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Abstract

There has been a tremendous increase in the volume of seasocallected over the last decade
for different monitoring tasks. For example, petabytesartte science data are collected from modern
satellites, in-situ sensors and different climate modsisnilarly, huge amount of flight operational data
is downloaded for different commercial airlines. Thesdedént types of datasets need to be analyzed
for finding outliers. Information extraction from such rictata sources using advanced data mining
methodologies is a challenging task not only due to the masailume of data, but also because these
datasets are physically stored at different geographicaitions with only a subset of features available
at any location. Moving these petabytes of data to a singtation may waste a lot of bandwidth.
To solve this problem, in this paper, we present a novel #@lyorwhich can identify outliers in the
entire data without moving all the data to a single locatibhe method we propose only centralizes
a very small sample from the different data subsets at @iffefocations. We analytically prove and
experimentally verify that the algorithm offers high acacy compared to complete centralization with
only a fraction of the communication cost. We show that ogogthm is highly relevant to both earth
sciences and aeronautics by describing applications setdemains. The performance of the algorithm
is demonstrated on two large publicly available datas&)ghe NASA MODIS satellite images and (2) a
simulated aviation dataset generated by the ‘CommerciallNés Aero-Propulsion System Simulation’

(CMAPSS).

. INTRODUCTION

Anomaly detection or outlier detectibifil] is widely used for detectingbnormalor unusual
patterns from data. Depending on how anomalies are definffdredit algorithms have been
developed for finding anomalies from a dataset, each withréiit assumptions and complexities
[2], [3], [4]. Outlier detection is well studied when all tidata is at one location (centralized
version); however, the problem is more challenging whendii is at different locations such
that each site only has a subset of features (attributes3. §gecific data distribution type is
called thevertically partitioneddata scenario in the distributed data mining literatures gbal
is to identify anomalies in such distributed datasets byimizing the number of data elements
transferred between the sites or to a central (server) site.

Examples of large datasets are extremely common in earémezi In earth science appli-

cations, data is collected and generated by a growing nuwibsatellites, in-situ sensors and

lwe use these terms interchangeably here
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increasingly complex ecosystem and climate models. Thog/irin volume and complexity is
going to continue because in order for the scientists teebeihderstand and predict the earth
system processes, they will require far more compreherste sets spanning many years and
more complex models. With the launch of NASAs Terra and Aquasions, and the expected
launches of number of missions recommended by the Decada\sithe need for more efficient
and scalable data processing system is crucial. The voldimiata itself is often a limiting factor
in obtaining the information needed by the scientists aruilstien makers. This data volume will
grow from hundreds of terabytes to tens of petabytes throuigthe lifespan of the proposed
Decadal Survey missions. More data means more informatioly, if there are sophisticated
means of sifting through the data for extracting the releuaiormation from this data avalanche.

A very interesting task relevant to the earth science conityiis identification of anoma-
lies within the ecosystems.@. wildfires, droughts, floods, insect/pest damage, wind danag
logging), so that experts can then focus their analysisrtsffon the identified areas. There
are dozens of variables that define the health of the ecosyatel both long-term and short-
term changes in these variables can serve as early indcataratural disasters and shifts in
climate and ecosystem health. These changes can have mdo$mgio-economic impacts and
it is important to develop capabilities for identificaticemalysis and response to these changes
in a timely manner. In order to fully understand the earthteays, scientists need to be able to
analyze together a number of datasets from satellites,ngreensors and models. Every data
component has a different observation or predictive cdipabind therefore a global analysis on
a combination of modalities gives better results than shglg particular feature. For example,
observing different but related phenomena, predictinghate impacts at different timesteps, or
providing observations of the same phenomena throughreiffeneans, such as ground sensor
or a radar are expected to enable better comprehension ared ancurate characterization of
changes and disturbances in earth systems. The situatipaatly complicated by the fact most
of the data representing different modalities are storedeaigraphically distributed archives,
such as NASAs Distributed Active Archive Centers (DAAChol containing data specific to
only a subset of the scientific community and thus it is almiogtossible to perform a globally
consistent analysis.

