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Abstract For example, for large networked distributed systems

The problem of monitoring a multivariate linear regressicifch as the Cloud and the Internet, anytimeness is extremely
model is relevant in studying the evolving relationship bénportant, and monitoring the health of tens of thousands
tween a set of input variables (features) and one or more @bdata centers supporting numerous services requires ex-
pendent target variables. This problem becomes Cha”gngqr@mely fast and correct detection of every performance cri
for large scale data in a distributed computing environmeig. The target variable for the identification of such @ise
when only a subset of instances is available at individ#@" be response latency or request throughput [3], and an
nodes and the local data changes frequently. Data cemtralf1-time and accurate alert suggesting a change in the input-
tion and periodic model recomputation can add high ovéf/get relationship can get the operators’immediate gten
head to tasks like anomaly detection in such dynamic s&wards faultdiagnosis and recovery. Similarly, we can mon
tings. Therefore, the goal is to develop techniques for mdker the carbon footprint of a community (city/state/coyit
itoring and updating the model over the union of all nodel§! the next generation Smart Grids by modeling the carbon
data in a communication-efficient fashion. Correctness-gu@mission as a function of power consumption and natural en-
antees on such techniques are also often highly desirable &9y production. Any change from the standard model can
pecially in safety-critical application scenarios. Instpaper Indicate change in consumption pattern, fault in power gen-
we develofDReMo— a distributed algorithm with very low €rators, etc. and an on-time detection can enable human in-
resource overhead, for monitoring the quality of a regrégrvention and guarantee uninterrupted service.

sion model in terms of its coefficient of determinatici?( Most existing solutions for monitoring models in such
statistic). When the nodes collectively determine thahas Setups usually trade off model fidelity for lower communi-
dropped below a fixed threshold, the linear regression mo@@fion cost. Some of the approaches for monitoring mod-
is recomputed via a network-wide convergecast and the @b& in distributed systems include the sampling-based-meta
dated model is broadcast back to all nodes. We show emf§iarning strategy [11] and randomized techniques such as
ically, using both synthetic and real data, that our progosgossip [9]. The first group of algorithms suffer from the
method is highly communication-efficient and scalable, affewback that accuracy drops with increasing number of

on sufficient statistic computation on a random selection
1 Introduction of nodes and are extremely communication-intensive for

Fhanging data scenarios. In the ideal case, the monitoring

Multi-variate linear regression is an important and Wldeégorithm should be able to raise an alert every time an event

used technique for modeling the behavior of a target vagia . : .
. . occurs in the network and should do so with as little com-
based on a set of input variables (features). In scenarios

. o Unication overhead as possible. Monitoring algorithms
where the data changes or evolves over time, monitoring [ﬁe

model for identifying such changes may be essential. Thi dt satisfy these properties have been proposed earipr [1

problem becomes more challenging if the data is distributed. instead of periodically rebuilding a model, a thresh-

at a number of different nodes, and the model needs to(h%mg criterion is developed to efficiently detect changes
recomputed periodically to avoid inaccuracy. If the da%

€ global model by only monitoring changes in the local
N . : L : ata. The provable correctness of this class of algorithms
is piecewise stationary, periodic model recomputatiorroft
wastes a lot of resources.

ensures that the distributed algorithm can raise all theésale
that a centralized algorithm (seeing all the data at onaoe) ca
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In this paper we overcome this problem for multivarkKempeet al. [9] and Boydet al. [4] for computing simple
ate linear regression by formulating the monitoring prableprimitives such as average, min, max etc. of a set of num-
in terms of the coefficient of determinatidi?, a statisti- bers distributed across the network. In gossip protocols, a
cal metric for checking the quality of linear regression modode exchanges statistics with a random node and this pro-
els. Since theR? statistic lies between 0 and 1, it is a scaleess continues until convergence. Deterministic tecresqu
free measure for the quality of fit for any data set. The auch as the ones proposed by Scherber and Papadopoulos
gorithm developed in this papeDReMq works for hori- [13] and Mehyaret al. [12] solves a differential equation
zontally partitioned data (defined later) and offers pré&alusing messages exchanged between neighboring nodes such
correctness guarantees with minimal communication. Ittfgat the optimal solution to the equation gives the global av
a reactive algorithm since communication for model recorarage. However, both these classes of techniques require
putation does not happen periodically. Whenever the nodemdreds of messages per node for the computation of just
jointly discover that the model no longer fits the data, ame statistic and are not suitable for dynamic data. A rdlate
alert is raised and a convergcast/broadcast scheme is e of research concerns the monitoring of various kinds

deployed for model recomputation. of data models over large numbers of data streams. Sharf-
manet al. [14] has developed an algorithm for monitoring
2 Related work arbitrary threshold functions over distributed data strea

Regression being a powerful modeling tool, extensive fdblike our method, the technique proposed in [14] requires
search has been done for both distributed and centrali}#a@ €xistence of a broadcast-based communication topology
modeling and monitoring. In this paper we briefly revieyhich can be difficult to maintain for large networks.

