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Abstract take a step further by incorporating sensors that will strea

This paper considers the problem of change detection using Il Iarge.volume of data ata highrate. F9re><amp|ey th? Large
cal distributed eigen monitoring algorithms for next getien SYNOPtc Survey Telescopes (LSST) W'"_take_ repeat images
of astronomy petascale data pipelines such as the Largepsyr®f the night sky every 20 seconds. This will generate 30

tic Survey Telescopes (LSST). This telescope will take aepa-  terabytes of calibrlated imagery every night that will nemzq t
ages of the night sky every 20 seconds, thereby generatiner30 P€ Co-analyzed with other astronomical data stored atreliffe

abytes of calibrated imagery every night that will need tocbe €Nt locations around the world. Change point detection and

analyzed with other astronomical data stored at differecations €VenNt classification in such data sets may provide useful in-
around the world. Change point detection and event claadic SIghts to unique astronomical phenomenon displaying-astro
in such data sets may provide useful insights to unique rine physically significant variations: quasars, supernovae; v

ical phenomenon displaying astrophysically significantations: able stars, and potentially hazardous asteroids. Anajyzin
quasars, supernovae, variable stars, and potentiallyd@zaster- SUch high-throughput data streams would require large dis-
oids. However, performing such data mining tasks is a chgife tributed computing environmgnts for offering scalable-per
problem for such high-throughput distributed data streamshis formance. The knowledge discovery potential of these fu-
paper we propose a highly scalable and distributed asynobeo ture massive data streams will not be achieved unless novel

algorithm for monitoring the principal components (PC) atis data mining and Ch.ange detection algorithms are developed
dynamic data streams. We demonstrate the algorithm one ety 0 handle decentralized petascale data flows, often from mul
of distributed astronomical data to accomplish well-knaastron- tiple distributed sensors (data producers) and archivats (d
omy tasks such as measuring variations in the fundamentabmif Providers). Several distributed computing frameworks are
galaxy parameters. The proposed algorithm is provablyecoti.e. P€INg deve_lop_ed [12], [18], _[1_9]' [14] f(_)r such application
converges to the correct PCs without centralizing any datd)can Ve need distributed data mining algorithms that can operate
seamlessly handle changes to the data or the network. Reai-exON Such distributed computing environments. These algo-
iments performed on Sloan Digital Sky Survey (SDSS) Cam,ognthms should be highly scalable, be able to provide good
accuracy and should have a low communication overhead.
This paper considers the problem of change detection in
1 Introduction the spectral properties of data streams in a distributed env

Data minina is blaving an increasinaly important role in ag(_)nment. It offers an asynchronous, communication-efficie

g1s playing . gy imp c%stributed eigen monitoring (DDM) algorithm for monitor-
tronomy research [20] involving very large sky surveys SUEY the principle components (PCs) of dynamic astronomical
as Sloan Digital Sky Survey SDSS and the 2-Micron AllhY P b b y

Sky Survey 2MASS. These sky-surveys are offering a ngva\}ta streams. It part|_cularly con_sm_lers an important nobl
.In_ astronomy regarding the variation of fundamental plane

way to study and analyze the behavior of the astronomig rlucture of galaxies with respect to spatial galactic dgns

objects. The next generation of sky-surveys are pmsedZE)d demonstrates the power of DDM algorithms using this

example application. This paper presents the algorithm, an
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first attempts on developing a completely asynchroncaiscess distributed astronomical databases worldwiderto co
and local algorithm for doing eigen analysis in digelate with each of those 100,000 nightly events, in order to
tributed data streams model, classify, and prioritize correctly each event rapid

One known category of temporally varying astronomical ob-
* Based on data sets downloaded from astronomy ¢3ig is a variable star. There are dozens of different well

logues such as SDSS and 2MASS, we demonstrate Naw, classes of variable stars, and there are hundreds (eve
the galat_:tlc fundgmenta_l plane structure varies with d’tﬁousands) of known examples of these classes. These stars
ference in galactic density. are not “interesting” in the sense that they should not pro-

Section 2 describes the astronomy problem. Sectiofléce alerts (change detections), even though they are chang
presents the related work. Section 4 offers the backgroufd in brightness from hour to hour, night to night, week
material and formulates the data mining problem. Sectihweek — their variability is known, well studied, and well
5 describes the centralized version of the problem whffgaracterized already. However, if one of these starssclas
Section 6 models the distributed version and explains tevariability were to change, that would be extremely in-
eigenstate monitoring algorithm. Section 7 presents figgesting and be a signal that some very exotic astropHysica

be notified promptly (with an alert) of these types of varia-

2 The Astronomy Problem tions. Just what is this variation? It is essentially a ctesing

. . _the Fourier components (eigenvectors) of the temporal flux
When the LSST astronomy project becomes Operatm%?j(ve (which astronomers call "the light curve”). This prob

within the next decade, it will pose enormous petascale dF\ . . L
. ) ) m has several interesting data challenge characterigfiy
challenges. This telescope will take repeat images of ffie

night sky every 20 seconds, throughout every night, for tbe data streaming rate is enormous (6 gigabytes every 20

. : ; L Lo seconds); (2) there are roughly 100 million astronomical ob
years. Each image will consist of 3 gigapixels, yielding 6 gi . . . i
. ects in each of these images, all of which need to monitored

gabytes of raw imagery every 20 seconds and nearly 30 {gr- . : . .
: : ; o )0r change (i.e., a new variable object, or a known variable

abytes of calibrated imagery every night. From this “cosmic . . S
. ., 2 . . object with a new class of variability); (3) 10 to 100 thoudan
cinematography”, a new vision of the night sky will emerge™ " . .
. . : “new” events will be detected each and every night for 10

— a vision of the temporal domain — a ten-year time series, . . .
. . . . ears; and (4) distributed data collections (accessedigjro
(movie) of the Universe. Astronomers will monitor these re;-

peatimages night after night, for 10 years, for everythivag t he Virtual Astronomy Observatory’s worldwide distriboni

has changed — changes in position and intensity (fiux) wil Bfe databases and data repositories) will need to correlated

: and mined in conjunction with each new variable object’s
monitored, detected, measured, and reported. For those tém ; : e

O . ata from LSST, in order to provide the best classification

poral variations that are novel, unexpected, previously un . .