A similar situation exists for large aviation datasets. Aegent, almost every commercial

airline company voluntarily collects and analyzes aircogferational data as part of their Flight
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Operations Quality Assurance (FOQA) program. Under thymm, the goal is to mine the
data for safety, maintenance and other operational istuesta mining parlance, this translates
to identifying anomalies from these datasets which can lenth safety and operationat.§.
fuel wastage) implications for the airlines. The data cstssof in-flight recordings of several
(typically 400 to 500) aircraft parameters such as spediti @, acceleration, roll angle, pitch,
heading, pilot inputs, flap, rudder positions and more,ectdd at frequency of 1 Hz or less.
The data is downloaded from the aircraft after every flightivbien the on board storage media
is likely to become full. Since every airline company hadrtbeerational hubs, the data may be
downloaded and stored at any of these hubs. Moreover, eirineaompany has many different
types of aircrafts in their fleet, and as a result, the dateedtat any of these hubs can be quite
disparate. This forms a classic case of vertically distedudata. The current approach is to use
secure dedicated connections between these data cengathtr the data at one location and
then perform the analysis. Our proposed algorithm can ialiexthe need for such massive data
transfers by distributing the computation amongst theseected data centers. For the sake
of repeatability of our experiments, instead of using pietary FOQA data, we have used a
publicly available fleet-wide aircraft engine dataset whiias been generated from a moderate
fidelity aircraft engine simulator [5]. This dataset hasitamcharacteristics that would be found
in a typical FOQA dataset.

Given these two scenarios, the current approach would behtordata miners to look at
only a subset of the dataset available at one site (and the@mpromise on the quality of
the results) or to bring all the data together in one placethed perform the analysis. While
the second approach (referred to as the centralizatioroappy works for lower data volumes,
it is not feasible to centralize all the data when it growsdrey what can be gathered using
current network infrastructure in a timely manner. Whilerth is a trend to consolidate more
data at fewer data centers, the capabilities to extradtimfiamation from these large distributed
datasets will continue to be a key challenge for any reseaochmunity to be able to gather
significant results by analyzing the growing data volumasdaccumulated world wide.

In this paper we describe a novel and efficient algorithm fayraaly detection in distributed
databases where each site has only a subset of attributesohitributions of this work, based
on the state of the art in distributed anomaly detection, lma®numerated as:

« The proposed algorithm can perform outlier detection whendata is distributed across
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several sites, with only a subset of features at each site.

« We provide analytical bounds for the true positive rate dmalsthat the false positive rate
of the algorithm is 0.

« For the proposed algorithm, the amount of communicationired is less than 1% of that
required for centralization, and yet it is 99% accurate idlifig the outliers compared to a
centralized algorithm. The accuracy is a function of theagarcentage communicated and

can be tuned based on the performance requirements andaes@vailable to the users.

The rest of the paper is organized as follows. In the nexi@e¢Section IlI) we present the
work related to this area of research. We discuss the ideaetlass SVM formulation in Section
lll. In Section IV we present details about the proposed rliga. We discuss the theoretical
analysis of the algorithm in Section V. Performance of thgoathm on NASA satellite data
and aircraft engine data (CMAPSS) is presented in Sectior-Mially, we conclude the paper

in Section VII.

[l. RELATED WORK

Outlier or anomaly detection refers to the task of identifyabnormal or inconsistent patterns
from a dataset. While outliers may seem as undesirableemnitit a dataset, identifying them have
many potential applications such as in fraud and intrusietection, financial market analysis,
medical research, and safety-critical vehicle health mameent. Broadly speaking, outliers can
be detected usingnsupervisedsupervisedor semi-supervisetechniques [6][1]Unsupervised
techniques, as the name suggests, do not require labelats gor detecting outliers. In this
category, the most popular methods are distance-basedessitydbased techniques. The basic
idea of these techniques is that outliers are points in lonsitg regions or those which are
far from other points. In their seminal work, Knoet al. [4] proposed a distance-based outlier
detection technique based on the idea of nearest neighbDoesnhaive solution has a quadratic
time complexity since every data point needs to be comparexvery other to find the nearest
neighbors. To overcome this, researchers have proposedasd¢gchniques such as the work
by Angiulli and Pizzuti [7], Ramaswamegt al. [8], and Bay and Schwabacher [2]. Density-
based outlier detection schemes, on the other hand, flagna gian outlier if the point is in a
low density region. Using the ratio of training and test daémsities as an outlier score, Hido

et al. [3] have proposed a new inlier-based outlier detectionrtegre. Supervisedechniques
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require labeled points of both normal and abnormal operatiata for first building a model
(e.g. a classifier) and then testing if an unknown data point is anabrone or an outlier.
The model can be probabilistic based on Bayesian infergnf@h or deterministic such as
decision trees, support vector machines and neural neswaf. Semi-supervisetechniques
only require labeled points of normal data. Therefore, theymore widely applicable than the
fully supervised ones. These techniques build models afnabdata and then flag as outliers
all those points which do not fit the model. The applicatiores ave interested have very few
labeled data points and we therefore resort to unsuperaster detection techniques.