existing literature on distributed regression and its rtwni All of the above mentioned techniques can be adopted
ing. Hershberger and Kargupta [7] have proposed one of {ﬁélmonltor.mg evolving data streams in distributed com-
earliest wavelet transformation-based distributed msjom PUting environments, but they suffer from several draw-
algorithm for vertically partitioned data where each notle oPacks starting from very slow convergence resulting in ex-
serves all possible instances of a subset of features. {iggely high communication overhead to lack of perfor-
wavelet transform on the data optimizes the communicatiGi#nCce guarantees in detecting events or significant changes
overhead by reducing the effect of the cross terms and theifbthe model. Recently, Bhaduet al. [1] have proposed

cal regression models are centralized for building the glotn @lgorithm for doing regression in large peer-to-peer net
model. Another popular distributed regression algorithnd€rks which works by checking the squared error between
has been proposed by Guestenal. [6] for learning ker- the pre(_jicted an_d the target variables base_d on a generic
nel linear regression models in sensor networks. Once ER@Nitoring algorithm proposed by Wolét al. in [16]. If
model converges, instead of sending the raw data, the cé}-error exceeds a predefined threshejdthe nodes raise
tral node can only collect the coefficients of the regressi8R alert and the regression model is rebuilt. This method
model as a compact representation of the data, therebyi$&ommunication-efficient and provably correct, but sisffe
ducing communication. The algorithm requires two passé@m the serious disadvantage that the communication as
through the entire network per data change to ensure glo§§ll @s model quality is dependent on a parameténat
convergence, in the worst case and, therefore, may reqifirfPut to the algorithm. This choice efis dependent on
huge number of messages and a long time to convergdlif data and can vary from O te. If the user has no or
dynamic data scenarios. It should be noted here that bifted knowledge about the data distribution in the comput
these methods, as well as many other distributed regresditthnetwork (which is often the case for all practical pur-
techniques solve an approximate version of the centraliR$es). then a wrong choice efcan render the algorithm

regression problem and therefore, cannot guarantee geov&§€less. To overcome this problem, we propose a new re-
correctness when adapted for monitoring. gression monitoring algorithrdReMowhich monitors the

Meta-learning is an interesting class of algorithnfefficient of determinationf(?) which is a tried-and-tested,
which can be easily adopted for distributed model learnirf§ell-accepted, and widely-used regression diagnostic- mea
Proposed by Stolfet al. [15], the basic idea is to learn aSurement with) < R* < 1. Closer the value of* isto 1,
model at each site locally (no communication at all) and théRe Petter is the model quality and vice versa. Howevergsinc
when a new sample comes, predict the output by simply t4€ R* statistic is no longer the L2 norm of the data, none of
ing the average output of the local model outputs. The Jhe theories developed for monitoring the L2 norm of data in
derlying assumption is that the data distribution is homogarge network [16], [1] are applicable here. In the next two
neous across the nodes they have all been generated fronf€ctions we define this new monitoring problem and derive
the same distribution. Significant research has been don#fa quantity that needs to be monitored for change detection
the area of distributed computing of complex models. Raffa linear regression model.
domized gossip based computations have been proposed by



3 Problem setup the denominator). Intuitively, this ratio captures the lgya
3.1 Notation: Let V = {Py,...,P,} be a set of com- Of / with respectto a baseline predictor which always returns

puting nodes connected to one another via an underlymﬁ average value over all the observed data (the fraction
communication infrastructure, such that the sePg§ im- in the denominator). Whe#? is close to onef provides
mediate neighborsy;, is known toP; (and P; is unaware 2 much better prediction of the observed values than the
of the existence of any other nodes). At any time instan@@seline. It is standard statistical practise when computi
the local data ofP; is a stream of tuples iR¢ and is de- @ regression model to compuf®’ as a measure of model

- - —_— T quality.
noted byS; = {(Illv ?/i) ; (Iéa yé) EEEE (x:n(i)’y:n(i))} : The value ofR? is time-varying. The goal for the nodes
is to determine whether the accuracy fofs unacceptable.
Specifically, for a fixed, user-defined thresheldhe nodes
monitor whetherR? is belowe. If yes, then an alert is

wherez!, = [z}, ...2% , )] € R andy} € R. Every
local data tuple cal liae viewed as an input and output p

Note that$; is time-varying, but for notational simplicity, " > ME i

we suppress an implicitsubscript. LeG = [J_, S; de- raised and computation is carried out to evaluate a ifiew
. - = [

note the global data over all the nodes. =t over the most up-to-date global data Therefore, the crux

Nodes communicate with one another by sending sufff the problem is for the nodes to carry out this quality

cient statistics of a set of input vectors. We denote the Smpnitori?g in afcommunifcaf:ioT—eff:c(ijent T]aﬂjngr' S”"R%d
ficient statistics sent by nodg; to P; as|X; ;| and X; ;, IS a nonlinear function of the local data held by all nodes,

) . ) solving such a problem is challenging. Before addressing
where|X; ;| is the size of a set of vectors add, ; is the

- _this problem, a caveat is in order. The setup described so far
average vector of that set. Computation of these quantiigs the network fixed. However, adjusting the algorithm to
is discussed in the next section. We assume that reli

abl2 ommodate nodes arriving and leaving or communication

message passing is ensured by the underlying network gpghs 4oing up and down is straightforward and omitted for
therefore, ifP; sends a message&, thenP; will receive it. descriptive simplicity.