. e .- .models and probabilities, and thus to generate the most in-

known, or outside the bounds of our existing cIaSS|f|cat|§n

schemes, astronomers will want to know (usually within 8rmed alert notification messages.
' y Astronomers cannot wait until the year 2016 (when

seconds of the image exposure) that such an event (a ch 98T begins its sky survey operations) for new algorithms

in the night sky) has occurred. This event alert not|f|cat|(%n begin being researched. Those algorithms (for disteibut
must necessarily include as much information as pos&ble?o . o ) o .
A . mining, change detection, and eigenvector monitoringl) wil
help the astronomers around the world to prioritize their re )

. - . . need to be robust, scalable, and validated already at that
sponse to each time-critical event. That information pacI%e

will include a probabilistic classification of the event,thwi me. So, itis imperative to begin now to research, test, and

some measure of the confidence of the classification. anqggdate such data mining paradigms through experiments

makes the LSST so incredibly beyond current projects is tha"f‘t replicate the expected conditions of the LSS.T sky sur-
. . vey. Consequently, we have chosen an astronomical research
most time-domain sky surveys today detect 5-10 events

ﬁeoblemthat is both scientifically valid (i.e., a real astwm
week; LSST will detect 10 to 100 thousand events per nig i y o ooy

. o o esearch problem today) and that parallels the eigenvector
Without good classification information in those alert pacIE

. . : .. monitoring problem that we have described above. We have
ets, and hence without some means with which to prioritiz o
) chosen to study the principal components of galaxy param-

the huge number of events, the astronomy community wou . ; ; L

C I eters as a function of an independent variable, similareo th

consequently be buried in the data deluge and will miss somé . - ;
. . . emporal dynamic stream mining described above. In our
of the greatest astronomical discoveries of the next 20syear . . X . )
e -~ . current experiments, the independent variable is not the ti
(perhaps even the next "killer asteroid” heading for Earth -

this time, it won't be the dinosaurs that will go extinct!). dimension, butlocal gal_axy den5|t_y.
, . 2. . The class of elliptical galaxies has been known for
To solve the astronomers’ massive event classificati . . .
) . .20 years to show dimension reduction among a subset of
problem, a collection of high-throughput change detectig

algorithms will be needed. These algorithms will need PohySICal attributes, such that the 3-dimensional distidu



of three of those astrophysical parameters reduce to atratized astronomy data without first down-loading to a cen-
dimensional plane. The normal to that plane represents tia site have been applied to eigen-analysis and outlier de
principal eigenvector of the distribution, and it is foutndt tection [16]. There the data was distributed verticallyf-(di
the first two principal components capture significantly enoferent full attribute columns reside at different siteshiber
than 90% of the variance among those 3 parameters. in this paper, the data is distributed horizontally (diéfet

By analyzing existing large astronomy databases (sutdta tuple sets reside at different sites). Moreover, ndne o
as the Sloan Digital Sky Survey SDSS and the 2-Micron Allhe above efforts address the problem of analyzing rapidly
Sky Survey 2MASS), we have generated a very large datag®inging Astronomy data streams.
of galaxies. Each galaxy in this large data set was then as-
signed (labeled with) a new "local galaxy density” attribgut 3.2 Data Analysis in Large Dynamic Networks There
calculated through a volumetric Voronoi tessellation af ths a significant amount of recent research considering data
total galaxy distribution in space. Then the entire gala@nalysis in large-scale dynamic networks. Since efficient
data set was horizontally partitioned across several dozata analysis algorithms can often be developed based on
partitions as a function of our independent variable: tlcallo efficient primitives, approaches have been developed for
galaxy density. computing basic operations.{y.average, sum, max, random

As a result, we have been able to study eigenvectampling) on large-scale, dynamic networks. Kerspal.
changes of the fundamental plane of elliptical galaxies af28] and Boydet al. [8] developed gossip based randomized
function of density. Computing these eigenvectors for § vaalgorithms. These approaches used an epidemic model of
large number of galaxies, one density bin at a time, in a desomputation. Bawat al. [4] developed an approach based
tributed environment, thus mimics the future LSST dynamim probabilistic counting. In addition, techniques haverbe
data stream mining change detection (eigenvector chandeyeloped for addressing more complex data mining/data
challenge problem described earlier. In addition, thisgal problems over large-scale dynamic networks: association
problem actually has uncovered some new astrophysicalmde mining [29], facility location [24], outlier detectip
sults: we find that the variance captured in the first 2 prif8], decision tree induction [7], ensemble classificatias][
cipal components increases systematically from low-dgnssupport vector machine-based classification [1], K-means
regions of space to high-density regions of space, and we fahalstering [11], top-K query processing [3].

that the direction of the principal eigenvector also drsfgs- A related line of research concerns the monitoring of

tematically in the 3-dimensional parameter space from lowarious kinds of data models over large numbers of data

density regions to the highest-density regions. streams. Sharfmaet al. [27] develop an algorithm for mon-
itoring arbitrary threshold functions over distributedtala

3 Related Work streams. And, most relevant to this paper, Welffal. [28]

The work related to this area of research can broadly be sfgveloped an algorithm for monitoring the L2 norm. We
divided into data analysis for large scientific data reogit Use this techmque to monitor eigen-states of the fundaahent
and distributed data mining in a dynamic networks of nodd¥ane concerning elliptical galaxies.