There exists a plethora of work on outlier detection fromtigpemporal databases. Barua
and Alhajj [11] present a technique for outlier detectioonfr meteorological data using a
parallel implementation of the well-known wavelet transfiation. The authors show that by
implementing the algorithm on modern high performance ruglte processors, they achieve
both improved speedup and accuracy. Birant and Kut [12]uds@ way of identifying both
spatial and temporal outliers in large databases. Theyeattat existing methods do not identify
both these outliers, and hence they propose a new DBSCAIediug method to first cluster the
dataset based on the density of points and then tags asrsuatli@oints which have low density
in its neighborhood. Depending upon the type of outlier cket#, either spatial or temporal
neighborhood is considered. Both these methods considiersuas single points. In practice,
there may be a group of points which are outlierg.a tornado or other natural disaster affecting
a large area. Zhaet al.[13] present an outlier detection method based on wavelestormation
which can detect region outliers. In their approach, thest fiansform the image to the wavelet
domain and then isolate those coefficients which are grehger a threshold. Inverse wavelet
transformation on this thresholded pixels are then camelsdar outliers which are further filtered
by running an outlier detection method. Land cover changectien has been studied by Boriah
et al. [14] and Potteret al.[15]. Boriahet al.[14] have proposed a recursive merging algorithm
for change point detection. In their approach, the datadeedtas a matrix ofV locations and
12 months. Two most similar consecutive annual cycles amgaede and the distance is stored.
This is applied recursively until only one annual cycle it lemaining. The change score for
any location is based on whether any of the observed distaaee extreme. They show how
the method detects new golf courses, shopping centers aed lanhd cover changes. For more

details on the recent work on change detection for land cda&, readers are referred to [14]
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and the references therein. Several other techniques gisbfer building classification and
prediction models for mining geospatial data such as [16].

In the context of outlier detection from aviation data, seVeapers have been recently
published. Daset al. [17] present a technique for speeding up 1-class SVM usingnapkng
strategy. The authors show that the proposed technique tgnEs faster than the traditional
1-class SVM while maintaining accuracy. They have also destrated their technique on the
CMAPSS dataset that we have used in this paper. In a subdepaeer, Dast al. [18] have
developed an anomaly detection method which can work witth leontinuous and discrete
sequences. In that paper they have demonstrated how sonifiecaigt anomalies can be detected
from some real FOQA datasets. More recently, Bhaetiral. [19] have used a distance-based
outlier detection method on some aviation datasets and Bage/n how anomalies can be
detected in a privacy preserving fashion.

Although there is this huge body of literature on anomalydi&bn techniques for earth science
and aviation data, many domain experts still continue toprsaitive statistical measures such
as points outside + 30 of a Gaussian distribution as measures for identifying micaeoutliers
from these datasets. One of the reasons for this is the fattntlost of the outlier detection
techniques fail to scale to the order of terabytes or petabghd even if they do, none of these
techniques work accurately when the data is verticallyifi@ned across a large number of
sites. Although some algorithms have been developed faedmaally partitioned scenario (in
which a subset of observations for all features are predezdch sitele.g.[20], extending them
to vertically partitioned scenario is not obvious. Our peed algorithm can perform anomaly
detection without centralizing all the features to a cdrtr@ation and, thus, can handle massive

datasets.

[1l. BACKGROUND

In this section we first define the notations and then disecudsclass SVM (wherev is
a user chosen parameter) which forms a building block for distributed anomaly detection
technique. Although we focus on SVM, our distributed altfori can be used with many other
base classifiers such as decision trees, neural netwolksbased classifiers, etc. However, it
becomes extremely difficult to adopt a distance-basederudietection algorithme(g. £-NN) to

our framework mainly because none of the distances can beutech based on a single node’s
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data.

A. Notations

Let F,..., P, be a set of computation nodes whelg is designated as the master node
and the others are denoted as the computational nodes. ¢ atatlaset at nod®; (Vi > 0)

=

be denoted byD; = x? x_(,fj consisting ofm rows Wherexf € R". Here each
row corresponds to an observation and each column corrdspimna feature/attribute/sensor
measurement. It should be noted here that there should be-toane mapping between the
rows across the different nodes. the /-th row of all the sites corresponds to thh observation.
That kind of correspondence, if not available for the raw suead data, can be established
using standard cross matching techniques for data pregsincethat exist in the literatureg.
the Sloan Digital Sky Survéy In the distributed data mining literature, this is referi® as
the vertically partitioned data distribution scenarioeTglobal set of features:] is the vertical
concatenation of all the features over all nodes and is défise = [n; n, ... n,) (using
Matlab notation). Hence, the global dafais them x n matrix defined as the union of all data
over all nodes.e. D = [z; ... z,]" with z} € R™.