Thus, both nodes knoW; ; and.X; ;. We also assume that . i — 5

an overlay tree topology is maintained and it forms the net- Next we will define data vectors® € R (t_)as_ed
work seen by the algorithne,g.the neighborsv; of nodeP; on S% and f), 20ne for each n_odePZ-, and a monitoring
are the node’s children and parent in the overlay. Note th]c ,Ct'or,] g : R® = R. 2We will show that the problem
as shown in [2], such an overlay tree can be efficiently co -mO”'FO”F‘g WhetherR_ Is belowe can be reformulated
structed and maintained using variations of Bellman-Fbérd gs monitoring Whetheg‘|s below zero when applied to a
gorithms [5][8]. Intuitively, the assumption of a tree olagr convex combination ob*’s. This result forms the basis of
topology is needed to avoid ‘double-counting’ when conthe DReMoalgorithm proposed in this paper.

municating aggregate statistics. This will be discusstat la

when describing the specifics of tb&keMoalgorithm. 3.3 Monitoring R?: Leté= 1—e w; = EZ;.":(? (y5)? —
m(i) i i2 —_ I 2

3.2 Problem definition: At any given time, each nodezjzl (y; —y;)°, andy* = :n(i_) fW? haveR® > e

holds f, a linear regression model (the same for each node). - 1 D i1 Z;n:(i) (i —92)? S

When the algorithm is initialized, a convergecast and broad n e [ S ETO 2

cast mechanism is used to compute thever G and dis- Y 2=r (Y5 M

tribute it to each node. After this, the goal is for the nodes, n m) S sml) 2 )
through ongoing distributed computation, to monitor the < &3 (yi. - “13—1%> -3 (y; - yi.) >0
quality of f (in terms of how well it fits the global data) and, i=1j=1 i

when the quality becomes sufficiently low, raise an alert and n m() n m(i) n m(i)
e ~ in2 ~ i Z’L:l Jj=1 yj
initiate another convergecast and broadcast to recompute < D> e > () —2e(> "> v} —w

and distribute it to each node. Quality is measured using the ==t =17=1
coefficient of determination??. Letting ! and f(x) de- I Py PO AN i G (vt - Ai>z o
note the true and estimated values of the target variable, M = o Vi
noom(i) (i sin2
R2—1_ iz 2= (Y5 — 95) n mz%) o
) (i T Sy v @ € W)= (Wi—v))
> Z;n:(;) (y; - 11\7/1%)2 i=1 \ j=1 ! j=1 v
2

1, equalling 1 when the data perfectly fifs The ratio _
compares the variance gfs predictions (captured by the
numerator) with the total variance of the data (captured by

whereM = Y7 , m(i). This coefficient is between 0 and 5
eEM ( L
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X
we have thaR? being belowe is equivalent tcy_t;)eing below
zero when applied to a convex combinationok: Figure 1: The parabola and the tangent lines that define the
half spaces as shown in different colors. The tangents are
n A\ — drawn at the points shown in the figure.
Bl Rl>eay <Z <M> UZ> > 0.
=1

g is a parabola and@ € R? : ¢g(@) = 0} splitsR2 into criterion and then describe how it can be effectively used fo
two regions: the area inside the parabola (which is convest§veloping a distributed regression monitoring algorithm
and the area outside (which is not convex). We denote
ﬁ =", m]\(; ) 7 as the global statistic computed ove#.1 Thresholding criterion: We know that, if aIIv -s lie

) = = inaconvex region, then their convex combination is also in
all the localv’-s. Sincev™ is a convex combination of'’s,  the same convex region. In order to check in a distributed
then if each nodé’; determines thacbZ is in the area inside fashion whether this condition is satisfied, each node needs

the parabola, them™ must be too. This forms the basido maintain the information about its nelghbow -s. The
for a very nice distributed algorithm. However, the sanfellowing sufficient statistics defined exclusively on lbca
reasoning does not hold for the area outside the paraboiputs allow a node to do this computation:

To get around this problem, the area outside the parabola is

approximated as a union of overlapping half-planes (defined- knowledgeIC is defined as the convex combination of

% %
by tangent lines of). If each node determines that is the local monitoring input* and all the information

in the same half-space for all nodes, théhmust be in the thatP; has received from all its neighbare. X ;

half-plane as well (therefore, outside the parabola). is th
case no communication is necessary since all nodes are n
%;reement. On the other hand, if different nodes have their

v'-s in different convex regions (either inside the parabola 03. withheld #; ;, is the information thaf; has and has
one of the half-spaces), or in none of these convex regions, notyet shared wittP;

then communication is required to come to a consensus. We , . -

_ A _ € also define the sizes of these statistics as the number
QOEJ now boils down to monitoring(v®) using the quantity of elements over which the statistic is computed. Thus, the
g(v*). The next section develops this idea into a concretiges of these stat|st|cs are defined as,

agreementA 4,5 18 the information that bott®; and P;
share

algorithm. 1K = + )0 1Kl
P] eNT
4 DReMo: algorithm description 2. | A j| = 1Xi 5] + X5l

3. | Hij| = il = [Ail-

Based on the formulation d¢? monitoring, we can develop
gsmg these, the vectors themselves are defined as:

a distributed algorithm which requires far less communic

tion than centralizing all the information from all the nedeq . IC = "’}C” v Z |XJ Z| _>
to one location. The intuition is to develop a set of condiio PJ EN,
based on the data at each node. If these conditions are sgt@t IXm-IX s+ I‘)Afj } X,

fied at all nodes independently, then we can guarantee some_> <) A
Hi LI — i A

globally correct condition. This allows any node to cease Mij = i1~ TH gl o

communication and output the correct result. In the remain- Now, in order to check 'f the convex combination of

der of this section we first develop one such local stoppit@’s (and hencev’’s) are all in the same convex region,




we need to split the domain of monitoring functigrinto LEMMA 4.1. Given a parabola defined by = éz2, let

non-overlapping convex regions. Figure 1 shows the fB-= {(z1,¢éx?), (z2,€23),..., (2, éx?)} be points on the

gions. First of all, note that inside of the parabola is coparabola at which the tangent lines are drawn. Minimizing

vex by definition. The outside of the parabola is not cothe area of the tie region leads to the following values of the

vex; however it can be covered by hyper-planes definedoordinates of points if": z, = z(éﬁjp;;, Ve =1:t,

by tangents to the parabola, thereby splitting it into comherex,,,,. is the maximum value of thecoordinate.

vex regions. Therefore, the convex regions for this moni-

toring are: (1)C;,, = {€ € R? : ¢(¥) > 0}, and (2) Proof. Proof in provided in Appendix A.