We discuss each of them in the following two sections. Huanget al. [21] consider the problem of detecting
network-wide volume anomalies via thresholding the length

3.1 Analysis of Large Scientific Data CollectionsThe Of @ data vector (representing current network volume) pro-
U.S. National Virtual Observatory (NVO) [26] is a |argé§cted onto a subspace closely related to the dominant prin-
scale effort to develop an information technology infrastr CiPal component subspace of past network volume data vec-
ture enabling easy and robust access to distributed astrontprs. Unlike us, these authors consider the analysis ofta ver
ical archives. It will provide services for users to seard®lly distributed data set. Each network node holds a gidin
and gather data across multiple archives and will provi#ighdow stream of numbers (representing volume through it
some basic statistical analysis and visualization fumetioWith time) and the network-wide volume is represented as
The International Virtual Observatory Alliance (IVOA) [p2 & matrix with each column a node stream. Because of the
is the international steering body that federates the wérkdfference in data distribution (vertical vs. horizoniafeir
about two dozen national VOs across the world (includifProach is not applicable to our problem. We assume that
the NVO in the US). The IVOA oversees this large-scale €fach node is receiving a stream of tuples and the network-
fort to develop an IT infrastructure enabling easy and roblf§de dataset is matrix formed by the union of all nodes’ cur-
access to distributed astronomical archives worldwide. ~ently held tuples (each node holds a collectioroeisof the
There are several instances in the astronomy and sp®@rix rather than a singleolumnas considered by Huang).
sciences research communities where data mining is being " the next section we present the notations and problem
applied to large data collections [12], and [10], [2]. pigdefinition that will be used throughout the rest of the paper.

tributed data mining approaches aimed at analyzing decen-



4 Background

In order to analyze the data streams from the next gendrieblem Statement Given a time-varying data matrix1;

tion of large scale astronomy systems such as the ones ¢grach node, maintain an up-to-date set of eigenvectors and
structed by the LSST project, we need scalable infrastractgigenvalues of the global covariance maitbat any time

for computing. It is generally agreed among the astrononfiptance.

community that the computing infrastructure will be a grid- ) ) )

like environment comprised of a collection of desktop com-  Typically, we have the following constraints:

pute nodes, high performance machines, and data sourcas|ow communication overhead

among others. We need data analysis algorithms that will i

be able to work in this distributed heterogeneous computing® dynamic data and topology

environment. This paper offers distributed eigen-analgisi ¢ correct result compared to centralized execution
gorithms that can handle data from distributed nodes (eithe . _ .
inherently distributed data or artificially distributedonder _C1ven this problem statement, we decompose it into two
to scale up the performance). parts: (i) first, given an estimate of the eigenvectors and

In the remainder of this section we first define the not i_genvalu_es, we d_iscuss a highly efficient and local algorit
tions that will be used to discuss our distributed algorgh o _checklng the *fitness’ of the model to the global data_l, and
and then formally state the problem definition. ii) if the data changes to the extent that the current eséma

are outdated, we sample data from the network and rebuild

4.1 NotationsLetV = {P,...,P,} be a set of nodesthe rlno?]el. ) how h h I d and
connected to one another via an underlying communication n the next section we show how we have collected an
infrastructure such that the set @t's neighbors,T;, is preprocessed the astronomy catalogue data for fundamental
known to P;. Additionally, at any time,P; is given a plane computation.

time-varying data matrixM; where the rows correspond . - .

to the instances and the columns correspond to attribu?escentral'zed Principal Components Analysis for the

or features. Mathematicallyt; = [Z;17:3...] , where F_unda_lm.ental Plang Cf)_mputatlon

eachz;} = [z ... 7icd € RYis a row vector. The For identifying the variability of fundamental plane on the

covariance matrix of the data at noHe denoted by;, is the Pasis of galactic densities, we have used the SDSS and

matrix whose(i, j)-th entry corresponds to the covariancéMASS data sets available individually through the NVO.

between thei-th and j-th feature (column) ofM;. The Since galactic density is not observed by the NVOs, we ha_v_e

global data set of all the nodes’ datagis= |J!", M,. cross-matched the two data sets and computed the densities
It can be shown that if the attributes 6f are mean Pased on other property values. In this section we describe

shifted,i.e. the mean of each attribute is subtracted frofi€ data gathering procedure for this approach followed by

each value of that attribute, the covariance matrix can ¢ PCA computation.

written asC = G'G (we have ignored the scaling by the

number of points irg). Also under such conditions, it carP-1 Data Preparation We create a large, aggregate
be shown tha€ = 3", C;. data set by downloading the 2MASS XSC extended

source cataloghttp://irsa.ipac. cal tech. edu/
4.2 Problem Formulation The identification of certain @PP! i cations/ Gator/) for the entire sky and cross-
correlations among parameters has lead to important disc®@tch it against the SDSS catalog using the SDSS
eries in astronomy. For example, the class of elliptical akd0ossid tool Qttp://cas. sdss. org/astro/ en/
spiral galaxies (including dwarfs) have been found to ogcup©©! S/ cr ossi d/ upl oad. asp) such that we select all
a two dimensional space inside a 3-D space of observed Waique attributes from thBhotoObjAlland SpecObjAlita-
rameters, radius, mean surface brightness and velocity 8i§S as well as thphotozdlattribute from theé>hotoztable
persion_ This 2D p|ane has been referred to as the FunWQlCh IS an eStlmated redshift value. We filter the data based
mental Plane [17]. In this paper we first describe a PCR the SDSS identified type _to remove all non-galaxy tuples_.
computation for detecting variation of fundamental plan®/e then filter the data again based on reasonable redshift
with galactic properties such as density and then develop(@gtual or estimated) values.003 < » < 0.300). _
asynchronous local distributed algorithm for monitorihg t For creating the new attribute, namely, galactic density,
eigenvectors of the global covariance mat@y ¢f the data. We transform the attributest, cy, ¢z (unit vectors),z, and
As we discuss in the next section, eigenvectors of the covéﬂfFOtOZdl to 3D Euclidean coordinates using the transforma-
ance matrix define the fundamental plane of the galaxies.!'on