Let O, denote the set of local outliers at no#s detected by an outlier detection algorithm
running onD; such that|O;| < |D;|. We give a precise definition of outlier and an algorithm
to detect those in the next section. The global set of ostlieund by a centralized algorithm
having access to all the data is denoted analogously by th@ sdhe set of outliers found by

the distributed algorithm is denoted I4y;,.

B. One class/-SVM

Given a training dataset containing examples of one classit{pe labels), one class-SVM,
introduced by Scholkopét al. [21], is a supervised learning method for drawing a sepagati
hyperplane such that% of the points are on one side of the hyperplane. During theitg
phase, the SVM algorithm optimizes the placement of the tplaee in order to maximize the
margin between the hyperplane and the origin, which is tine leepresentative of the second

class with negative label.

2http://cas. sdss. org/ astrodr 6/ en/tool s/ crossi d/ upl oad. asp
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In many cases, the decision boundary is non-linear in thetigpace and the trick is to
transform the input data to a higher dimension space, ther laiowing for linear separability.
This mapping is often made implicit using a kernel functibn: R? x R — R (d is the
dimension of the data) which actually computes the innedpecbd between the input vectors
in this (possibly) infinite dimensional space. Throughdus fpaper, we have used Radial Basis
Function (RBF) kernel:

|z -3
k(T 7)) = exp (T (1)

where ||-|| denotes the Euclidean norm aaddefines the kernel widthr is often needed to be
tuned for a particular dataset.

Scholkopf [21] showed that in the high dimensional featspace it is possible to construct
an optimal hyperplane by maximizing the margin between tigiroand the hyperplane in the

feature space by solving the following optimization prable

o 1
minimize Q= 5 Z ook (T, T5) + p <I/m — Z ozi>
2,] 7

subject to 0<a; <1, vel01] (2)
where «;’s are Lagrangian multipliersy is a user specified parameter that defines the upper
bound on the fraction of the training error and also the lol@und on the fraction of support
vectors, ang is the offset of the hyperplane from the origin. The optin@luson returns a set
of points SV from the training set known as teepport vectordor which the0 < «; < 1 and

also the value of the bias term Now, for any test poinf;, not in the training set, the optimal

decision is based on the following inner product compuiatio
(@)=Y ak(T,7) — p 3)
The pointz; is an outlier if f(z;) < 0.

C. Overview of algorithm

The distributed outlier detection algorithm that we haveeli@ped consists of two steps. In

the first step, a local anomaly detection algorithm is exeatwdt each node which identifies
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outliers based on the features present at these nodes drdy, These local outliers from each
of the nodes are collected at one central node (master nétt)g with this, samples from
the local nodes are also collected at the master node to awldbal model. Finally, all these
local outliers are tested against the global model. Onlygehahich are tagged as outliers by
the global model are then output as the outliers from theidiged algorithm. We will show
both theoretically and experimentally that our algorithasta high true positive rate and zero
false positive rate. Figure 1 shows the proposed distribatehitecture. We elaborate on each

of these steps in the next section.

Global outliersOQ,

Master site By
@ Op
ni no Ny
xgl) 1,52) xgp)
xél) :ch‘)) xép)
ey 2 2
P P, P,

Fig. 1. This figure shows the proposed distributed architect?, is the master site and the other sites are the computation
sites. Local outliersD; are sent taP,, which then output the final outlier®,.

V. ALGORITHM DETAILS
A. Pruning rule

As stated earlier, the goal of distributed outlier detettotwo-fold: (1) compute the correct set
of outliers (with respect to a centralized execution) andnfihimize the cost of communicating

the data to a central node for computation. Distributed ratlgms often define rules based on
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the data to minimize communication while guaranteeing thatglobal task is accomplished
[22][23][24]. These data dependent rules are such thagtifeed by all nodes independently,
then certain global properties of the dataset hold.