Cy={e eR?: - € > 0}, whereu; is the(-th unit nor-

mal of the tangent to the parabola. These convex regions42 Distributed regression monitoring algorithm

collectively defined a§’ = {C;,,, C4,...,C;}. Also shown (DReMo): DReMo utilizes the condition of Theorem 4.1

in the figure are thée regions — those regions which lie outto decide when to stop sending messages to its neighbors.

side the parabola, and also not inside any half-space. Gidére pseudo code is shown in Alg. 4.1, 4.2 and 4.3. The

the convex regions, we state the following theorem whietigorithm is entirely event driven. Events can be any one

gives us a condition by which any nod® can decide if the of the following: (1) change in local dats;, (2) a message

global vectors€ is inside any convex region based on onl{gc€ived, or (3) change iV;. If any one of these events

I?- A—> and}T?. occur, PZ-_ first checks the received message bu_ff_er and
B d updates its local vectors. It then checks the conditions for

sending messages. First it finds the region in Wrﬁh

THEOREMA4.1. [Thresholding Rule][16] Given any region ; : ) o
R € C, if no messages traverse the network, and for eal&%iand ser ‘i" variable,. accordingly: (]j)kloc - 1. if
(K;) > 0 (inside parabola), or (2;,. = 2 if there exists

P, K € Rand for everyP, € N;, A,; € R and either ), © or
H—> Ror .« — 0. th e R oneu; such thatu; - IC; > 0 (inside any half space), or (3)
i € LLOr 75 =1, Inenu™ € fi. ki, = 3 otherwise (tie region). Now based on the outcome

] of this test, a node needs to send a message to its neighbor
Proof (SKETCH): We omit the formal proof here due top_ any of the following occurs:

shortage of space. The intuition behind the proofis to také

one node, say’;, and combine its data with any of its 1. (,,. == 3) A (;? ¢J4—J>) A (K| # 14 )

neighbor’s data. LeP; be a neighbor of’; who sends all of

its 7?; to P;. P; on receiving this will set its newt, to be 2. (Ktoe == 1\ kioe == 2) A |[Hiy| == 0 A (;a ” Jﬁ)

the convex combination of the OE andm. Since both

are in the same convex region by assumption, their convef (ke == 1 V ke == 2) A [Hi;| # 0
combination will also be in the same convexregion. Itisalso A NotInside (A_J> k:loc) /\ NotInside (H_j k:loc)

easy to verify that the agreements and withheld knowledges

of P; with any other neighbop’; will also lie in the same Case 1 occurs Whefa lies in the tie region and a
convex region after this step. Thus, we can eliminate nogiéde needs to send its local information unless it has afread
P, since its information has already been incorporated ingent everything in a previous communication. Cases 2 and
that of ;. Continuing this process of elimination we will3 are for directly checking the conditions of Theorem 4.1.
have the knowledge of a single node equaﬁo(since the Note that Wﬂeed to take special care wi®n;| = 0, in
convex combination of al;-s isv ). Now since in each of Which case?{; ; is undefined. This means that a node has
Lommunicated everything to its neighbor and does not need
. . to send a message again, unless another event occurs. Case
region, so willv®. [ 2 can occur, for example, when the node has already sent

Each ”00!9 can apP'Y _this_stopp_ing condition_ to its IOCg\llerything and then the local data changes, thereby making
vectors and if the condition is satisfied, then it need n —

communicate any messages even if its local data change%‘%?'é A; ;. Case 3 directly checks the condition of Theorem

these elimination step4;; always remain inside the conve

it receives any message from its neighbors. Unfortunate with an added exception built-in to prevent this chegkin

— . . . . I

when/C; lies in the tie region, the stopping condition cannot If any one of these conditions occur, a node can set
—

[Ci |ICi —|

be applied. In this case, the only way a node can guarantee X%

correctness is by sending all of the local informatirto all _Xi’j TR and|.X; ;| < || —| ;i and send

its neighbors. The goalis therefore, to place the tangeesli it to F;. However, as it turns out, if we s€t; ;| = 0, and

such that the area of this region is minimized. The followirf§€ data changes again, a node might need to communicate

lemma shows us how to achieve this. becauseC; # A; ; may be violated. To avoid this, we set
X, ; to be equal to the smallest value for which either both

case of#H; ;| = 0.



Ia and@ goes inside the convexregion|@t; ;| = 0. The
pseudo code for this step is shown in Alg. 4.3.

ALGORITHM 4.1. DReMo

Input: ¢, C, S; _J)V andL.