The problem that we want to solve in this paper can be (X,Y,Z) =

stated as follows: (Distance x cx, Distance X cy, Distance x cz)



whereDistance — 2 x {1 _ L___|. Wefinally use we carry out the fu_ndamental plane calculation or princ_ipal
V/(1+redshift) component analysis and observe that the percent of variance
these Cartesian coordinates to compute the Delaunay Triggbtured by the first two PCs is very high. This implies that
gulation [13] of each point (galaxy) in 3D space. To remo\ge galaxies can be represented by the plane defined by the
bias in the density calculation of the Delaunay cells, waidesirst two eigen vectors. It is also observed that this peiagat
tify all boundary points and remove them from the compifcreases for bins with higher mean galactic density. We
tation. This tessellation procedure is a data transfoonatieport these results in Section 7.
step, which converts the spatial location of a galaxy (withi  As discussed earlier, analysis of very large astronomy
the 3-D distribution of galaxies) into a single numeric agatalogs can pose serious scalability issues, especiatyw
tribute (local galaxy density). This parameter has astysphconsidering streaming data from multiple sources. In the
ical significance, even more than the actual spatial lonatigext section we describe a distributed architecture for ad-
information (.e., galaxy properties are often modified angressing these issues and then show how the centralized
governed by the proximity of nearby galaxies, such as diyen analysis of the covariance matrix can be formulated

high-density environments), and so we chose to use this ngyva distributed computation and how it can be solved in a
attribute — local galaxy density, as estimated through tBemmunication efficient manner.

tessellation step — because it has strong astrophysieal rel
vance and scientific significance. This is a robust estimagr pistributed Principal Component Analysis

and is as scientifically meaningful as any other attribute\i/vhen resources become a constraint for doing data min-
the science database used n these gxpenments. Now UHE%n massive data sets such as astronomical catalogs, dis-
the output of the Delaunay trlangulanon the volgmes of tl’tllg?buted data mining provides a communication efficient so-
Delaunay cells are computed using the expression lution. For the problem discussed in the last section, we can
formulate a distributed architecture where after croschat
’ ing the data using a centralized cross matching tool, we can
= N ) store the meta data information in a central location. Such a
wherea;, b;, c; andh; are the vertices of the tetrahedrogeryice-oriented architecture would facilitate astroeesto
corresponding to theth pointin 3D Euclidean space. Theyyery multiple databases and do data mining on large data
volume corresponding to theth point is the sum of the sets without downloading the data to their local computing
volumes of all tetrahedrons that contain the particulanpoiresources. The data set is downloaded in parts at a num-
Using the DTFE formulation [15], the density of tih cell per of computing nodes (that are either dedicated comput-

vol(i) = (1/6) - |det(a@ — bi, b; — &, & — hi)

is then computed as follows: ers connected through communication channels or part of a
den(i e large grid) based on the meta data information maintained at
en(i) = (D +1) x & . . :
vol(i) the central server site. In such a computational environmen
andD = 3 for triangulation in 3D-space . seamlessly for providing fast and efficient solutions toebe

tronomers by distributing the task among a number of nodes.

5.2 Binning and PCA The astronomy question that weigure 1 represents one such architecture.
want to address here is whether the fundamental plane

structure of galaxies in low density regions differ fromttha S0SS IMASS
of galaxies in high density regions. For this we take th
above data set containing 155650 tuples and associate v
each tuple, a measure of its local galactic density. Our fin . A TS e
aggregated data set has the following attributes from SD< wery | WTERACE

Petrosian | band angular effective radidaet), redshift @ |
(rs), and velocity dispersionvfl); and has the following
attribute from 2MASS: K band mean surface brightnes
(Kmsh. We produce a new attribute, logarithm Petrosia
| band effective radiusldg(ler)), as log(laer*rs) and a
new attribute, logarithm velocity dispersiotog(vd)), by Figure 1: Distributed Data Mining for Astronomy: Architec-
applying the logarithm ted. We finally append the galacticture

density €ellDensity associated with each of the tuples as

the last attribute of out aggregated data set. We divide the Another distributed data mining scenario for large scale
tuples into 30 bins based on increasing cell density, suath thstronomy databases is the one described in Section 2 for the
there are equal number of tuples in each bin. For each bBST project where high throughput data streams need to be

[Fees =[] []
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modeled and monitored for changes in an efficient manngages: (imonitoringmessages which are used by the algo-
In the next few sections we describe a distributed formaihatirithm to check if the model is up-to-date, (dptamessages
of our centralized eigen analysis and present a eigenstatech are used to sample data for rebuilding a model, and
monitoring algorithm for this purpose. (i) modelmessages which are used to disseminate the newly
built model in the entire network. In this section we will dis
6.1 Problem formulation: Distributed Covariance cuss messages of the first type only. The other two will be
Computation For the distributed setup, the entire data is ndiscussed in the later sections since they are algorithm spe
located at a central location. The data set of n&dis M;. cific.
Note thatG = (!, M,. Itis true that, if the mean of each  Let the model supplied to each of the monitoring algo-
column of G is subtracted from each value 6f i.e. G, is rithms be denoted b§;. For the mean monitoring algorithm,
mean-reduced, then the covariance matrix ¢fi.e. C can the model is a mean vectqr; for the eigenvector monitor-
be written as’ = mgf%- Now, in the distributed ing, the model is a set of eigenvectoﬂ?fX and eigenvalues