In this paper we use the following observation to prune thelmer of messages that need to

be sent to the master site for determining the global set tieost

Pruning rule: An observationz’ € D may be a global outlier (with respect to all the features)
i.e. @ € O, if it is an outlier with respect to at least one (or a subseh)tioe features i.e.
Gel..p), 29 eo,

In other words, we assume that a point cannot be a globaleoutlit is not an outlier for
any of the local sets. While this statement may not be trueemegnl, it provides us with a
way of pruning the number of observations that needs to beteeahe central site. We verify
theoretically that the percentage of correct detectioneim®es exponentially with the number of
features of the data at each site. Our experimental resubis ghat for two large real datasets,
this simple pruning strategy can detect more than 99% of titieecs that a centralized execution
would find with less than 1% of the communication cost reqlii@ centralization. Figure 2
points out the intuition behind the rule for the 2 dimensiarase. In this figure, the green dots
represent the normal points while a single red dot represiiet anomalous point. As seen, the
red dot is quite far from the green dots. We argue that in ofolethis to happen, the distance
along at least one of the axes will be large. In other wordsstmnbthe global outliers will be a
local outlier in at least one of the distributed sites. Itrigobrtant to note that if a “true outlier”
looks normal in both attributes, but only looks outlier whebserved in the 2-D space, our

proposed algorithm will not be able to correctly identifystipoint as an outlier (false negative).

B. Detailed description

The overall distributed anomaly detection algorithm cetssof two stages. The pseudo code
for the first step is shown in Alg. 1. In this step, each node pates the local outliers
independently. The inputs to this local step are the dattseach nodd);, the size of training
setk, a seeds of the random number generator, and the parametdihe algorithm first sets

the seed of the random number generatos.tdhen it selects a sample of sizefrom D; and
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S
3

| - - - - = — - =

Y

Fig. 2. This figure shows the basic idea of the pruning rule-oh 2 this figure, the green dots represent the normal points
while a single red dot represents the anomalous point. As, $be red dot is far away from the green dots. The true distanc

between the red dot and the closest green dot is show by a baid. a'he distance along the axes are shown using dotted
lines. The observation is that for any true outlier, far ailmyn any of the normal points, the distance along the axelsalgb

be higher. Hence we can only analyze the local outliers frachesite.

uses it as the training set}. The rest is used for the testing phasg It then builds an SVM
model M; usingT; andv. Once the model has been built, all pointshh are tested using the
set of support vectors defined By;. All those elements inf{; whose test score is negative is
returned as the set of outlie(3,.

In the second phase (Alg. 2), the local outliers are aggeebat the master sitg,. A sample
of size k is drawn from each of the local site3; such that the same index (observation) is
selected from each node. A global SVM model is then learnethisnaggregated sample from
all the sites. Each element pf}_, O; is tested against this global model to assign a score. All
those elements if)!_, O; whose score is less than 0 is then reported as the true setlersu

O, by the distributed algorithm.

V. ALGORITHM ANALYSIS

In this section we provide performance analysis of the itsted algorithm.

A. Correctness

Given a pointz’ € D, Table | shows howz’ can be classified by both the distributed and the

centralized algorithm. The error induced in the distrilbudédgorithm is due to the false positives
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Algorithm 1: Local outlier detection at each nodg, i > 0

Input: Dataset(;), Training sample sizéj, v, seeds
Output: Outlier setQ;

begin
setseed);
T; = SampleD;, k); /1 Training data
H; «+ D; \'T;; /1l Test data
M; < SVMTraining(T;,v);
S + SVMTest(M;, H;); /'l Assign a score to each point in H;

for j=1 to |H;| do
if S(j) <0 then
L 0i(§) « [Hi(7) SO
SendQ; to Py;

Algorithm 2: Global outlier detection aF,

Input: Oy, ..., O,, Training sample sizé], v

Output: Outlier setOy

begin
T = Sample(J)\_, D;, k); /1 Training data sanpled fromall sites
H <+ U, 0 Il Test data
M + SVMTraining(T, v);
S < SVMTest(M, H); /'l Assign a score to each point in H
for j=1 to |H| do

L if S(j) <0 then

L Oaj) < [H(G) SO

and false negatives with respect to the centralized algarit

We first analyze the case in which there is only one featurenpele. Without any prior
information about the data distribution, we assume thatdag is drawn from an unknown
distribution but sampled uniformly and independently facle feature.

Theorem 1 (True positive ratefGiven a pointz € O,, the probability of correct detection
(true positive) of that point is given by

P(?eOdWeOc):l—g<l—%),

where R; is the projection of the farthest point along théh axis andp; is the distance of the

hyperplane along théth axis, both measured from the origin.

April 24, 2011 DRAFT



14

Distributed algorithm
Normal Outlier
Normal | True positive | False positive
Outlier | False negative True negative

Centralized algorithm

TABLE |
CONFUSION MATRIX FOR THE PERFORMANCE OF THE TWO ALGORITHMS

Fig. 3. This figure shows the different hyper planes drawnhayalgorithm when using all the variables (A), ophdimension
values (B) and only:-dimension values (C). Note that different anomalies atmdbusing the different hyper-planes.