Output: 0if g(K;) > 0,1 other\lee
—

Initialization : Initialize v* ICL,A”7H”

On an event

if MessageRecvd (Pj,i, |X\> then
)TZ “— 7and|Xj,Z—| «— |XI;

end if NN

Updatev®, s, A; j, Hi,j

for all NeighborsP; do
Call CheckMsg(lCZ,Al ],Hl i, Pj);

end for

ALGORITHM 4.2. ProcedureCheckMsg
- — —
Input: KC;, A; 5, Hij,

:U

Kioe = CheckKiLocation(la-);
for all NeighborsP; do
it (kioe == 3) A (K # Ai; ) A (1Kl # |4 ;1) then
SendMsg=true {/*Tie Region*/}
end if SN
it (kioe == 10r2) A\ [Hi ;] == 0 A (K # A5 ) then
SendMsg=true{/*Theorem Condition*}
end if .
if (ke == 101 2) A [Hs,5] # 0 A\ NotInside (AZ-,J, kloc>
/\ NotInside (?TJ), kloc> then
SendMsg=true{/*Theorem Condition*}
end if
if (SendMsg==true then
Call SendMessage ()Tj,la ﬁ,m,%)
end if
end for

ALGORITHM 4.3. roceduréendMessage
— = —
Input: XLJ?’CZ7ALJ7 LJyP]

X il K= X4 X5
b il —]X 5,4 ’
s=1/2;

|Xis,5] <= (1= 8) = (IKs] = [ Xj,40);
Update all vectors;
While (NotInside (AZ-,J, kloc> or NotInside (HM, lcl,)c)) and
[Hi5] #0
[Xii| (1= s) = (IKi| = [X5,40);
Update all vectors;
s =[s/2];
end while
Send @;, X; ;,|X;,;|) to P;

We leverage the fact that a linear regression model can
be easily computed by solving a linear set of equations. The
coefficients of this equation can be written as a running sum
over all the data points. Let the input-output be related
linearly as follows:y} = f(x}) = wo + wixh | + warl 5 +

-+ Wa—1] (d=1)" For simplicity, we separate the input
data matrlx at nodé’; as S; = [X; ], by partitioning
the input and output into separate matrices. We can do this
for G = [X ] in a similar fashion. We then augment
the input matrixX; with a column of 1-s at the beginning,
but for notational simplicity refer to it byX; itself. Using
least square technique for model fitting, we need to compute
two matrices over the global dataX” X and X7y. As
shown below, both these matrices are decomposable over
local inputs:

i 177(1()Z py 127?(;) z
n Zm i 11 n an 1 ) )2
T i=124j=1 Tj1 i=124j=1 \Fj1
X' X = . :
Do Pl )?
i=122j=1 IJ (d—1) i=1 I] (d—1)

m(i) T
n m (i i m(i n
_ Ejz(ll) T 217(1).( J.1)2 _ Z XlTXZ
L (@) =t
it Tiaoy  Xje 1(J(d 1))
Similarly, it is easy to verify thak 7y = """ | XTy;. Once
these two matrices are known globally, the set of weights

W = w, ..., wq_1 can be computed as

n
W = (Z X-TXZ-> (Z XTyZ>
The goal is tﬁeh to coordinate this computation across
the nodes over the topology tree that is already maintained
for the monitoring phase. A simple strategy is to use an al-
ternating convergecast-broadcast scheme. For convetgeca
whenever a nod®; detects that the output of the monitoring
algorithm is 1, it sets an alert flag and starts a tinaert
wait period to 7 time units. When the timer expires and if
the flag is still set,P; checks to see if it is a leaf. If it is, it
sends bothXT X; and X'y, to its neighbor from which it
has not yet received any data and sets its state as converge-
cast. If, on the other hand, the monitoring algorithm diesat
that the model fits the data, the flag is reset. When any inter-
mediate node getX| X; and Xy; from one of its neigh-
bors P;, it first adds the received data to its received buffer
B. 1t then checks if its alert flag is set, the timer has ex-
pired and if it has received data from all but one neighbor.

4.3 Re-computing model using convergecast/broadcastif all these conditions are valid, it adds its own data to the
Whenever the model at any node does not fit the datareteived buffer3 and sends it to its neighbor from whom it
sets the output obReMoto 1 based ory(K;) < 0. Once has not received any data and sets its state to convergecast.
the nodes jointly discover that the current model is out-di¥hen a node gets data from all neighbors, it becomes the
date, an alert is raised at each node and model recomputatimt. It then solves the regression equation to find a mew

becomes necessary.

and broadcasts thig to all its neighbors. Any node on re-



Epoch Epoch

ceiving this new model, changes it state to ‘broadcast’ and
resets its alert flag and timer. It then forwards the new model : : :
to all its children. We use the alert wait period to minimize i i P ; R
the number of false alarms by making a node waitftime | epoch | epocn{ | Epocn] epoch -
units before the alert is acted upon. N H— i R
Note that the use of linear regression allows us to com-
pute the weights in an_exact_fashl_on compared J.[O Centr‘Fj‘hlz—"f‘g}ure 2: Eachepochis of 500,000 ticks and consists of
tion. Moreover, the dimensionality of the matncﬁ’@TXl- several 20.000 ticksubepochs
andX/y; ared.d + d.1 = O(d?). This shows that the com- ’ P
munication complexity is only dependent on the degree of
the polynomial or the number of attributes and independent