setup itis true that: (©). Let&;(M;, L) be the error between the modeland
1 1 n the data of node”;. Explicit computation of; is problem
C=———Gl'Gl=——— Z MTEMy; specific and hence described in respective algorithm gescri
#points ing #points inG = tions. The nodes jointly track #9 = |-, &; is less than a

where M; is mean reduced ;. Thus it turns out that if user-defined _thre_:sholr_d .
data is horizontally partitioned amongnodes and each col-, Any _momtonng message sent by noBigto F contalns_
umn of data is mean shifted using the global mean, the gyormation thatP; has gathered about the network which
variance matrix is completely decomposable. With this fors May not know. In our case, the message sentrby

mulation, we now describe certain notations for discussiffy 7 CONsists of a set of vectors or mafris;; with
our distributed eigen monitoring algorithm. each row corresponding to observations and each column

corresponding to features. Note that if each node broasicast

6.2 Preliminaries The goal of the PC monitoring aIgo-SivJ' = M, then each node would obviously be able

frithm is to track changes to the eigenvectors of the glofi@| COmpute the correct result. However this would be

covariance data matri€. The crux lies in each node main_communication intensive. Our next few sets of vectors allow
g to compute the correct result in a more communication

taining a current set of eigenvectors which it believes to H& '

globally correct. We call it th&nowledgeof a node. Also efficient manner.

each node checks if it is iagreementvith all of its immedi- . : :

ate neighbors with respect to the knowledge. It can be shoWr‘wOWledge This is all the information thak; has about the

that if this is true for all nodes in the network, then the loca error:

eigenvectors of each node is indeed the correct global solu-

tion. Note that from our earlier discussiagf’ G = C when

G is mean shifted. In the distributed setup, the mean of the
lobal data is not known to each node. Therefore we decom- . .

gose the PC monitoring algorithm in to (1) mean monito’éIzgreement This is whatF; andP; have in common:

ing which maintains the correct mean @f and (2) eigen-

vector monitoring ofG”'G. Given an eigenvalue or a mean

as a model, each algorithm monitors changes to the corre- o )

sponding model with respect to the global data using only [#§!d This is whatP; has not yet communicated ¢

knowledge and agreement. If the data changes such that the

models no longer fit the data, the algorithms raise a flag at Hij=Ki\ A

each node. At this point, a sample of the data is centralized,

new models are built and then disseminated to the network. These sets of vectors can be arbitrarily large. It can be

The monitoring algorithms are then restarted with the né&own that if vectors sent bl; to P; are never sent back to

models and the process continues. Below we formally dé- We can do the same computations using only the average
fine these quantities and describe the a|gorithms_ vector of these sets and the size of the set. One way of

ensuring this is to assume that communication takes place
6.2.1 Notations and Assumptionsin this section we OVEr a communication tree — an assumption we make here
present certain notations necessary for the algorithms. ~ (se€ [28] and [7] for a discussion of how this assumption can
In the algorithm, each node sends messages to its P§-accommodated or, if desired, removed).
mediate neighbors to converge to a globally correct solu-
tion. As already discussed, there are three kinds of meswe use them interchangeably here

i =& U U Sjﬂ'

Pj er;

.Ai_j = Siyj @] Sj_’i



The following are the notations used for the set statistiPsoof. For proof the readers are referred to [28] ]}

— (V) average K;, A ;, Hi ;. Si ;. Sji, &, andé9, and (2) . -
sizes [S, |, 1Syl [KCal, [Aijl, [His], |€:], and|€9]. with  Using this theorem, each node can checkif;|| < e. If

these notations, we can now write the result holds for every node, then we are guaranteed to
get the correct result. If there is any disagreement, it @oul
o [Kil = &+ Z |53l be between any two neighbors. In that case, messages will
F el be exchanged and they will converge to the same result. In
o |Ai | =18l +1S;l either case, eventual global correctness is guaranteed.

o [Mijl = [Ki = [Aisl 6.3 Algorithm Both the mean monitoring algorithm and

Similarly for the average of the sets we can write, the eigenvector monitoring rely on the results of Theoreln 6.
to output the correct result. For the eigenvector monitprin
. . =
o« K, = Iléi‘ &1 E + Z 18185 the model supplied to each node are the eigenvéctand

eigenvalued. Assuming that the mean of the data is zero,

P;el; . .
the goal is to check if:

o Aij= a7 (ISi518i + 1854l Sj.)

— —
T _ _ le-vV-eV| < «
o Hij =1 (IKil Ki — | A 5] Aij) L -
Note that, for any node, these computations are local. For = H@ [g g} VeV < e
all the monitoring algorithms we assume that message trans-
mission is reliable and ordered. — 1 Z [MEM;] - V_ooV|] < e
Since&? is a vector inR?, the goal reduces to checking > Ml = ‘ B

if H:S_QH < e. However, the quantitg? is not available at _

any node. In the next section we state a key result whitRus givenV’ ani@, eac_r)] node can locally compute the vec-
allow us to perform the same computation using only localr ( [MIM;] -V — @V). Let this instance of problem be
vectors of a node. denoted byl;. We can write:

6.2.2 Stopping Rule The main idea of the stopping ruleis | ; = _ ([MFmi]-V-eV)
to describe a condition for each noffebased ori;, A; ;, T [M;]
andH; ;, which guarantee th&¢ is greater than orlessthan e I;.|&;| = |M,]

e. In order to apply this theorem, we need to split the entire ) _

domain into non-overlapping convex regions such that th8us for this problem, each node computes the vebtaf;,
ol L which is then used as input to the eigenvector monitoring

quantlty‘ ‘5 H < ¢ has the same value inside each of thea?gorithm

convex regions. We denote the set of all such convex regions Similarly for the mean monitoring algorithm, the model

by C,,. Geometrically, checking if the Linorm of a vectogupp"ed to each node is the meah € R?. In this case,
is less tharx is equivalent to checking i Eg’ lies inside a each node subtracts the meganfrom its local average input

circle of radiuse. Note that, by construction, the region iryectorM;. The goal is to check if:
which the output is @.e. inside the circle is a convex region.