Proof: First we note that
7 e 0, = 3], x?er.

From Figure 3, the distributed algorithm can be viewed asviohg hyperplanes, one for each
dimension, which are the projection axes. lgtand R; be the distance to the hyperplane and
the maximum projection distance of the points along #tlke dimension from the origin. The
probability that any point’ € O, does not belong t®; for the i-th dimension is given by,

Pi
1—-=.
R;

Since the data for each axis is drawn independently, theapitity that 2’ does not belong to
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any of theO;’s is given by

[1(-5)

2

Therefore the probability that the test point is includecineast one of the outlier sets is given

by ,
1—H<1—%).

=1
[
In the above expressiof[?_, (1 — 1%) — 0 asp — oo since (1 — %) < 1. Therefore,
for large p, the true positive rate of the distributed algorithm apphms that of the centralized
algorithm.
Following a similar argument, it is easy to show that thedaiggative rate of any point is

P(?e@d|7¢oc):§(1—%).

Finally, we show that the false positive rate of the alganitis 0. Note that in the second phase
of the distributed algorithm, we sample data from the nekwaord build an SVM. The resulting
hyperplane is the same that would have been built if the eentaitaset were at one location.
Therefore, any point which is not an outlier accordingQp (i.e. one of the red circles in the
figure), will also be tagged as a normal points @y since they both use the same hyperplane

for testing the points. As as result, the false positive cdtéhe algorithm is zero.

B. Message complexity

The total number of bytes necessary to centralize all of tita dt a single location and run

the centralized outlier detection algorithm is:

mXmng+mXng+---+mXn, =m X E n;
i=1

For the distributed algorithm, we perform two rounds of commncation. First, we centralize
the outliers from all the sites and then we gather a samplezefisfrom all of them to build
a global model and test the outliers found by each of the Isitat. Note that for centralizing

the outliers from site”;, we need to visit other sites too in order to fetch the otheredisions.
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Thus, total number of messages is given by,

p p p
01 % Y i +]O0a] x Ym0 x Y mitk X mg o+ kX,
=1 =1

=1 g
_ centralizing samples

P
centralizing outliers

p p P P P
— Z O] x Znﬂranl = an X (l{;—i—Z\(’M)
j=1 i=1 i=1 i=1 =1

Now sincem > " | |0;| + k, the distributed algorithm is far more communication effiti

than its centralized counterpart. We demonstrate this meagly in Section VI.

C. Running time

The running time for the traditional-SVM algorithm can be written a® (m?3_"_ n;) or
O (m o> ni)2>, depending on the solution to the primal or the dual problereither of these
two cases, distributed computing can reduce the running liynsplittingn; across several nodes.
Therefore, the load at one node can be reduced ftbfm?* ", n;) or O <m( r ni)Q) to
O(m?®n;) or O(mn?) respectively. This formulation can provide significantisge in terms of

computational complexity at each node. We demonstrateirirtise experimental section.

VI. EXPERIMENTAL EVALUATION

This section demonstrates the performance of the propdgedtim on the MODIS California

dataset and the Commercial Modular Aero-Propulsion Sysemnulation (CMAPSS) dataset.

A. Dataset description

The first dataset used in this paper is the MODerate-resoluthaging Spectroradiometer
(MODIS) Reflectance product MCD43A4 (version 5) which pdms 500-meter reflectance data
adjusted using a bidirectional reflectance distributionction (BRDF). The data is collected
at intervals of every 8 days as an image file of si263 x 738 where each entry is saved as
little-endian 32-bit float value. Each image is saved in 7asagfe bands at different wavelengths.
Along with the actual reflectance data for each pixel, we &laee the latitude and longitude
information for them. At the top level, the data is organibgdyear from 2001 to 2008. Under
this top level directory structure are separate files fohdaend (1 - 7) and each 8-day period
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| Band || Spectral wavelength (ni)

620 - 670
841 - 876
459 - 479
545 - 565
1230 - 1250
1628 - 1652
2105 - 2155

TABLE I
SPECTRAL BAND FREQUENCIES FORMODIS DATA ACQUISITION.

~NOoO O~ WNBRE

of the particular year. Within the period the best obseoratiwere selected for each location.