of the size of the dataset. 4GB of physical memory running Windows XP. The dis-
It must be noted that a new convergecast/brodacggfted network has been simulated on this machine using
round is invoked whenevet? goes below at all the nodes. a topology generated by BRITE(t p: / / ww. cs. bu
R* < eimplies that the data has changed and the moge|,,/ brit e/). We have experimented with the Barabasi
does not fit the data. To improve model quality, the coefjhert (BA) model. We convert the edge delays to simu-
ficients of functionf are recomputed using the converggsior ticks for time measurement since wall time is mean-
ca25et/broadcast procedure. However, another scenart@wijgyjess when simulating thousands of nodes on a single PC.
R* becomes less tharis when the assumption of linearity iszach simulator tick in our experiment corresponds to 1 msec
no Io_nger valid. In this case it may §t||| be pqs_S|bIe to avoif| BRITE topology. On top of each network generated by
multiple convergecast rounds by using a sufficiently lovt (YR TE, we overlay a communication tree. We make the as-
significant) value of in application scenarios where an aps,mption that the time required for local processing igativ
proximate fit is good enough such as in anomaly detectiQqgmpared to the overall network latency and therefore, con-

Another way of addressing this problem is to directly conyargence time fobReMois reported in terms of the average
pare the coefficients of the old and the new model and t e delay.

to stop the recomputation phase if the two models are close |y oy experiments we have used a leaky bucket mech-
while the R? is still low. More details of monitoring nonlin- 4nism which prevents a node from sending two messages
ear models is beyond the scope of this work. within the same leaky bucket period. Whenever a néle
_gets a message, it sets a timeftgimulator time units and
4.4 Correctness ofDReMo: Correctness 0DReMois  qown counts. If another event occurs while the timer is still
based on Theorem 4.1. Based on the conditions, any ngd@ye p, does not send another message. Only if an event
will keep sending messages untLone of the following coBgcyrs after the expiration of the timd®, is allowed to send
ditions occur: (1) for every node&’; = v? &(2) for ev- another message. Note that this technique does not affect
ery P; and every neighboP;, K;, A; j,andH,;; € R. In the correctness of the algorithm, since we do not destroy any
the former case, obviouslg(% _ g(vﬁ)' In the latter events. In the worst case, it may only delay convergence. In

0 20 40 500 520 540 1,000 X100  Time

) o our experiments we have set the valuelouch that any
case, Theorem_ff.l dictates that € R. Therefore, in either hode is able to send between 10 to 20 messages fir each
of the caseg(K;) = ¢(v“), thereby guaranteeing globakub-epoch. This rate is enough to all@ReMoto converge
correctness. Also since we are computing linear regressigile offering a very low communication overhead.

models, the decomposability of the convergecast matrices In order to demonstrate the effects of the different
XTx =Y" XI'X;andXTy =>" | X'y, also ensure parameters ofDReMo in a controlled manner, we have
that the model built is the same as a centralized algorittused synthetically generated data following a linear model

having access to all of the data. (Experiments with real data is given in the next section.)
Given an input vecton:_;- = Zj1...Zj(a-1), the output is
5 Experimental results generated according tg; = wo + ZZ;} wyx;. + 0, where

In order to analyze the performancel@ReMaq we have per- § ~ AN(0,0%). For any experiment, we have randomly
formed a variety of experiments under different conditionshosen the values af;'s ando in the range -5 to +5. Fig.
We first describe the simulation environment and the datageshows the timing diagram for all experiments. At some
followed by the performance of the algorithm. predefined clock ticks, we have changed the data distributio
by randomly changing the weighis-s of the data generator.
5.1 Experimental setup: We have used a simulated envi¥e refer to this time interval as apoch A epoch consists
ronment for running the experiments. The simulations hawkseverakub-epochs— those time points when we replace
been run on a dual processor machine of 3.3 GHz each w0t of the data at each node, generated from the current
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Figure 3: Dataset, accuracy and messageBReMoalgorithm in monitoring mode.
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Figure 4: Variation of accuracy (top row) and messages ¢botbw) for different.S;| = 10, 50 and100 from left to right.

distribution. Thus each sub-epoch refers to a unit of data For all the experiments, unless otherwise stated, we

change. We choose length of each epoch as 500,000 tickge used the following default values of the parameters:

and sub-epoch as 20,000 ticks. Note that the number of tinjes|S;| = 75, (2) d = 10, (3) L = 2000, (4) e = 0.5,

data is replaced in every epoch is 500,000/20,000=25 and 8l number of tangent lines = 6, and (6) number of nodes

our experiments are run for many epochs. (n) = 1000. In the experiments we have not placed the
We report three quantities for the experimenéscu- tangents optimally according to Lemma 4.1; rather we have

racy, convergence rateand communication cost These placed the tangents at equidistant points onatfexis. We

quantities are measured differently for the two modes m@hn several experiments and found that this simple tecleniqu

DReMo— (1) when only the monitoring algorithm operatesyorks quite as well.

and (2) when the nodes jointly execute the convergecast-

broadcast procedure after the monitoring algorithm raise® Performance analysis oDReMo monitoring phase:

an alert. For the former mode of operation, accuracylis this mode the nodes are not allowed to deploy the

measured as the number of nodes which correctly identifgnvergecast-broadcast to rebuild the model and only raise

whetherR? = ¢, while for the other mode, it is measured aslerts when the model is out-of-date. This allows us to

the averager? value over all the nodesConvergence rate demonstrate the convergence properties and message com-

is defined as the number of simulator ticks from the begiplexity of DReMa

ning of an epoch to the time the algorithm reaches 99% accu- Fig. 3 shows a typical dataset and the performance of

racy. Communication costonsists of two types of messageshe nodes. For this mode of operation@ReMqg we have

monitoring messages measured as the number of messafjesen the data such that for the odd eposijs, = 0.7429

sent byDReMofor monitoring and computation messageshile for the even epochB?,,, = 0.2451 as shown in Fig.