Let us denote it byR.. The outside of the circle can easily Hg —p H S €
be divided into convex regions by drawing random tangent 1 _ .
lines to form half-spaces denoted biy,, R, ...). The S M| ZMz‘ IMil = || < e
areas uncovered k¥, denote theie regions. ! i

As stated by the Theorem below, if the following con- 1 -
dition holds, the node can stop sending messages and deter- H S IM] Z Ml (Mi N “) ‘ s €

mine the correct output based solely on its local averages.

THEOREMG.1. [28] Let P, . .., P, be a set of nodes con-Note that the quantityM;| (M; — 77) can be locally com-
nected to each other over a spanning t&¢V, E). Let£9, puted by a node. For this problem instance denotedhby
K;, A;;, andM, ; be as defined in the previous section. L&e€ following are the inputs:

R be any region irC,,. If at time¢ no messages traverse the o ,E — (W _ _>)

network, and for eact?;,, ; € R and for everyP; € T';, 2 i K

A;; € Rand eitherH; ; € Ror H, ; = 0, thenf9 € R. o Ir.|&] =My



Algorithm 6.1 presents the pseudo-code of the monitor- Update all vectors
ing algorithm while Alg. 6.2 presents the pseudo-code for else

the algorithm which builds the model. The inputs to the Wait L time units and then check again
monitoring algorithm are\1;, &; (depending on how itis de- end if

fined),I';, e andC,, andL. For each problem instanée and end for

I, each node initializes its local vectofs, A; ; and’H, ;. end if

Below we describe the monitoring algorithm with respect to

only one instancé; (and hence drop the instance indg. The monitoring algorithm raises a flag whenever either

The other case is identical. The algorithm is entirely evenjt/1.K;|| > ¢ or |[I2.K;|| > €. Once the flag is set to
driven. Events can be one of the following: (i) change ib, the nodes engage in a convergecast-broadcast process to
local dataM;, (ii) on receiving a message, and (iii) changaccumulate data up the root of the tree, recompute the model
in T';. In any of these cases, the node checks if the conditimmd disseminate it in the network.
of the theorem holds. Based on the value of its knowledge For the mean monitoring algorithm in the convergecast
K;, the node selects the active regi®a € C,, such that phase, whenever a flag is raised, each leaf node in the tree
K; € Ry. If no such region existsk, = (. If R = (), then forwards its local mean up the root of the tree. In this
K; lies in the tie region and hende has to send all its data.phase, each node maintains a user selected alert mitigation
On the other hand, iR, # () the node can rely on the resultonstant,;r which ensures that an alert is stable for a given
of Theorem 6.1 to decide whether to send a message. Ifferiod of timer for it to send the data. Experimental results
all P; € T';, bothA; ; € RyandH,; ; € Ry, P; does nothing; show that this is crucial in preventing a false alarm from
else it needs to s&; ; and|S; ;|. Based on the conditions ofprogressing, thereby saving resources. In order to impieme
the Theorem, note that these are the only two cases whehis, whenever the monitoring algorithm raises a flag, the
node needs to send a message. Whenever it receives a mage notes the time, and sets a timer time units. Now, if
sage § and|S)), it setsS; ; < S and|S; ;| < |S|. Thismay the timer expires, or a data message is received from one of
trigger another round of communication sincekitscan now its neighbors P; first checks if there is an existing alert. If
change. it has been recordedor more time units ago, the node does
To prevent message explosion, in our event-based syse of the following. If it has received messages from all
tem we employ a “leaky bucket” mechanism which ensuriés neighbors, it recomputes the new mean, sends it to all its
that no two messages are sent in a period shorter than a cmighbors and restarts its monitoring algorithm with thene
stantL. Note that this mechanism does not enforce synchroean. On the other hand, if it has received the mean from all
nization or affect correctness; at most it might delay convédut one of the neighbors, it combines its data with all of its
gence. This technique has been used elsewhere also [28]i6]ghbors’ data and then sends it to the neighbor from which
it has not received any data. Other than any of these cases, a

ALGORITHM 6.1. Monitoring Models node does nothing.
Input: €, Cy, &, '; and L. For the eigenvector monitoring, in place of sending a
Output: 0if ||K;|| < ¢, 1 otherwise local mean vector, each node forwards the covariance matrix
Initialization : Initialize vectors; C;. Any intermediate node accumulates the covariance
if MessageRecvdFrofP;, S, |S|) then matrix of its children, adds it local matrix and sends it
S, —Sand(S; | — |S| to its parent up the tree. The root computes the new
Update vectors eigenvectors and eigenvalues. The first eigenstate isghasse
end if to the monitoring algorithm.
if M,, T’; or C; changeghen
for all NeighborsP; do ALGORITHM 6.2. Building Models
if LastMsgSent > L time units agdhen Input: ¢, oy, My, T, Lo .
if Ry =0then Output: (i) V', © such thatHC- V-0 VH < e (i) 7
SetS,; — MRl {/+Tie Region*/} such thal|g — 77|| < ¢
Set|S; ;| — [Ki| — |85l Initialization : Initialize vectors;
end if MsgType= MessageRecvdFromiy)
if A;; & Roor'H;; ¢ Rethen if MsgType = Monitoring_M sg then
SetS; ; and|S; ;| such thatd; ; andH, ; € Ry Pass Message to appropriate Monitoring Algorithm
{/*Theorem Condition*} end if
end if if MsgType = New_Model_M sg {/*Broadcast*}
MessageSentTd;, S ;, [S; ;) then