Each of the files represent a 2D dataset with the naming ctiowsnas follows:
MCD43A4.CAIKM.005. <YYYYDDD > .< BAND > .flt32

where< YYYY DDD > is the beginning year-day of the period andBAN D > represents
the observations in particular (spectral) band (band 1 dl@nThe indexing is 0-based, ranging
from O - 6 (where 0 = band 1, and 6 = band 7). The spectral bampidrecies for the MODIS
acquisition are as follows (see Table 11):

The second dataset is a simulated commercial aircraft emtgita. This data has been generated
using the Commercial Modular Aero-Propulsion System Satioh (C-MAPSS) [5]. The dataset
contains full flight recordings sampled at 1 Hz with 29 engamel flight condition parameters
recorded over a 90 minute flight that includes ascent to erats35000 feet and descent back
to sea level. The simulated data was generated both durimgahdlight conditions and after
generating known faults in the aircraft engines. Thereforee advantage of this dataset over
the MODIS data is the availability of ground truth to accdss performance of any detection
algorithm. Interested readers can refer to this dataseA&HNnk3.

B. Dataset preparation

In order to apply our anomaly detection method, we have pad the following prepro-

cessing steps on the MODIS dataset:

%htt ps://c3. ndc. nasa. gov/ dashl i nk/ resour ces/ 140/
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We remove all the pixels which have a fill value of -999.

For each band and each image (per day) we first convert the 2dtixnof pixels into a
1-D representation (as a simple vector) and then append tleesors over all the days and
years to create a (very) long vector of intensities for tlaad Combining for all the bands,
we get the size of this matrix a, 613,391 x 7.

Along with this, we have also created a latitude and longitonchtrix (each of sizé2, 613,391 x
2) for each element in the data matrix.

We then split the data into 7 sites, each site having13, 391 tuples.

Figure 4 shows the dataset and the final output of the pregsoug step.

Band Band ...............
Band] Band1
Longitude| Longitud
Latitude Pixel Latitude Pixel
Day1 of Year 2001 Days8 of Year 2001

|

Band1 Band2Band3Band4 Band5 Band6 Band7

Day1 of Year 2001

Day8 of Year 2001

Day353 of Year 2008

Fig. 4. This figure shows how the MODIS data set is structukgth file is an image of siz&203 x 738. There are seven
bands (separate images) for each of the 46 days per year§omars), since data is saved every 8th day. The data comtfins
both the intensity and the latitude and longitudes for eadation. First we take each (2-D) image containing the siters

as the pixels and convert it to a (1-D) vector. Then we appéedet vectors, thereby creating a very long vector. We do this
separately for each of the bands, and concatenate them sisidd (see figure for details).

For the CMAPSS dataset, we did not perform any preprocessinghe data. It has been

used directly from the website. We only divided the dataigally to simulate the distributed

scenario.
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C. Measurement metric

In all of our experiments we measured these quantitiesh@ percentage of correct detection
or detection rate, (2) the running time, and (3) the numbenegsages exchanged. By percentage
of correct detection we mean the number of common outlierglwhare found both by our
distributed algorithm and a centralized algorithm haviegess to all of the data but using the
same sample sizk for training as the distributed algorithm. When comparingning time, we
plot the running time of our method and the centralized atlgor running on all the features.
Note that, for our distributed algorithm since each site manin parallel, we report the average
running time over all the sites. We also report the total nemdbf bytes transmitted by the

distributed algorithm.

D. Performance evaluation on MODIS dataset

In this section we discuss the performance of the distribwigorithm on the California
MODIS dataset. The first figure (Figure 5) shows how the detecate (both mean and standard
deviation) varies as the size of the training samplei¢ varied. The results are an average of
10 trials. We have varie& from 10,000 (0.79% of the entire dataset) to 1,000,000 .92
the entire dataset). For a uniformly selected training $size 10,000, the percentage of correct
detection is 98.33. It remains almost a constant for diffeigzes of the training set. For 1
million test points, the correct detection rate is close 979%. This shows that our algorithm
is extremely accurate and returns the true set of outliees different sample sizes. Note that
in this context, true set of outliers refers to the outlievarfd by the centralized algorithm.

The next experiment demonstrates the gain of our algorithiim rgspect to running time. As
shown in Figure 6, the running time of our algorithm diver§resn the centralized algorithm as
k is increased. For smalldr, the running time is comparable to the centralized algoritiAs
k increases, our algorithm starts performing better. Thimtigitive since with increasing size
of training sample, more computation is needed and thusuhgeimg time of the centralized
algorithm increases sharply. On the other hand, the diggtbalgorithm exhibits a slower growth
in running time since the total processing load is distebuacross all the processors. As shown
in Section V-C, the distributed algorithm exhibits superelr complexity at each node which

neatly concurs with the graph in Figure 6.
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Fig. 5. \Variation of the percentage of correct detectiorhwifte size of the training set as the latter is varied from A®,0
points (0.79% of the entire dataset) to 1,000,000 point82¢%. of the entire dataset) for MODIS. The samples are selecte
at random from the entire dataset. Percentage of correettitai means the number of anomalies detected by the ditdb
method compared to a centralized SVM algorithm using thizeedaitaset. As evident, the detection rate increases asathple
size increases.
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Fig. 6. \Variation of running time with the size of the traigirset for MODIS. The samples are selected at random from
the entire dataset. Both the running times of our algoritimd the centralized algorithm are shown. Clearly, the distgd
algorithm outperforms the centralized one as the sampkisizeases.