even

for rebuilding the model. 3(a). This means that, for the odd epochs, the regression



coefficients at each node matches with the weights of the diitis, when the data changes again, the accuracy increases
generator, while for the even epochs they do not. The redlanad it keeps increasing till it reaches close to 100%. Even
is the error threshold. In all the experiments reported inwith data changing at subsequent sub-epochs, we do not see
this mode of operation dReMq the goal at each node is taany drop in accuracy. For these network sizes, convergence
check if the model fits the datee. if R?,, > e for the odd occurs at the following simulator ticks: 50441 (500 nodes),
epochs and??,,,, < ¢ for the even ones. As we see in Figd9282 (1000 nodes), 47120 (2000 nodes), and 47989 (4000
3(b), accuracy is very high (close to 100%) for each epocindes).
once the algorithm converges after the initial data change.
Fig. 3(c) shows the monitoring messages per node plotied.2 Scalability: Fig. 6(b) shows the accuracy and Fig.
against time. For the default leaky bucket size of 2000, thé) shows the messages (separately for the odd and even
maximal rate of messages per sub-epagh @ata change) epochs) as the number of nodes is varied from 500 to 4000.
is bounded by x 20, 000/2000 = 20 for DReMq assuming Each point in the accuracy plot is the average accuracy of
2 neighbors per node on average. Also, an algorithm whibfRReMoover the last 80% of time for each epoch. Similarly,
broadcasts the data for each change will have this maxiraath point in the messages plot shows the messages per node
rate to be 2 per sub-epoch. HOReMaq this rate of messagesper sub-epoch during the later 80% of the epoch. For both
per node per sub-epoch has been calculated to be only 0.@2é&se plots, the circles represent the odd epochs, while the
well below these maximal rates. squares represent the even epochs and bars represent the
For DReMgq size of the local dataset plays a vital rolstandard deviation over 5 runs of the experiment. Since both
in the accuracy and message complexity. Increasing #eeuracy and messages do not vary for different network
number of data points per node improves the quality sizes we can conclude thaReMois highly scalable.
the local sufficient statistics and hence lowers the message We have also run several experiments by varying the
required by DReMo to agree with its neighbors. Thisother parameters — dimension of the data, size of the
hypothesis is verified by Fig. 4, which shows an increasel&aky bucket and number of tangent lines. For all of these
accuracy (top row) and decrease in messages (bottom rpafameters, the accuracy and messages do not vary much.
plotted against time for different;| = 10, 50 and 100 (left We do not present detailed graphs here due to lack of space.
toright). The rate of messages are 0.67, 0.045, and 0.013 per
node per sub-epoch for the three cases respectively. 5.3 Performance analysis oDReMo with convergecast-
The actual value o does not affect the performancédroadcast: We now shift our focus to the other mode of
of DReMq rather the distance betwedt? and ¢ plays a operation ofDReMo— when the algorithm monitors the
major role. Closere is to R? for any epoch, the moremodel and rebuilds it, if outdated. Fig. 7 shows a typical
difficult the problem becomes for that epoch. By varyingrun of the experiment. Fig. 7(a) shows tR& value of alll
between 0 and 1, we demonstrate the performanb&eMo nodes at each time instance. The redline is the default value
with different levels of problem difficulty as shown in Figof ¢ = 0.9. The plot shows thaDReMorebuilds the model
5. Thee values demonstrated here are 0.2, 0.5, and @i7every new epoch. Once the model is rebuilt, the value
from (left to right, all columns). Recall that the value obf R? drops below and only the efficient local monitoring
R?%,, = 0.7427 for odd epochs and??,., = 0.2451 for algorithm operates for the rest of the epoch. The algorithm
even epochs. Foe = 0.2, R?,, is very close to the has a high true positive rate (alerts raised when necessary)
threshold and hence, the accuracy is close to 60% with hayid a very low false positive rate (unnecessary alerts). Fig
message complexity (leftmost column, both top and bottdftb) shows the monitoring messages per node per sub-epoch
figures). For the same, checking forR?,, > 0.2 is a and Fig. 7(c) shows the cumulative messages exchanged for
much simpler problem. On the other hand, o= 0.7, recomputing the model. As is evident from Fig. 7(b) and
R?,, is very close toe. This is reflected in the decrease if7(c), the algorithm offers a very low overhead of monitoring
accuracy and corresponding increase in messages for theash data message consists of the following two matrices:
column (both top and bottom) figures. In this case, checkiag@ X; (d x d) and X!'y; (d x 1). The number of bytes
if RZ,., < 0.7 becomes simple. transmitted in each data messageldg2 + d, d being the
number of features.
5.2.1 Convergence rate:Fig. 6(a) demonstrates the con- We study the effect of two parameterz. ¢ and the
vergence rate dReMofor different network sizes. We havealert wait periodr on the accuracy and message®&eMa
plotted the performance from the beginning of one epoch flig. 8 shows the variation of averag® over all nodes and
the time the nodes converge to 99% accuracy. At timer@essages for different values of The (red) squares show
the accuracy is 0%. When the data changes at 20,000 ti¢ke, averagei? value over the entire experiment duration,
accuracy increases and then again drops because the nigthesing the epoch transitional periods. The (blue) cscle
need more information to agree on the outcome. At 40,08ow the respective values. This plot shows that (1) the
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Figure 5: Variation of accuracy (top row) and messages gbotow) for differente = 0.2, 0.5 and0.7 from left to right.
Recall thatR? = 0.2451 for the even epochs, and henrce 0.2 makes it very close to the threshold (left column). Simjlarl
for the odd epochs?? = 0.7429 and soe = 0.7 makes this too close to the threshold. In both these casesithéecrease
in accuracy and increase in messages.
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The next two figures demonstrate accuracy and messageswislize of the network.
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Figure 7: Accuracy and messages for enbiReMoalgorithm while both monitoring and re-building the model.