LastMsgSent— CurrentTime UpdateV, o,



Forward new model to all neighbors
Datasent=false
Restart Monitoring Algorithm with new models
end if
if MsgType = Dataset_M sg {/*Convergecast¥ then
if Received from all but one neighbitren
flag=Output Monitoring Algorithm()
if Datasent = false and flag = 1 then
if DataAlert stable forr timethen
D1=C; + Recvd_covariance
Do=M; + Recvd_mean
Datasent=true;
SendD1, D, to remaining neighbor
else
DataAlert=CurrentTime
end if
end if
end if
if Received from all neighbothen
D=C; + Recvd_Dataset
D_2>=/\/li + Recvd_mean
(V,©)=EigAnalysisD)
7 = mean(Dy)
Forward newV, ©, 77 to all neighbors
Datasentfalse
Restart Monitoring Algorithm with new models;
end if
end if
if M;, T"; or K; changeshen
Run Monitoring Algorithm
flag=OutputMonitoring_Algorithm()
if flag=1 andP;=IsLeaf()then
Execute the same conditions as
MsgType = Dataset_M sg
end if
end if

6.4 Correctness and Complexity AnalysisThe eigen

monitoring algorithm is eventually correct.

THEOREM®6.2. The eigen monitoring algorithm isventu-

ally correct.

6.1 dictates thaf9 € R,. Note that by construction, the
output of the monitoring function (in this case L2-norm)
is invariant insideR,. In other words, the binary function

HE_QH < eand||K;|| < e will have the same output inside

Ry. Therefore in either of the cases, the eigen monitoring
algorithm is correct.  Jj

Determining the communication complexity of local al-
gorithms in dynamic environments is still an open research
issue. Researches have proposed definitions of locality
[6][28]. Note that for an exact algorithm as the eigen moni-
toring algorithm, the worst case communication complexity
is O(sizeofnetwork). This can happen, for example, when
the each node has a vector in a different convex region and
the global average is in another different region. Howea®r,
shown in this paper and also by several authors [28][6] there
are several problem instances for which the resource con-
sumption becomes independent of the size of the network.
Interested readers are referred to [5] for a detailed discus
sion on communication complexity and locality of such al-
gorithms.

7 Results

In this section we demonstrate the experimental results of
both the centralized fundamental plane analysis and the dis
tributed eigen monitoring algorithm. The centralized expe
iments show how the fundamental plane changes with vari-
ations in galactic density, while the distributed experitse
show the performance of the eigen monitoring algorithm for
a streaming scenario of the same experiment. Our goal is
to demonstrate that, using our distributed eigen monigprin
algorithm to compute the principal components and monitor
them in a streaming scenario, we can find very similar re-
sults as were obtained by applying a centralized PCA. Even
though our goal was not to make a new discovery in astron-
omy, the results are astronomically noteworthy. We argue
that our distributed algorithm could have found very sim-
ilar results to the centralized approach at a fraction of the
communication cost. Also, we want to emphasize that this
distributed eigen monitoring algorithm can be applied to a
number of change-detection applications in high-throughp
streaming scenarios (such as the LSST) for important astro-

Proof. For the eigen monitoring algorithm, the computatioRomical discoveries of many types. The importance and nov-
will continue for each node unless one of the following!ty of this algorithm compared to existing distributed PCA

happens:

e for every nodel; = £9

o for every P; and every neighbaoP;, K;, A; j,and™,; ;

are in the same convex regiéty € C.,,.

algorithms is that, this is an exact algorithm that detersain
tically converges to the correct result.

7.1 Fundamental Plane ResultsAs noted in Section 5.1,
we divide the entire dataset into 30 bins. The bins are
arranged from low to high density. In this section we present

In the former case, every node obviously computes tthee results of our fundamental plane experiments for ordy th
correct output since the knowledge of each node becona#iptical galaxies for 30 bins.
equal to the global knowledge. In the latter case, Theorem Our first experiment (Figure 2) shows the variance cap-



tured by the first PC (PC1) as the density of the galaxiee plot the direction of the normal to the plane defined
increase. The-axis shows the mean density of each bin ioy the first 2 PCd.e. pcl and pc2. Since each of these

log-scale. As seen in the figure, the variance captured Bg's are vectors in 3-d, so is the normal to the plane. The
PC1 increases monotonically with increase in mean galagtamrmal vector is represented by its two directional angles:

density. the spherical polar anglésand¢. Figure 4 shows a plot @f
and¢ for 30 bins. Figure 4(a) shows the variationdodind ¢
86 : independently withog of mean galactic density. Figure 4(b)
. . . shows the variation of both wittbg of mean density. The
g 84 oo 1 systematic trend in the change of direction of the normal
&) cee® vector seen in Figure 4(b) is a new astronomy result. This
%82’ O represents exactly the type of change detection from eigen
§807 o o0° | monitoring that will need to be applied to massive scientific
g . data streams, including large astronomy applications {DSS
%78,. * oo and large-scale geo-distributed sensor networks, in order
= ®eqs * to facilitate knowledge discovery from these petascala dat
s 4 17 s 15 20 i 2 25 2 a5 collections.
Log of mean density across bins
Figure 2: Variance captured by PC 1 w.r.t. log of mea ’ ‘. . ves® e )
density of each bin. Bin 1 has the lowest mean density a ., |® o® e "-'..' . .
Bin 30 the highest. The variance captured by PC1 increas . .
monotonically with increasing bin density. I » NI T
0g of mean density across bins

Figure 3 provides the most significant scientific result.
demonstrates the dependence of the variance captured by
first 2 PC’s with respect tiog of bin density. As seen, the
variance increases monotonically from almost 95% to 98
with increase in galactic bin density. This clearly demor
strates a new astrophysical effect, beyond that traditipna
reported in the astronomical literature. This results ftbm
application of distributed data mining (DDM) on a signifi-
cantly (by 1000 times) larger set of data. More such remar
able discoveries can be anticipated when DDM algorithms
the type reported here are applied to massive scientific (a
non-scientific) data streams of the future.
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Figure 4: Plot of variation off and ¢ independently with

Figure 3: Variance captured by PCs 1 and 2 w.r.t.

log Blln number. The bins are numbered in increasing order of

mean density of each bin. Bin 1 has the lowest mean dengfﬁps“y'

and Bin 30 the highest.