Message complexity of the algorithm is demonstrated in feéigt. The z-axis shows the
number of samples used for the training andgkexis refers to the ratio of the bytes transferred
by the distributed algorithm to that of the centralized alldpon, expressed in percentage. Note
that a value ofy = 100 means that the distributed algorithm does not provide anynconication
savings. For all the cases, the percentage message cotypplaries between 0.134 and 7.934.
This shows that the proposed algorithm is highly commuracagfficient.

Figure 8 shows the top 50 outliers for training set size of,@00. These outliers can be
an outcome of any of the following underlying phenomenorhsas change in vegetation due
to fire, algorithmic problems with atmospheric correctiool®uded data, bad sensor or pixels

corrupted during transmission. This is the general problgth earth science - the complexity
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Fig. 7. Variation of the percentage of bytes communicatel thie size of the training set for MODIS. The samples arecsete

at random from the entire dataset. Thexis refers to the ratio of the bytes transferred by theribisted to the centralized
algorithm, expressed in percentage. As depicted, the mamimpercentage of bytes transferred is close to 8%, demdingtra
the excellent scalability of the proposed algorithm.

of the system itself makes it extremely difficult to find th@tr@ause for anomalies. Sometimes
it may be due to a simple change in vegetation due to fire, boiemes it may be caused
by other changes hundreds or thousands of miles away. Augbranalysis of these results is

beyond the scope of this work and will be reported in anotlegrep.

E. Performance evaluation on CMAPSS dataset

Figure 9 shows the detection rate of the distributed anondalection algorithm for the
CMAPSS dataset as the number of training samples is varead 1,000 to 10,000. The left and
the right figures show the same for 1 feature per site and 4direstper site respectively. For
both these figures, detection rate varies between 99.8%0%10This shows that for CMAPSS
dataset, most of the anomalies are easily detectable irast ¢tme of the dimensions. We have
found the same situation for some of the other FOQA datasets.

Figure 10 shows the runtime for the same CMAPSS dataset wiersize of training set
is increased. These runtimes are average of 10 trials. Foditributed algorithm, we have
reported the average over all of the sites. As expected, iftebdited algorithm shows a much
slower growth in running time compared to the centralizegbathm. This is because, for the
distributed algorithm, the computational load at each nigdeeduced from all the features to
only a few features at each site. This dramatically reducesuinning time.

Our last set of experiments (Fig. 11) show the variation ded#on rate and running time

as the number of features per site are varied from 1 to 4. Aeat®f, the detection rate shows
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Fig. 8. Top 50 outliers detected by the distributed algamitfor £ = 100,000.

no variation, being always close to 100%. This justifies tlaént that our method is robust to

the number of features at any location. Note that, becawesédtection rate is 100% even for 1
feature per site, increasing the number of features peraitaot improve the detection rate any
further. On the other hand, the running time of the algorigtrows a sub linear growth, better
than the theoretically derived quadratic growth as show&eation V. Increasing the number of

features per site increases the running time because esteimek computation takes more time.

VIlI. CONCLUSION

In this paper we have presented a distributed algorithmbdapaf detecting outliers from
distributed data where each site has a subset of the globalf §eatures. To the best of the
authors’ knowledge, this algorithm is the first which doesraaly detection from vertically

partitioned data in a communication efficient manner. Oumprg rule allows us to achieve
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Fig. 10. \Variation of running time with the size of the traigi set for MODIS. The samples are selected at random from
the entire dataset. Both the running times of our algorithmd the centralized algorithm are shown. Clearly, the distad
algorithm outperforms the centralized one as the sampkisizeases.

high accuracy and low communication cost, a must for pracgserabytes of data. We have
provided a comprehensive theoretical analysis of the #lgorto show its gains. Experimental
evaluation is conducted with the NASA MODIS satellite imaig¢aset and the CMAPSS dataset.
The distributed algorithm identifies 99% of the outlierseid¢é¢d by the centralized method with

only 1% of the communication needed for centralizing all daga.
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