average computeR? is always higher than thevalue, and per node per epoch. The monitoring messages vary between
(2) the R? value increases with increasingto maintain 0.028 and 1.0154 — far less than the maximal rate of 20 and
the required accuracy since higherimplies more rigid 2 messages as discussed earlier. Also the average number of
model fitting requirement. The second figure shows batbmputation rounds vary between 1.1 and 3.12 which means
the monitoring messages and convergecast broadcast rotimaisnew models are built between 1 and 3 times per epoch.



. e ] are other options or routes available. EIRGRID publishes
w095 AT e 7 o system performance data every 15 mins. The data consists
223 ““_;~B;;,;‘,_‘fﬁ..‘-'-O“"‘ m . T of the following: electricity demand (in Mega Watts), wind
Zog o ’gDW‘ 0 generation (in Mega Watts) and G@missions (in Tonnes

°%g5 o7 o8 0908 o5 ar_oh 68 o per hour). This dataset has also been used by Kranair
[10] for forecasting electricity demand using kernel regre

Figure 8: Accuracy and messagesditeMovs. e. sion.

Our goal in this work is to demonstrate the ability
of DReMoin assessing the state of the ESG distribution
system. We have used wind generation and electricity

%‘ demand as inputs in order to model €®mission, with

the underlying assumption that higher than usual G®el
indicates higher fossil fuel burning and hence lesser green
energy generation. Detection of such events may ultimately
help the grid companies to dynamically switch on or off more
renewable energy sources.

We have downloaded these three features for a period
of 9 months Jan 01, 2010 to Sep 30, 2010 (273 days).
Since the data is collected every 15 mins, there are a total
As can be seen from the graph, this value is small for low@r 26,208 samples in our full dataset. In our setup, we
values ofe since model fitting requirements are relaxed. take each month's data as an epoch and at every 500,000

We have also varied the alert wait periedto take Simulator ticks replace all of the data of all nodes with the

values 10, 50, 100, 500 and 1000. Fig. 9 shows tRext month’s data. We have divided each month’s data
variation of accuracy and messages for the values-.of (@pproximately 2900 points) into 50 nodes such that each
AverageR? value varies very little, and always stays great8Pde has approximately 55 data points per epoch. We have
thane. As expected, the convergecast broadcast rourf@ken @ small sample of the data from the first epoch and
per node per epoch decrease and the monitoring messggé{g built a regression mod_e! and used it as the_ref_erence
increase since the convergenceRReMois delayed with model throughout the remaining epochs of the distributed
increasing values of. The optimal value of- is that for experiment. It is worthwhile to mention here that we have
which both monitoring messages and computation rouri€dDReMoto only detect the changes (no convergecast
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Figure 9: Accuracy and messageddteMovs. 7.

are minimized. broadcast). In the absence of real faults in the data, we have
altered the C@values of the month of June by20% of the
6 Application to Electrical Smart Grid monitoring actual values. Fig. 10 shows the experimental results. The

Electrical smart grids (ESG) provide an exciting venue f})?p figure shows the percentage of nodes agreeing that the

deploying this algorithm in a realistic setting. In this ea model fits the data at each time instance. For the entiregberio

i o till the end of May we see a good agreement between the

we demonstrate how we can monitor the£&nission from . . .
. L ) . .. _model of Jan 2010 and the data, with some intermediate false
energy usage in electric grids. Since data in the electiit gr

is inherently distributed, this calls for a distributed nton alarms. The interesting phenomenon occurs during June

ing algorithm. Unfortunately, a lot of the electric grid 2010 and the algorithm correctly detects the event. After

: . ) . une, when the data changes again, the algorithm recovers
mance data is proprietary and not available for experinhienta . . :
. and shows high accuracy. In order to validate this, we have
purposes. As a result we have used the data available fr&mt rearession models for each epoch separatelv. andifoun
EIRGRID (htt p: //www. ei rgri d. conl ). Itis anIrish 9 P b Y.

. A t they are very similar, except the data for June 2010. The
state-owned company developing and maintaining GRID 3ttom plot shows the messages exchange®RgMofor
— an efficient power generation and transmission infrastrLH%iS monitoring
ture having a meshed network of approximately 6,500 km '
of high voltage overhead lines and underground cables a7nd
over 100 transmission stations. This grid system seargless| ~ o
connects both fossil fuel generation plants and renewale & this paper we have presented a new method for monitoring
ergy sources such as wind turbines, solar arrays. All of tgear regression models in distributed environments. The
major generating plants feed into this grid and power issraroposed algorithm uses? statistic to assess the quality of
mitted nationwide. This design ensures that power can fiéget of linearly dependentinput-output observations iisa d
freely to where it is needed and that if one power statidﬁ',bl?te_d fashion and raises an alert whenever the val_ueeof th
power line or transmission station is non-operationalighestatistic drops below a predefined threshol@he algorithm

Conclusion
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