (the rightmost point in Figure a);
using a sample a30000 tuples the greedy algorithm takes
only 10 minutes and outputs 32 attributes. Figure b shows
the impact ofk on the masking separation quasi-identifier
algorithm. To run the greedy algorithm for maskifg-
separation quasi-identifier on the entire table takes 728
seconds (not shown in the figure); using a sampl&)ofH0
pairs offers the same utility and only takes 30 seconds.
The results show that our random sampling technique can
greatly improve time and space complexity (space is also
linear ink), with only minor sacrifice on the utility.

Data Setsl Greedy_ Greedy Approximate
time | utility | time | utility

adult 36s 12 - -

covtype | - - 2000s| 46

idaho 172s | 33 - -

wa 880s | 34 620s | 33

texas 3017s| 35 630s | 33

ca 4628s| 34 606s | 32

census - - 755s | 30

Census Bureau. We gather the 5 percent samples of Census

2000 data from all states and put into a table “census”.
To study the performance of our algorithms on tables with

different sizes, we also extract 1 percent samples of state-

level data and seledtstates with different population sizes
— Idaho, Washington, Texas and California. We extrdct
attributes including age, sex, race, education level, salary
etc. We only use adult records (age20) because many
children are indistinguishable even with dll attributes.
The tablecensushas 10 million distinct adults, and the
sizes ofldaho, Washington, TexasdCalifornia are 8867,
41784, 141130 and 233687 respectively.

We also use two data seddult andcovtypeprovided by
UCI Machine Learning Repository [21]. Thmvtypetable

Table 2. Algorithms for masking 0.5-distinct
quasi-identifiers. The column “Greedy” represents
the greedy algorithm on the entire table; the column
“Greedy Approximate” represents running greedy al-
gorithm on a random sample 80000 tuples. We
compare the running time and the utility (the num-
ber of published attributes) of the two algorithms on
different data sets. The results of Greedycamsus
and covtypeare not available because the algorithm
does not terminate in 10 hours; the results of Greedy
Approximate oradultandidahoare not available be-
cause the input tuple number is less tlan00.



Data Sets Greedy Greedy Approximate time requirements of our approximate minimum key algo-
time utility | time | utility rithms are sublinear in the number of input tuples, and we
adult 19s 5 2s 5 expect the algorithms to scale well on even larger data sets.
covtype | 2 hours| 38 104s| 37 We measure the distinct and separation ratios of the
idaho 147s 24 30s | 23 output quasi-identifiers, and find the ratios always within
wa 646s 23 35s | 23 errore. This confirms the accuracy of our algorithms.
texas 1149s | 19 34s | 19 Theorem 2.3 and 2.4 provide the theoretical bounds on
ca 728s 16 30s | 16 the size of the quasi-identifiers found by our algorithms
census - - 170s| 17 (Inm or Inmn times the minimum key size). Those
bounds are worst case bounds, and in practice we usually
get much smaller quasi-identifiers. For example, we find
Table 3. Algorithms for masking 0.8-separation that the minimum key size cfdult is 13 by exhaustive
quasi-identifiers. The column “Greedy” represents search, and the greedy algorithm for both distinct and

the greedy algorithm on the entire table, and the  separation minimum key find quasi-identifiers no larger
column “Greedy Approximate” represents running  than the minimum key. (For other data sets in Table 4,

greedy algorithm on a random sample50000 pairs computing the minimum key exactly takes prohibitively
of tuples. We compare the running time and the utility  |ong time, so we are not able to verify the approximation
of the two algorithms on different data sets. The  ratio of our algorithms.) We also generate synthetic tables
result of Gl’eedy orensuss unavailable because the with known minimum key sizes, then app|y the greedy

algorithm does not terminate in 10 hours. distinct minimum key algorithm (withk = 0.1) on those

tables and are always able to find quasi-identifiers no larger

o ~ than the minimum key size. Those experiments show

Table 2 and 3 compare the running time and the utility {ha¢ in practice our approximate minimum key algorithms
(the number of published attributes) of running the greedy g a|ly perform much better than the theoretical worst case
algorithm on the entire table versus on a random samplepoynds, and are often able to find quasi-identifiers with high