To analyze more deeply the nature of the variation 82 Results of Distributed PCA Algorithm The dis-
the first two PCs with respect to increasing galactic densityibuted PCA implementation makes use of the Distributed



Data Mining Toolkit (DDMTY— a distributed data min-
ing development environment from DIADIC research lab at
UMBC. DDMT uses topological information which can be
generate by BRITE a universal topology generator from
Boston University. In our simulations we used topologies
generated according to tiBarabasi Albert (BAmodel. On

top of the network generated by BRITE, we overlayed a
spanning tree. We have experimented with network size
ranging from 50 to 1000 nodes.

We have divided the data of the centralized experiments
into 5 bins (instead of 30) sorted by galactic density. Eaffgure 5: Quality vs. number of nodes. Quality remains the
bin represents the data distribution at a certain time dame thereby showing good accuracy.
the streaming scenario and the distribution changes every
200,000 simulation ticks which we call an epoch. This

implies that every 200,000 simulation ticks we supply thf%rFain a constant even if the number of nodes is increased.

nodes with a hew bin of data. We stream the Qata_at aratgRls jemonstrates the excellent scalability of the alganit
10% of the bin size for every 10,000 simulation ticks. The Finally, we also plot the number of times data is col-

two quaniities measured in our experiments arecuity lected per epoch. In most cases, the number of such con-

of the result and theostof the algorithm. vergecast rounds is 3 per epoch. Note that this can be re-

ith We.havi Iusid :)he L(;}[OV_Vlggodefaulttxaluis Izjr_thleoalg(ahced further by using a larger alert mitigation constant
rithm. Size ot leaky buckel, = , rrorihreshold = 1.9, larger error threshold or larger local data set size.
alert mitigation constant = 500. Due to shortage of space

we do not present an exhaustive analysis of the effect of all
these parameters. We plan to report these in an extended ¢34 .
version. g
For the eigen monitoring algorithm, quality is the av-
erage L2 norm distance between the principal eigen vector
and the and the computed eigen vector in the distributed sce-
nario over all the bins. Since we compute the principal eigen
vector for each bin separately, we plot the average L2 norm
distance between the centralized and distributed eigenvec 5 |
tors for every experiment. The experiment was repeated for " 50 100 200
10 independent trials. Figure 5 shows the scalability tesul

for the accuracy achieved by our algorithm. As shown in thggyre 6: L2 messages vs. number of nodes. Number of

figure, the proposed eigen monitoring algorithm produces fgessages remain constant showing excellent scalability.
sults which are quite close to their centralized countérpar
Moreover, we can also observe that the quality does not de-
grade with increasing network size. Because our algorithm
is provably correct, the number of nodes has no influence on
the quality of the result.

Figures 6 and 7 show the number of messages ex-
changed per node when the number of nodes is increased
from 50 to 1000. As shown in Figure 6, the normalized L2
messages per node is approximately 0.3. Normalized mes-
sage per node means the number of messages sent by a nod
per unit of leaky bucket. Note that for an algorithm which
uses broadcast as the communication model, its normalized 56160 200 =00
messages will be 2.0, assuming two neighbors per node on Number of peers
average. Thus the proposed algorithm is highly efficiert wit .
respect to communication. Also as shown, the L2 messafji!re 7: Number of convergecast rounds per epoch vs.

number of nodes. In most cases the convergecast round is
less than 3 per epoch.
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8 Conclusion

This paper presents a local and completely asynchronous
algorithm for monitoring the eigenstates of distributedi a

[10]

11]

streaming data. The algorithm is efficient and exact in the

sense that once computation terminates, each node in[EI%ja

The ClassX Project: Classifying the High-Energy Umse
http:// heasarc. gsfc. nasa. gov/ cl assx/ .

S. Datta, C. Giannella, and H. Kargupta. Approximate
Distributed K-Means Clustering over a Peer-to-Peer Ndtwor
IEEE TKDE in press, 2008.

Digital Dig - Data Mining in Astronomy. http:

network computes the globally correct model. We have taken™ / /'y, ast r osoci et y. or g/ pubs/ ezi ne/
a relatively well understood problem in astronomy — that

of galactic fundamental plane computation and shown h@yg] Delaunay Triangulation.

dat ami ni ng. htm .
http:// mat hworl d.

our distributed algorithm can be used to arrive at the same wol fram con Del aunayTri angul ation. htm .
results without any data centralization. We argue that thig! Data Mining Grid. http://wv. dat ani ni nggri d.
might become extremely useful when petabyte scale data ©or g/ .

repositories such as the LSST project start to generate r-,[,}jﬂ Wikipedia: Delaunay Tessellation Field Estimatdrt t p:
throughput data streams which need to be co-analyzed with

other data repositories located at diverse geographititoca

[16]

For such large scale tasks, distributing the data and rgnnin
the algorithm on a number of nodes might prove to be cqﬁ]
effective. Our algorithm is a first step to achieving thislgoa
Experiments on current SDSS and 2MASS dataset shpwj
that the proposed algorithm is efficient, accurate, andlhigh

scalable. [19]
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