(we use a sample ¢f0000 tuples in Table 2 and a sample  geparation (distinct) ratio and size close to the minimum.
of 50000 pairs of tuples in Table 3). Results on all data

sets confirm that_ the _random sampling techn_ique is able o5 Related Work
reduce the running time dramatically especially for large
tables, with only minor impact on the utility. For the largest ~ The implication of quasi-identifiers to privacy is first
data setensusrunning the greedy algorithm on the entire formally studied by Sweeney, who also proposed the k-
table does not terminate in 10 hours, while with random anonymity framework as a solution to this problem [25, 24].
sampling it only takes no more than 13 minutes for masking Afterwards there is numerous work which studies the com-
0.5-distinct quasi-identifier and 3 minutes for masking- plexity of this problem [17, 2], designs and implements
separation quasi-identifier. algorithms to achieve k-anonymity [23, 4], or extends
upon the framework [16, 14]. Our algorithm for mask-
ing quasi-identifiers can be viewed as an approximation to
Finally we examine the greedy algorithms for finding k-anonymity where the suppression must be conducted at
minimum key and {; ¢)-separation or -distinct minimum the attribute level. Also it is an “on average” k-anonymity
key in Section 2. Table 4 shows the experimental resultsbecause it does not provide perfect anonymity for every

4.3 Approximate Minimum Key Algorithms

of the Greedy Minimum Key, Greed{0.1,0.01)-Distinct individual but does so for the majority; a similar idea is
Minimum Key, and Greedy0.001, 0.01)-Separation Mini- used in [15]. On the other side, our algorithms for find-
mum Key algorithms on different data sets. ing keys/quasi-identifiers attempt to attack the privacy of

The Greedy Minimum Key algorithm (applying greedy published data from the adversary’s point of view, when the
algorithm directly on the entire table) works well for small publish data is not k-anonymized. To the best of our knowl-
data sets such emdult, idahg but becomes unaffordable edge, there is no existing work addressing this problem.
as the data size increases. The approximate algorithms for Our algorithms exploit the idea of using random samples
separation or distinct minimum key are much faster. For the to trade off between accuracy and space complexity, and can
table California, the greedy minimum key algorithm takes be viewed as streaming algorithms. Streaming algorithms
almost one hour, while the greedy distinct algorithm takes emerged as a hot research topic in the last decade; see [20]
2.5 minutes, and greedy separation algorithm merely sec-for a survey of this area.
onds; for the largest tableensusthe greedy minimum key Keys are special cases of functional dependencies, and
algorithm takes more than 10 hours, while the approximate quasi-identifiers are a special case of approximate func-
algorithms take no more than 15 minutes. The space andional dependency. Our definitions of separation and dis-



Greedy distinct Greedyd{ = 0.1) separation Greedy & 0.001)

Data Sets| . . . . Y . . . . .

time key size | time | key size| distinct ratio | time | key size| separation ratig
adult 355s | 13 8.8s | 13 1.0 3.11s| 5 0.99995
covtype | 964s | 5 78.1s| 3 0.9997 27.1s| 2 0.999996
idaho 50.4s | 14 15.2s| 8 0.997 1.07s| 3 0.9999
wa 490s | 22 34.1s| 8 0.995 7.14s| 3 0.99993
texas 2032s| 29 120s | 14 0.995 13.2s| 4 0.99995
ca 3307s| 29 145s | 13 0.994 16.3s| 4 0.99998
census - - 808s | 17 0.993 120s | 3 0.99998

Table 4. Running time and output key sizes of the Greedy Minimum Key, Greedy(0.1, 0.01)-Distinct Minimum
Key, and Greedy (0.001,0.01)-Separation Minimum Key algorithms. The result of Greedy Minimum Key on
censuss not available because the algorithm does not terminate in 10 hours.

tinct ratios for quasi-identifiers are adapted from the mea- [8] C. Giannella and E. Robertson. On approximation measures

sures for quantifying approximations of functional depen- for functional dependencietnformation Systemg004.
dencies proposed in [13, 22]. [9] C. M. Giannella, M. M. Dalkilic, D. P. Groth, and E. L.

) Robertson. Using horizontal-vertical decompositions to im-
6 Conclusions and Future Work prove query evaluatio.NCS 2405

[10] B. Halldorsson, M. Halldorsson, and R. Ravi. Approxima-

In thi r, W ign fficient algorithms for dis-
this paper, we designed efficient algorithms for dis bility of the minimum test collection problem. BSA 2001.

covering and ma_sl.(lng quas.l-ldentlflers.ln large tablets. [11] Y. Huhtala, J. Karkkainen, P. Porkka, and H. Toivonen.

We O,"?"e'Op?d efficient al_gomhms that f”,]d qull quas," Discovery of functional and approximate dependencies using

identifiers with provable size and separation/distinct ratio partitions. InICDE, 1998.

guarantees, with space and time complexity sublinear in the12] p. Johnson. Approximation algorithms for combinatorial

number of input tuples. We also designed efficient algo- problems. InJ. Comput. System Scl974.

rithms for masking quasi-identifiers in large tables. [13] J. Kivinen and H. Mannila. Approximate dependency infer-
All algorithms in the paper can be extended to the ence from relations. Iitheoretical Computer SciencE995.

weighted case, where each attribute is associated with d14] N. Li, T. Li, and S. Venkatasubramanian. t-closeness:

weight and the size/utility of a set of attributes is defined as __ Privacy beyond k-anonymity and I-diversity. I68DE, 2007.

the sum of their weights. The idea of using random samples!1°] S- Lodha and D. Thomas. Probabilistic anonymitgchni-

to trade off between accuracy and space complexity can ¢ Report

. . [16] Machanavajjhala, J. Gehrke, and D. Kifer. I-diversity:
potentially be explored in other problems on large tables. privacy beyond k-anonymity. ICDE, 2006.

[17] A.Meyerson and R. Williams. On the complexity of optimal
References k-anonymity. InPODS 2004.
[18] B. Moret and H. Shapiro. On minimizing a set of tests. In
SIAM Journal on Scientific and Statistical Computit§85.

[1] Public-use microdata samples (pums). [19] R. Motwani and P. Raghavan. Randomized algorithm. 1995.
http://www.census.gov/main/www/pums.html [20] S. Muthukrishnan. Data streams: Algorithms and applica-
[2] G. Aggarwal, T. Feder, K. Kenthapadi, R. Motwani, R. Pan- tions. 2005.
igrahy, D.Thomas, and A. Zhu. Anonymizing tables. In [21] D. Newman, S. Hettich, C. Blake, and C. Merz.
ICDT, 2005. Uci repository of machine learning databases.
[3] R. Ananthakrishna, S. Chaudhuri, and V. Ganti. Eliminating http://www.ics.uci.edwmlearn/MLRepository.html
fuzzy duplicates in data warehousesMinDB, 2002. [22] B. Pfahringer and S. Kramer. Compression-based evaluation
[4] R. Bayardo and R. Agrawal. Data privacy through optimal of partial determinations. IBIGKDD, 1995.
k-anonymization. IHCDE, 2005. [23] P. Samarati and L. Sweeney. Generalizing data to provide
[5] M. Charikar, S. Chaudhuri, R. Motwani, and V. Narasayya. anonymity when disclosing information. PODS 1998.
Towards estimation error guarantees for distinct values. In [24] L. Sweeney. Achieving k-anonymity privacy protection us-
PODS 2000. ing generalization and suppression.lhternational Journal
[6] S.Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani. Robust on Uncertainty, Fuzziness and Knowledge-based Systems
and efficient fuzzy match for online data cleaning. In 2002.
SIGMOD, 2003. [25] L. Sweeney. k-anonymity: a model for protecting pri-
[7] M. R. Garey and D. S. Johnson. Computers and intractabil- vacy. Ininternational Journal on Uncertainty, Fuzziness and

ity. 1979. Knowledge-based Syster2902.



